首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.

Abstract  

The anticancer ruthenium–arene compound [Ru(η6-C6H5CF3)(pta)Cl2] (where pta is 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane), termed RAPTA-CF3, with the electron-withdrawing α,α,α-trifluorotoluene ligand, is one of the most cytotoxic RAPTA compounds known. To rationalize the high observed cytotoxicity, the hydrolysis of RAPTA-CF3 in water and brine (100 mM sodium chloride) and its reactions with the protein ubiquitin and a double-stranded oligonucleotide (5′-GTATTGGCACGTA-3′) were studied using NMR spectroscopy, high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and gel electrophoresis. The aquation of the ruthenium–chlorido complex was accompanied by a loss of the arene ligand, independent of the chloride concentration, which is a special property of the compound not observed for other ruthenium–arene complexes with relatively stable ruthenium–arene bonds. Accordingly, the mass spectra of the biomolecule reaction mixtures contained mostly [Ru(pta)]–biomolecule adducts, whereas [Ru(pta)(arene)] adducts typical of other RAPTA compounds were not observed in the protein or DNA binding studies. Gel electrophoresis experiments revealed a significant degree of decomposition of the oligonucleotide, which was more pronounced in the case of RAPTA-CF3 compared with RAPTA-C. Consequently, facile arene loss appears to be responsible for the increased cytotoxicity of RAPTA-CF3.  相似文献   

5.
6.
《Inorganica chimica acta》1989,165(2):241-243
The compound [WI(CO)(NCMe)(dppm)(η2-MeC2Me)][BF4] reacts with carbon monoxide and tbutylisonitrile in CH2Cl2 at room temperature to give the substituted products [WI(CO)2(dppm)(η2-MeC2Me)][BF4] (1) and [WI(CO)(CNtBu)(dppm)(η2-MeC2Me)][BF4] (2) in good yield. The new complexes were fully characterised by elemental analysis, infrared, 1H and 13C NMR spectroscopy. 13C NMR spectroscopy suggests that the but-2-yne ligand is donating four electrons to the tungsten in these complexes.  相似文献   

7.
《Inorganica chimica acta》2006,359(9):2798-2805
X-ray structural and NMR spectroscopic data for the ring-opened thiophene complexes [Pd(dippe)(T)] (2), and [Pt(dippe)(T)] (3) are now presented. The complex [Ni(dippe)(T)] (1), where T = 2-C,S-C4H4S), was reported by our group, previously.The structural and bonding properties of complexes 2 and 3 were compared with those of complex 1. DFT calculations were carried out to rationalize their relative stabilities and structural properties. Compound 1 loses thiophene at ambient temperature in solution, while compound 2 decomposes rapidly in both acetone-d6 and THF-d8 with kobs = 7.15(9) × 10−5 and 7.7(3) × 10−5 s−1, respectively, to give products that varied by solvent. Complex 3 does not lose thiophene at temperatures below 100 °C. The ΔG0 values determined from DFT calculations are consistent with the observed stabilities of the complexes. The single crystal X-ray structures of all three complexes contain a disordered thienyl fragment in the asymmetric unit due to the interchange of the position of sulfur in the metal-inserted thiophenic ring. The thiophenic moiety is relatively flat in 1, 2 and 3, which is attributed to the open ligand environment at the M(dippe) fragment. All three complexes possess square-planar geometry around the metal center and have bond-length alternation among the thiophenic carbons, which indicates double bond localization. The calculated bond lengths are in good agreement with experimental data. Molecular orbital (MO) and natural bonding orbital (NBO) analyses were carried out to rationalize the results.  相似文献   

8.
[Ir(η5-C5Me5)(C3S5)] [C3S52− = 4,5-disulfanyl-1,3-dithiole-2-thionate(2−)] was prepared by a reaction of [NMe4]2[C3S5] with [Ir(η5- C5Me5)Cl2]2 in ethanol. It was reacted with bromine to afford a paramagnetic species [IrBr(η5-C5Me5)(C3S5)] with the Ir-Br bond and in the one-electron-oxidized state, and a diamagnetic dinuclear species [IrBr(η5-C5Me5)(μ-C2S4)IrBr(η5-C5Me5)]. ESR spectra for the one-electron-oxidized species in solution are discussed. The X-ray crystal structural analysis for the latter complex revealed the geometry consisting of dinuclear IrBr(η5-C5Me5) moieties bridged by the C2S42− ligand.  相似文献   

9.
The preparation and properties of binuclear complexes containing the pyrazolate and azide groups as bridging ligands are reported. Representative formulae are: M2(μ-pz)(μ-N3)(CO)4, M2(μ-pz)(μ-N3)- (COD)2 (M = Rh or Ir), (CO)2Rh(μ-pz)(μ-N3)ML2 (M = Rh, L2 = COD, M = Ir, L = CO) and (η3-C3H5)- Pd(μ-pz)(μ-N3)Rh(CO)2. The crystal and molecular structure of the latter complex has been determined by single-crystal X-ray methods. Crystals are monoclinic, space group C2/c with cell constants a = 18.4750(10), b = 10.0351(3), c = 13.6399(6) Å, α = 90, β = 100.022(4), γ = 90°, and Z = 8. The final R and Rw values were 0.051 and 0.062 for 1417 observed reflexions. This binuclear compound packs in the crystal zig-zag chains of rhodium atoms, along the c axis, wtth intermolecular Rh···Rh contacts of 3.290(1) and 3.604(1) Å. The Rh···Rh···Rh angle is 163.16(4)°.  相似文献   

10.
《Inorganica chimica acta》2006,359(9):2751-2755
The compounds Cp2Ce[η3-N(QPPh2)2] (Q = S (1), Se (2)) and Cp2Ce[η3-N(SPiPr2)(SePPh2)] (3) have been synthesized from the protonolysis reactions between Cp3Ce and HN(QPPh2)2 or HN(SPiPr2)(SePPh2) in THF. The structures of these compounds have been determined by X-ray crystallographic methods. The three compounds have similar structures in which the ligands are coordinated to Cp2Ce moiety in an η3 fashion through the two chalcogen atoms and an N atom. Whereas the 77Se NMR resonances are normal the 31P NMR resonances are shifted to much lower frequencies than in similar rare-earth compounds.  相似文献   

11.
《Inorganica chimica acta》1988,142(2):333-336
The crystal and molecular structures of the title compounds have been determined from single crystal X-ray diffraction. The two complexes crystallize in the orthorhombic space group Pna21 with Z = 4. Lattice parameters are: a = 10.504(2) [10.522(2)], 1b = 16.816(4) [16.927(3)] and c = 18.931(4) [18.969(3)] Å. The two crystals are isomorphous. The structures were solved by Patterson and Fourier techniques and refined by least-squares techniques to R = 0.0430 for 1508 reflections. The Nd3+. ion is eight-coordinate, being bonded to five carbons of the cyclopentadiene ring, to four chloride atoms and to the one oxygen atom of the THF ring. The NdC distances are in the range 2.67–2.85 Å (average: 2.77 Å) and Nd-Cl distances are in the range 2.76–2.80 Å (average: 2.78 Å). The Nd-O distance is 2.52 A. The Li+ ion is four-coordinate, being bonded to the two chloride atoms and to the two oxygen atoms of the two THF rings. The other Li+ ion is the same as the above. The Li-Cl distances are in the range 2.17– 2.55 Å (average: 2.35 A) and LiO distances are in the range 1.89–1.98 Å (average: 1.91 Å). The Nd atom and the two Li atoms are bridged asymmetrically by the chloride ions, respectively.  相似文献   

12.
In the quest for complexes modelling functional characteristics of metal sulfur oxidoreductases, a series of molybdenum nitrosyl complexes with sulfur-dominated coordination sphere was synthesized. Treatment of the 16, 17 and 18 valence electron (VE) complexes [Mo(L)(NO)('S4')] (1–3) [L?=?SPh (1), PMe3 (2), NO (3), 'S4'2–?=?1,2-bis-(2-mercaptophenylthio) ethane(2-)] with the Brönsted acid HBF4 resulted in formation of different types of products. 1 and 3 were reversibly protonated at one thiolate atom of the 'S4'2– ligand;2, however, yielded the phosphonium salt [HPMe3]BF4 and the dinuclear [Mo(NO)('S4')]2. Alkylation of 1, 2 and 3 by Me3OBF4 or Et3OBF4 uniformly resulted in high yields of [Mo(L)(NO)(R-'S4')]BF4 complexes [L?=?SPh: R?=?Me (5), Et (6); L?=?PMe3: R?=?Me (7); L?=?NO: R?=?Me (8), Et (9)] in which one thiolate atom of the 'S4'2– ligand had become alkylated; the NMR spectra of 5, 6, 8 and 9 indicated that only one out of four theoretically possible diastereoisomers had formed. 5 and 6 were characterized also by single-crystal X-ray structure analyses. A comparison of ν(NO) bands and redox potentials (cyclic voltammetry) of parent complexes and alkylated derivatives showed that alkylation leads to a decrease in electron density at the molybdenum center and to a positive shift in redox potentials. The 16 VE complex 1 could be reduced, also chemically, to give the corresponding 17 VE anion [1], and inserted elemental sulfur into the Mo-SPh bond, forming the 18 VE phenylperthio complex [Mo(η2–SSPh)(NO)('S4')] (11) which, upon reaction with PPh3, gave SPPh3 and regenerated the parent complex 1. These results are discussed with regard to the sequence of proton and electron transfer steps occurring in substrate conversions catalyzed by metal sulfur oxidoreductases.  相似文献   

13.
A method for the synthesis of 5′-deoxy-5′-ethoxycarbonylmethyl nucleosides has been developed. 3-O-benzyloxymethyl-1,2-O-isopropylidene-α-D-allofuranose was oxidized by sodium periodate to form a 5′-aldo derivative, which was converted by the reaction with triethylphosphonoacetate in the presence of sodium hydride into a 5-deoxy-5-ethoxycarbonylmethylene derivative. The hydration of the unsaturated compound gave 5-deoxy-5-ethoxycarbonylmethyl-1,2-O-isopropylidene-α-D-ribofuranose. After the benzylation of 3-hydroxyl, the removal of the isopropylidene group by heating with acetic acid, and the subsequent acetylation, 1,2-di-O-acetyl-3-O-benzyl-5-deoxy-5-ethoxycarbonylmethyl-D-ribofuranose was obtained, which reacted with persilylated nucleic acid bases to form 5′-deoxy-5′-ethoxycarbonylmethyl nucleosides.  相似文献   

14.
15.
16.
The Pt2 (II) isomeric terminal hydrides [(CO)(H)Pt(μ-PBu2)2Pt(PBu2H)]CF3SO3 (1a), and [(CO)Pt(μ-PBu2)2Pt(PBu2H)(H)]CF3SO3 (1b), react rapidly with 1 atm of carbon monoxide to give the same mixture of two isomers of the Pt2 (I) dicarbonyl [Pt2(μ-PBu2)(CO)2(PBu2H)2]CF3SO3 (3-Pt); the solid state structure of the isomer bearing the carbonyl ligands pseudo-trans to the bridging phosphide was solved by X-ray diffraction. A remarkable difference was instead found between the reactivity of 1a and 1b towards carbon disulfide or isoprene. In both cases 1b reacts slowly to afford [Pt2(μ-PBu2)(μ,η22-CS2)(PBu2H)2]CF3SO3 (4-Pt), and [Pt2(μ-PBu2)(μ,η22-isoprene) (PBu2H)2]CF3SO3 (6-Pt), respectively. In the same experimental conditions, 1a is totally inert. A common mechanism, proceeding through the preassociation of the incoming ligand followed by the PH bond formation between one of the bridging P atoms and the hydride ligand, has been suggested for these reactions.  相似文献   

17.
《Inorganica chimica acta》1986,122(2):243-248
The reaction of [IrCl(COD)]2 with K[CH(N-p- C6H4CH3)2] (K+form) has been carried out in both neat toluene and in the presence of ButOH. In the first case [Ir(form)(COD)]2 (1) was obtained in good yields. The other reaction follows a somewhat different course with partial alcoholysis of the formamidine ligand and formation of Ir2(μ-form)(μ-NH-p-C6H4CH3)(COD)2 (2). Crystal data for compound 2: space group P21/c, a = 9.389(2), b = 21.083(4), c = 16.810(2) Å, β = 91.54(1)° V=3326(2) Å3, Z = 4, R = 0.0343 for 3707 data with Fo2 > 3σ(Fo2).  相似文献   

18.
Gas-phase reactions of ClO/BrO with RCl (R = CH3, C2H5, and C3H7) have been investigated in detail using the popular DFT functional BHandHLYP/aug-cc-pVDZ level of theory. As a result, our findings strongly suggest that the type of reaction is firstly initiated by a typical SN2 fashion. Subsequently, two competitive substitution steps, named as SN2-induced substitution and SN2-induced elimination, respectively, would proceed before the initial SN2 product ion-dipole complex separates, in which the former exhibits less reactivity than the latter. Those are consistent with relevant experimental results. Moreover, we have also explored reactivity difference for the title reactions in term of some factors derived from methyl group, p-π electronic conjugation, ionization energy (IE), as well as molecular orbital (MO) analysis.
Figure
Energy profiles for the ClO– reactions and BrO–reactions, respectively  相似文献   

19.
[Rh2(μ-Cl)2(cod)2] reacts with Ph2PCH2CH2OMe (PC2O), Ph2P(CH2)3NMe2 (PC3N), PBunPh2 or PPh3 to give [Rh(cod)L2]Cl (L = PC2O, PC3N, PBunPh2, PPh3). In the presence of hydrogen, [Rh(cod)L2]Cl is converted to [RhClH2L3]. In contrast, [Rh(cod)(PC2O)2]BPh4 reacts with H2 to give [RhH2(PC2O)2S2]BPh4 (S = solvent). With Ph2PCH2CH2NMe2 (PC2N) or Ph2PCH2CH2SMe (PC2S), [Rh2(μ-Cl)2(cod)2] reacts to form the chelate complexes cis- [Rh(PC2N)2]+ or cis-[Rh(PC2S)2]+, neither of which reacts with hydrogen under ambient conditions. The products of the reactions are characterized in situ by 31P1H NMR spectroscopy.  相似文献   

20.
The reactions of [ReCl22-NNC(O)Ph}(PPh3)2] (1) with t-BuOOH, in C6H6 or chlorinated solvents, at room temperature or with MeOH upon reflux in air lead to the trichloro-η1-benzoyldiazenido [ReCl31-NNC(O)Ph}(PPh3)2] (2) or the methoxy-oxo [ReOCl2(OMe)(PPh3)2] (3) compound, respectively, which have been characterized by spectroscopic and FAB+-MS methods, elemental and single crystal X-ray diffraction analyses. They show distorted octahedral coordinaiton geometries with trans triphenylphosphine ligands, an essentially linear η1-diazenido moiety in 2 and the methoxy group in 3 in trans position to the oxo ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号