首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inorganica chimica acta》1988,152(3):151-157
Using the semi-empirical all-valence method (GRINDOL) (recently modified and extended to transition series elements), electronic structure and intermolecular interactions of the model antitumor Pt(II) compounds with guanine and thioguanine have been calculated. Several possible models of antitumor action of platinum compounds are discussed. It is concluded that cis-Pt(II) complexes with guanine form stable intrastrand N7N7 cross-links (but chelation to the O6 atom is also possible). The trans-isomers of platinum(II) exclusively form interstrand cross-links, but the cis-Pt(II) complexes with thioguanine form almost entirely the N7S five-membered chelates.  相似文献   

2.
The electronic structure of H2M3(CO)9S clusters (M = Ru, Os) is discussed on the basis of their He I and He II excited gas-phase photoelectron spectra and on the basis of CNDO quantum mechanical calculations. The PE data clearly demonstrate the cleavage of two direct MM interactions by operation of the bridging hydrides, giving rise to three-center two-electron MHM levels. The μ3-S bonding mode has been described in detail and compared with previous results on related μ3-CY cluster derivatives. The CNDO results on Ru3(CO)9S=, HRu3(CO)9S? and H2Ru3(CO)9S indicate that the μ3-S—cluster interaction is mostly independent of the presence of the bridging hydrides.  相似文献   

3.
The He(I) and He(II) photoelectron spectra of a series of [(LL)M(CO)2] (LL = pyrrole-2-CHN′ R; R = t-Bu; M = Rh, Ir) complexes are reported. Assignments are proposed based on He(I)/He(II) intensity differences, on molecular orbital calculations of related complexes and of free ligands, and by comparison with the spectra of the free ligands Hpyrrole-2-CHN′t-Bu, Hpyrrole-2-carbaldehyde and Hpyrrole.The electronic structure of the complexes is discussed and conclusions are drawn about the metal-ligand interaction.  相似文献   

4.
《Inorganica chimica acta》1986,125(3):159-166
This paper describes the synthesis of compounds of Ni(II) with uracil, uridine and the nucleotides 5′UMP, 5′CMP, 5′GMP and 5′IMP, and their characterization, carried out by elemental analysis, by studying the infrared spectra, diffuse reflectance and conductivity measurement.In the complexes of NiURA (and NiURD) with acetate, direct coordination of the metal ion to the C4O group of the pyrimidine ring is inferred from the changes observed on the infrared spectrum of the corresponding bands at vCO. The variations in frequency of the vCOO symmetric and asymmetric bands of the acetate group together with the conductivity and reflectance results seem to indicate the dimer structure of the compounds.In the compounds of NiURA (and NiURD) with ethylenediamine indirect bonding of Ni(II)to the pyrimidine ring is inferred, probably established through hydrogen bonds involving the C4O groups in the base or nucleoside and the −NH2 groups in the ethylenediamine.In the complexes of Ni-nucleotide, bonding seems to occur through the heterocyclic ring (C4O for 5′UMP, N(3) for 5′CMP, N(7) for 5′GMP and 5′IMP) together with additional interactions through the phosphate group.  相似文献   

5.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

6.
Complexes are described of Cobalt(II) and Nickel- (II) salts with the title ligand L. The X-ray crystal structure is described of NiL2L′1(ClO4)1. One ligand molecule (L′) in this complex is deprotonated and the structure involves strongly hydrogen bonded dimers with OHO bonds = 2.56 Å and 2.62 Å and a NiNi bond = 4.77 Å. The corresponding Cobalt complex is thought to be similar but no other compounds containing L′ were obtained.  相似文献   

7.
Two compounds of empirical formula MCl3- (THF)3, M = V and Cr, have been characterized by single crystal X-ray studies. The VCl3(THF)3 molecule, which has a mer octahedral stereochemistry, crystallizes in the monoclinic space group P21/c with a= 8.847(2),b= 12.861(5),c= 15.134(3) Å, β = 91.94(2)°, V = 1721(1) Å3 and Z = 4. The V-Ci(1) and V-CI(2) distances have a mean value of 2.330 [3] Å while V-CI(3) = 2.297(2) Å, The VO(1) and VO(2) distances have a mean value of 2.061[8] Å while V-O(3) = 2.102(3) Å cis ClVCl angles average 92.0[5]° and cis OVO angles average 86.2[2]° . The isostmctural complex, CrCl3(THF)3, has a crystal structure made up of discrete octahedral mer-CrCl3(THF)3 molecules with the following unit cell dimensions (space group P21/c): a = 8.715(1), b= 12.786(3), c = 15.122(3) Å, β = 92.15(1)°, V = 1684(1) Å3 and Z = 4. The CrCl(1) and CrCl(2) distances have a mean value of 2.310131 Å while CrCl(3) = 2.283(2) Å. The CrO(1) and CrO(2) distances have a mean value of 2.0101171 Å while CrO(3) = 2.077(4) Å. cis ClCrCl angles average 90.9[4]° and cis OCrO angles average 86.1 [2]°. The structures of these two octahedral complexes and those previously reported for ScCl3(THF)3 and TiCl3(THF)3 are compared and certain general trends are discussed.  相似文献   

8.
The structure of human lysozyme has been crystallographically refined at 1.5 Å resolution by difference map and restrained least-squares procedures to an R factor of 0.187. A comprehensive analysis of the non-bonded and hydrogen-bonded contacts in the lysozyme molecule, which were not restrained, revealed by the refinement has been carried out. The non-bonded CC contacts begin at ~3.45 Å, and the shorter contacts are dominated, as expected, by interactions between trigonal and tetrahedral carbon atoms. The CO contact distances have a “foot” at 3.05 Å. The CN distance plot shows a significant peak at 3.25 Å, which results from close contact between peptide NHs and carbonyl carbons involved in NiC′i ? 2 interactions in α-helices and reverse turns. The distances involving sulphur atoms discriminate SC trigonal interactions at 3.4 to 3.6 Å from SC tetrahedral interactions at 3.7 Å. All these types of non-bonded interactions show minimum distances close to standard van der Waals' separations.Analysis of hydrogen-bond distances has been carried out by using standard geometry to place hydrogen atoms and measuring the XHO distances. On this basis, there are 130 intramolecular hydrogens: 111 NHO bonds, of which 69 are between main-chain atoms, 13 between side-chain atoms and 29 between mainchain and side-chain atoms. If a cluster of four well-defined internal water molecules is included in the protein structure, there is a total of 19 OHO hydrogen bonds. The mean NO, NHO distances and HN?O angles are 2.96 ± 0.17 Å, 2.05 ± 0.18 Å and 18.5 ± 9.6 °, and the mean OO, OHO distances and HÔO angles are 2.83 ± 0.19 Å, 1.98 ± 0.26 Å and 23.8 ± 13.4 °. The distances agree well with standard values, although the hydrogen bonds are consistently more non-linear than in equivalent small molecules. An analysis of the hydrogen-bond angles at the receptor atom indicates that the α-helix, β-sheet and reverse turn have characteristic angular values. A detailed analysis of the regularity of the α-helices and reverse turns shows small but consistent differences between the α-helices in lysozyme and the current standard model, which may now need revision. Of the 21 reverse turns that include a hydrogen bond, the conformations of 19 agree very closely with four of the five standard types. We conclude that the restrained least-squares method of refinement has been validated by these analyses.  相似文献   

9.
Partial N-desulfation of beef-lung heparin prior to degradative deamination with butyl nitrite and reduction with sodium borotritide yielded many large fragments. From these, a tetrasaccharide tetra-O-sulfate (II-4NH; 8% yield from heparin) and a mixture of tetrasaccharide tri-O-sulfates (II-3NHh; 6% yield) were isolated by sequential chromatography on Sephadex G-25 and DEAE-Sephadex. For these and the other tetrasaccharide preparations, the radioactive disaccharides produced by deamination, with and without subsequent relabelling with sodium borotritide, have been quantitatively determined by the methodology described in the preceding paper. In most cases, the results permit a unique reconstruction of the relative proportions of monosaccharide components and of their sequences in the compounds present. Tetrasaccharide II-4NH appeared homogeneous and has the structure (IdoA-SO4)(GN-O-SO4)(IdoA-SO4)(anhMan-SO4). In tetrasaccharide preparation II-3NHh, the preponderant species (57%) lacks ester sulfate at the terminal l-iduronic residue in the structure just mentioned, and five other species are present. By treatment of the tetra-O-sulfate with mild acid, tetrasaccharide preparations with 3, 2, 1, and no ester sulfate were produced and could be isolated. The isomeric tetrasaccharide tri-O-sulfate species have been partially resolved. Composition and sequence data are given for all of the preparations. The resolution of numerous small fractions suggests minor irregularities in the fine structure of heparin. Ion-exchange electrophoresis was applied to the acidic oligosaccharides and was found to be a useful technique.  相似文献   

10.
Mononuclear mixed anion (acetatoperchlorate) transition metal compounds with the ligand tris(3,5-dimethyl-1-pyrazolylmethyl)amine (amtd), of general formula [M(H2O(amtd)(OAc)](ClO4), where M is Co (1) or Ni (2), and [M(H2O(amtd)(OAc)](ClO4), where M is Co (3) or Cu (4), are described. In all compounds amtd acts as a chelating tetradentate ligand. Compounds 1 and 2 are isomorphous with an octahedral coordination geometry. Compounds 3 and 4 are isomorphous with five-coordinated metal ions. The ligand amtd has been hydrolyzed partly in forming the compound [Cu(H2O)(am2d)(dmpz)(OAc)](ClO4) (5), where am2d is bis(3,5-dimethyl-1-pyrazolylmethyl)amine and dmpz is 3,5-dimethylpyrazole.The structure of 1 consists of a six-coordinate [Co(H2O)(amtd)(OAc) cation and a perchlorate anion. Space group P212121 (orthorhombic) with a = 7.985(2), b = 16.833(2), c = 19.839(3) Å, Z = 4. The structure was solved by heavy-atom methods and refined by least-squares methods to a residual R of 0.044 (Rw = 0.048) for 1272 reflections. The Co(II) ion is octahedrally surrounded by the three nitrogens of the pyrazole groups with distances of 2.120(10), 2.138(9) and 2.159(9) Å and the amine nitrogen on 2.239(8) Å. The acetate anion and the water molecule occupy the fifth and sixth coordination site, with cobalt to oxygen distances of 2.112(8) and 2.076(6) Å, respectively. The coordinated acetate anion is both intra- and inter-molecular hydrogen bonded to the hydrogen atoms of the coordinated water molecule, with 0 to 0 distances of 2.60(2) and 2.67(1) Å, thus forming infinite chains of cations.  相似文献   

11.
《Inorganica chimica acta》1986,115(2):187-192
195-Platinum NMR spectra are reported for a series of complexes of bidentate ligands [Pt(LL)X4] (X=Cl, Br; LL=diphosphine, diarsine, dithioether, diselenoether), [Pt(Me2PCH2CH2PMe2)2X2]X2, [Pt(o-C6H4(AsMe2)2)2X2]X2, and for the Pt(II) analogues. The trends in chemical shifts δ(Pt) and 1J(PtP), 1J(PtSe) coupling constants are discussed, and used to establish the nature of the solution species obtained by oxidation of Pt(II) complexes of some multidentate phosphorus and arsenic ligands. The [Pt(LL)I4] materials are shown to exist as [PtII(LL)I2] in dimethylsulphoxide solution, but [Pt(o-C6H4(AsMe2)2)2I2]2+ is a genuine Pt(IV) iodo-complex.  相似文献   

12.
We have measured the 31P n.m.r. spectra of NADP+ and NADPH in their binary complexes with Escherichia coli dihydrofolate reductase and in ternary complexes with the enzyme and folate or methotrexate. The 31P chemical shift of the 2′ phosphate group is the same in all complexes; its value indicates that it is binding in the dianionic state and its pH independence suggests that it is interacting strongly with cationic residue(s) on the enzyme. Similar behaviour has been noted previously for the complexes with the Lactobacillus casei enzyme although the 31P shift is somewhat different in this complex, possibly due to an interaction between the 2′ phosphate group and His 64 which is not conserved in the E. coli enzyme. For the coenzyme complexes with both enzymes 31POC21H2′ spin-spin interactions were detected (7.5–7.8 Hz) on the 2′ phosphate resonances, indicating a POC2H2′ dihedral angle of 30 or 330 : this is in good agreement with the value of 330° measured in crystallographic studies1 (Matthews et al., 1978) on the L. casei enzyme. NADPH-MTX complex. The pyrophosphate resonances are shifted to different extents in the various complexes and there is evidence that there is more OPO bond angle distortion in the E. coli enzyme complexes than in those with the L. casei enzyme. The effects of 31POC51H5′ spin coupling were detected on one pyrophosphate resonance and indicate that the POC5H5′ torsion angle has changed by at least ~30° on binding to the E. coli enzyme: this is considerably less than the distortion (~50°) observed previously in the L. casei enzyme complex.  相似文献   

13.
The crystal and molecular structure of nitrosyltris-(trimethylphosphine)nickel(O) hexafluorophosphate, {Ni(NO)(PMe3)3}PF6, has been determined from three dimensional single crystal X-ray analysis. The compound crystallizes in the orthorhombic space group Pnma with Z = 4 and a unit cell of dimensions: a = 16.253(3), b = 10.536(1) and c = 12.228(2) Å. The structure was solved by conventional heavy atom techniques and refined by least-squares methods to R1 = 0.036 and R2 = 0.048 respectively for 1085. independent reflections. The coordination geometry around the nickel is a slightly distorted tetrahedron with an average PNiP angle of 105.63° and PNiN angle 113.03°. The nickel nitrosyl group is slightly bent with an NiNO angle of 175.4(5)°. The bending occurs in the ClPlNiNO plane toward Pl. The structure is compared with other tetrahedral {MNO}10 phosphine complexes and the MNO bonding is discussed.  相似文献   

14.
《Inorganica chimica acta》1986,114(2):111-117
Some uranyl(VI) complexes with new acyclic and cyclic Schiff base compartmental ligands have been prepared and characterized. The ligands have been obtained by reaction of 4-chloro-2,6-diformylphenol and polyamines of the type NH2(CH2)2X (CH2)2NH2 (X= NH, S). The structure of the uranyl(VI) complex with the ligand 1,7,15,21-tetra- aza-4,18-dithia-11,25-dichloro 8,22-bis-metadiphenyl cyclophane-gb-7,14,21,28 has been determined by X-ray crystallography. The compound crystallizes in the orthorhombic space group Pbca with eight formula units in a cell of dimensions a = 26.654(3), b = 22.871(3), c = 8.875(5) Å. The structure was solved by standard methods and refined by full- matrix least squares to the conventional R index of 4.6% for 2678 independent observed reflexions. Five donor atoms (including sulphur) of the ligand are equatorially bonded to the uranyl group to form discrete monomeric molecules with the seven-coordinated metal in the usual distorted pentagonal bipyramidal coordination geometry. Selected bond distances are: UO (equatorial), 2.22(1) and 2.25(1) Å; UN, 2.60(1) and 2.59(1) Å; US, 3.018(4) Å.  相似文献   

15.
The complexes M(NCS)4·xL (x = 2, M = U, L = Me3CCON(Pri)2(dippva); x = 3, M = Th, L = Me2CHCON(Pri)2(dipiba) and dippva, M = U, L = EtCON(Pr1)2(dippa), dipiba and dippva; x = 4, M = Th, L = MeCON(Pri)2(dipa), dippa and dipiba, M = U, L = dipa, dippa) and the solvates M(NCS)4·4dipa·CH2Cl2 (M = Th, U) have been prepared. Their i.r. and u.v.-visible (M = U only) spectra are reported. The crystal and molecular structure of U(NCS)4(dipa)4· CH2Cl2 has been determined by the heavy-atom method from X-ray diffractometer data and refined by least squares to R 0.029 for 1135 independent reflections. The crystal is tetragonal, space group P421c, with Z = 2, a = 15.663(4) and c = 10.512(3) Å. The coordination geometry about the 8-coordinate uranium atom is dodecahedral with the N atoms of the NCS groups occupying the dodecahedral A sites and the ‘dipa’ O atoms the B sites. The bonding distances of UO and UN are 2.363(8), and 2.444(11) Å respectively.  相似文献   

16.
The Raman spectra of crystalline H-ProLeuGlyNH2 which has a type II β turn, crystalline S-benzylCysProLeuGlyNH2 which has a type I β-turn, and crystalline gramicidin S which has two β turns and β-sheet structure in its conformation, were investigated. The amide I and amide III bands of the peptides with β turns were generally different from those which are diagnostic for α-helix and β-sheet conformations. The patterns of the amide I and amide III bands, when examined together, indicate that Raman spectra can provide diagnostic evidence for β-turn structure in peptides.  相似文献   

17.
《Inorganica chimica acta》1986,114(2):159-163
R3As reacts with NR′R″Cl to give good yields of a new homologous series of aminoarsonium chlorides, [R3AsNR′R″]Cl, in which R = Me, Et, n-Pr, and Ph; R′ and/or R″ = H, Me. IR, NMR, mass, and X-ray spectral data suggest that the arsenic is tetra- coordinate. Electfical conductivity and temperature and concentration dependent NMR studies suggest that hydrogen-bonding interactions are important in solution. Quaternization of the arsenic produces a downfield 1H NMR chemical shift for the protons in the alkyl chains and a change from non-equivalence to equivalence of the C-1 protons. The NMR data are compared with those for the analogous phosphorus compounds. The electron impact, chemical ionization, and negative ion mass spectral data and fragment ion identities are given for the compounds. Ions corresponding to a variety of AsCl containing species, in addition to those associated .with fragmentation of the R3As moieties, are observed in the EI mass spectra. AsN, AsNAs, and AsNAsN containing fragments are observed in the Cl mass spectra and AsCl bonding species in the NI mass spectra. A preliminary X-ray diffraction study of [n-Pr3AsNH2]Cl indicates near tetrahedral geometry about the arsenic atom.  相似文献   

18.
Structurally unique {Cu12} and {Fe8} cluster complexes were synthesized using 2,2,6,6-tetrakis (hydroxymethyl)cyclohexanol (thcH5) ligand. The polyalcohol thcH5 ligand consists of a six membered ring in a chair confirmation and five pendant alcohol arms providing pentadentate-anchoring points for coordination chemistry. A wide range of reaction conditions was explored with transition metal ions in order to isolate large cluster complexes. Obtained {Cu12} and {Fe8} complexes exhibit unprecedented core topologies where thcH5 encapsulate and bridge between metal centers and mediate magnetic interactions via the superexchange pathways. Both complexes exhibit dominant intramolecular antiferromagnetic interactions leading to singlet spin ground state.  相似文献   

19.
《Inorganica chimica acta》1988,154(2):229-238
The role of the lone pair of electrons on Pb(II) in its coordination geometry and complex stability is examined. In a series of macrocyclic ligands where oxygen donors are successively replaced by nitrogen donors, it is found that when three or four nitrogens are present, there is a sudden marked increase in the rate of change of complex stability per nitrogen donor added. This is attributed to a change from a stereochemically inactive lone pair with approximately two or fewer nitrogen donors present, to an active lone pair. Below the transition point, the Pb(II) ion behaves as a large metal ion with rather ionic ML bonding. In this state it responds to added oxygen donor bearing groups as expected for such a metal ion. Thus, the size-related selectivity patterns of Pb(II) with the ligand DAK-22 (4,7,13,16-tetraoxa-1,10-diazacyclooctadecane-N,N′-diacetate) are as expected for its size. The protonation constants and formation constants of DAK-22 with several metal ions are reported. For the complexes formed by 12-aneN4 (1,4,7,10-tetraazacyclododecane) and 12-aneN3O (1-oxa-4,7,10-triazacyclododecane) the Pb(II) appears to have a stereochemically active lone pair. Thus, when N-(2-hydroxypropyl) groups are added to 12-aneN4 and 12-aneN3O to give the ligands THP-12-aneN4 and THP-12-aneN3O, the Pb(II) ion does not respond to the added hydroxyalkyl groups as might have been expected. It behaves as a smaller more covalent ion, and a study of the formation constants of THP-12-aneN4 and THP-12-aneN3 with Cu(II), Zn(II), Cd(II), Pb(II), Ca(II), Sr(II) and Ba(II) reveals lower than anticipated Pb/Zn selectivities. A crystallographic study of [Pb(C20Hn44N4O4)](NO3)2·C3H8O reveals that there is space between the O donors for a stereochemically active lone pair, but the lack of shortening of the PbN bonds suggests that the lone pair is not active. The complex crystallizes in the orthorhombic system, space group Pnma, with cell dimensions a=10.352(8), b=14.781(2), and c=21.850(4) Å, Z=4. A final conventional R=0.056 was obtained. Although the ligand THP-12-aneN4 has four chiral carbon atoms, the crystal structure suggests that only the RRRR and SSSS enantiomers of the free ligand are obtained after recrystallisation from n-hexane. The structure indicates that the [Pb(THP-12-aneN4)]2+ cations are disordered, with 50% site occupancy by the RRRR and by the SSSS conformer.  相似文献   

20.
Rate constants and activation parameters (ΔH and ΔS)are reported for the oxidation of ferrocene by the tris-1,10-phenanthrolinecobalt(III) cation in t-butyl alcoholwater and in acetonewater solvent mixtures. Solvent effects on reactivity trends for these systems, for this same reaction in methanolwater mixtures, and for cobalt(II)-catalysed racemisation of Co(phen)33+ in t-butyl alcoholwater solvent mixtures are analysed into initial state and transition state contributions. The dependences of solubilities on solvent composition for ferrocene and for [Co(phen)3](ClO4)3 in methanol, t-butyl alcohol, and acetonewater mixtures are also reported; these results are needed in order to establish solvent effects on the initial states of the reactions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号