首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Ni(dpmap)(H2O)]2(ClO4)2 · 3(CH3)2CO, a dinuclear nickel(II) complex of 2-{[[Di(2-pyridyl)methyl](methyl)amino]methyl}phenol, dpmapH has been synthesized. X-ray diffraction analysis indicates that each nickel(II) center is coordinated by two dpmap ligands and two water molecules. The two nickel(II) centers are bridged by μ2-phenolate oxygen donors. The two nickel(II) centers each have distorted octahedral symmetry, comprised of cis-coordinated pyridyl nitrogen, a tert-amino nitrogen and a bridging phenolate oxygen. Hexacoordination is completed by an oxygen atom of a water molecule. The water molecules at each nickel center are trans- to each other across the Ni2O2 basal plane. The two Ni atoms are separated by 3.170 Å. Variable temperature and field magnetic measurements reveal weak antiferromagnetic coupling (J = −0.85 cm−1) between the nickel(II) centers. The χmT versus T data were fit using a model, derived from Kambe’s method and include zero-field splitting (D = −1.6 cm−1). Broken-symmetry density functional theory (BS-DFT) indicates that the weak antiferromagnetism is due to electron density delocalization onto the ligand framework and the inability of the out-of plane phenolato-bridges to mediate superexchange.  相似文献   

2.
《Inorganica chimica acta》1988,152(2):107-110
The dinuclear RhIIRhII complex with proline [Rh2(pro4][NEt4]2 was synthesized and its structure studied by means of spectroscopic (IR, EPR and ESCA) and magnetochemical methods. It was shown that two proline molecules serve as bridging ligands, while the other two are only axially coordinated through their N atoms.  相似文献   

3.
Seven diiridium(II) complexes were synthesized by ligand substitution reactions of [Ir2(μ-O2CMe)2Cl2(CO)2] (1) and [Ir2(μ-O2CMe)2Cl2(CO)2(py)2] (2).The reaction of 2 with the silver salt of a less coordinating anion, AgSbF6, gave a cationic complex [Ir2(μ-O2CMe)2Cl(CO)2(py)3]SbF6 (3).A tricarbonyl cationic complex [Ir2(μ-O2CMe)2(CO)3Cl(py)2]SbF6 (4) was obtained under a CO atmosphere.Complex 2 reacted with AgO2CCF3 to give [Ir2(μ-O2CMe)2Cl(O2CCF3)(CO)2(py)2] (5) in toluene.[Ir2(μ-hiq)2(CO)2Cl2] (Hhiq = 1-hydroxyisoquinoline, 6) was synthesized by the bridging-ligand substitution of 1 with Hhiq.Its axial adducts [Ir2(μ-hiq)2Cl2(CO)2L2] (L = Mepy (4-methylpyridine), 7 or PPh3, 8) were synthesized by addition of the ligands to a suspension of 6.In the structures of 7 and 8, two iridium atoms are bridged by two hiq ligands in a head-to-tail arrangement.The reaction of 1 with Hmhp (2-hydroxy-4-methylpyridine) led to triply bridged [Ir2(μ-mhp)3(CO)2Cl(Hmhp)] (9).In complex 9, all the mhp ligands bridge between the Ir atoms in a head-to-head manner.The Ir-Ir distances of 3, 4, 5, 7 and 8 are 2.6047(7), 2.6216(9), 2.5899(9), 2.5933(5) and 2.634(2) Å, respectively, which are similar to those observed in[Ir2(μ-O2CMe)2Cl2(CO)2L2]. The Ir-Ir distance of 2.5512(4) Å in 9 is shorter than in the other complexes.  相似文献   

4.
《Inorganica chimica acta》2006,359(4):1031-1040
The addition of triphenylphosphine sulfide (Ph3PS) to bis-sulfoxide platinum (II) complexes [Pt(Me2SO)2Cl2] and (−)-[Pt(Me-p-TolSO)2Cl2] yields mixed ligand complexes [Pt(Ph3PS)(Me2SO)Cl2] (1) and (−)-[Pt(Ph3PS)(Me-p-TolSO)Cl2] (2), which are effective catalysts for hydrosilylation reaction. These mixed-ligand complexes were obtained in crystal state and analyzed by X-ray diffraction, 1H, 31P and 195Pt NMR; 2 was also studied by circular dichroism spectroscopy. Both complexes exist in CDCl3 solution as a dynamic equilibrium of two geometric isomers with an approximate 1:10 ratio, but only cis-isomer is obtained on crystallization. The X-ray structures of the complexes have classical geometry, and phosphine sulfide and sulfoxides are coordinated via sulfur. The new structural data for simple platinum–Ph3PS coordination bond, unaffected by chelation or bridging, were evaluated. The lengths of this bond are 2.300(4) Å in 1 and 2.305(3) Å in 2, respectively. PtSP angle equals 105.7(2)° in 1 and 104.05(13)° in 2, the PtSP plane is almost perpendicular to the coordination plane. The static trans-influence of Ph3PS is estimated to be strong and close to that of S-coordinated Me2SO. The complex 2 exhibits strong circular dichroism at a wavelength below 330 nm, caused both by inherent Me-p-TolSO stereogenic center and induced asymmetry of Ph3PS.  相似文献   

5.
6.
(PhSe)2Hg reacts initially with HgX2 (X = Cl, I) and further with triphenylphosphine/DMF to give [(PhSe)7Hg4ClPy]n (1) and [(PhSe)7Hg4I(DMF)]n (2), polymeric assemblies of (μ-Se)Hg clusters obtained through coordinating intermediary ligands. Each single adamantoid molecule of 1 and 2 presents the HgII ions with a distorted tetrahedral configuration linked through asymmetric [μ-(Ph)Se] bridges. [(PhSe)7Hg4ClPy]n and [(PhSe)7Hg4I(DMF)]n are further examples of extended one-dimensional chains of closed anisotropic ME (E = S, Se, Te) systems. In these reactions the features of the intermediary ligands should determine the template which leads to single adamantane moieties or to fused ones.  相似文献   

7.
The kinetics of the stepwise reduction of the title complex [Fe2(CN)10]4− by sulfite have been studied in the presence of air as a function of pH, sulfite concentration, temperature and ionic strength using stopped-flow and conventional spectrophotometric techniques. The kobs versus pH profile shows a marked increase in rate with increase of pH over the range 3.7 ? pH ? 6.1 due to the increase in concentration of the more reactive sulfite species . The reaction proceeds in several stages, the first of which involves a one electron transfer process with the formation of the radical anion This then adds on in a rapid stage to form a species . The second and third stages also involve one electron transfer. In the third, or possibly a fourth stage cleavage occurs, the final product being [FeII(CN)5(SO3)]5−. The reaction rate is sensitive to the nature of the cation present with a reactivity sequence .  相似文献   

8.
Musculature innervated by the N. facialis inTheropithecus gelada (Rüppell) is patterned on broad lines in agreement with related genera of catarrhine monkeys, but presents some specializations and divergences in detail. Noteworthy is the extension to the labial margins superficially of the combined levator labii superioris and zygomaticus in the upper and the pars mandibularis of trachelo-platysma in the lower lip. A specialization of the medial fibres of levator labii superioris forms a sling-like structure within the upper lip and serves to implement the lip-flip gesture characteristic of the genus. Its antagonist is the orbicularis oris. Special features of all other facialis muscles are considered.Abbreviations ABD Anterior belly of digastricus - AE Arteria facialis - ALS Arteria labialis superior - ANL Arteria lateralis nasi - AP Auricularis posterior - APA Arteria auricularis posterior - AS Arteria auricularis superior - A.Se. Arteria septi nasi - A.Sy. Arteria symphysialis - BP Buccal pouch - LAO Depressor anguli oris - FTA Fronto-temporo-auricularis - GLI Glandulae labialis inferiores - GLS Glandulae labialis superioris - LAO Levator anguli oris - LG Artery to labial glands - LLAN Levator labii superioris alaeque nasi - LLS Levator labii superioris - M Masseter - MM Musculus mentalis - NP Notoplatysma - O Occipitalis - OO Orbicularis oris - O.Oc Orbicularis oculi - P Procerus - SH Sterno-hyoideus - TP Trachelo-platysma - VL Vena labialis communis - VP Venous plexus of dorsum nasi - ZM Zygomaticus minor - Zy Zygomaticus  相似文献   

9.
The cation [Cr3O(O2CCH2CH3)6(H2O)3]+ has been shown in vitro to mimic to the oligopeptide chromodulin’s ability to stimulate the tyrosine kinase activity of insulin receptor and shown in healthy and type 2 diabetic model rats to increase insulin sensitivity and decrease plasma total and low-density lipoprotein cholesterol and triglycerides concentrations. However, the degree to which the complex is absorbed after gavage administration to rats had not been previously determined. The biomimetic cation at nutritional supplement levels is absorbed with greater than 60% efficiency, and at pharmacological levels, it is absorbed with greater than 40% efficiency, an order of magnitude greater absorption than that of CrCl3, Cr nicotinate, or Cr picolinate, currently marketed nutritional supplements. The difference in degree of absorption is readily explained by the stability and solubility of the cation.  相似文献   

10.
Direct reaction of copper(I) chloride with triphenylphosphine (tpp) in molar ratio 2:3 and 1:3, results in the formation of the [(tpp)Cu(μ2-Cl)2Cu(tpp)2] (1) and {[CuCl(tpp)3]·(CH3CN)} (2) complexes. The complexes have been characterized by melting point, FT-IR, UV-Vis spectroscopic data and X-ray crystallography. Complex 1 is di-nuclear. Two μ2-Cl atoms bridge two copper(I) ions with tetrahedral and trigonal geometry respectively. The short copper-copper bond distance of 2.9039(6) ? in case of 1 indicates d10-d10 interaction between metal centers. Thus, our studies were extended here in the determination of the quasi-aromaticity, which results in strong Cu-Cu interactions, using the computational method of nucleus-independent chemical shifts (NICS). The NICS calculated at the inner region of the Cu2Cl2P3 core in complex 1 is shielded up to −6.05 ppm. Complex 2 is mono-nuclear where three phosphorus and one chloride atoms form a tetrahedron around the copper(I) ion. Photolysis of both complexes 1 and 2, results in the formation of triphenylphosphine oxide.The complexes 1 and 2, were tested for their in vitro cytotoxic activity against leiomyosarcoma cells (LMS) and human breast adenocarcinoma cells (MCF-7). The type of LMS cell death caused by the complexes was also evaluated by use of a flow cytometry assay. The results show that at concentration of 5 μΜ of complexes 1 and 2, 34.1% (1) and 19.6 (2)% of LMS cells undergo programmed cell death (apoptosis), while at 10 μΜ, 80.4% (1) and 65.2% (2) of LMS cells undergo apoptosis. The light sensitivity of the complex is discussed in relation with the biological activity.  相似文献   

11.
Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with (15)N- and (13)C,(15)N-labeled Aβ(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions.  相似文献   

12.
The crystal structure of the 2-(α-hydroxethyl) thiamin pyrophosphate (LH2) was solved by X-ray diffraction. Crystallographic data: space group F2dd, a=7.922(4) Å, b=33.11(2) Å, c=36.232(10) Å, V=9503(9) Å3, z=16. Metal complexes of the general formula K2{[M(LH)Cl2]2} (M=Zn2+, Cd2+) were isolated from methanolic solutions and characterized by elemental analysis, IR, Raman, and 13C CP MAS NMR spectra. They were also characterized by 13C NMR, 31P NMR, 113Cd NMR, ES-MS, and 1H NMR ROESY spectra in D2O solutions. The data provide evidence for the bonding of the metals to the N(1′) atom of the pyrimidine ring and to the pyrophosphate group. The free ligand and the metal-coordinated ligand adopt the S conformation. Since thiamin cofactor, substrate, and metal ions are present in our system, the extracted results directly refer to thiamin catalysis and possible functional implications are correlated and discussed.  相似文献   

13.
Mössbauer-effect studies of the super-reduced form of Chromatium high-potential iron–sulphur protein indicate that the iron atoms are in a similar valency state to those in reduced ferredoxin from Clostridium pasteurianum, with possibly some inequivalence between the iron atoms within the four-iron centre. Mössbauer spectroscopy also shows magnetic differences between the four-iron centres in the two proteins.  相似文献   

14.
Folding of group II introns is characterized by a first slow compaction of domain 1 (D1) followed by the rapid docking of other domains to this scaffold. D1 compaction initiates in a small subregion encompassing the κ and ζ elements. These two tertiary elements are also the major interaction sites with domain 5 to form the catalytic core. Here, we provide the first characterization of the structure adopted at an early folding step and show that the folding control element can be narrowed down to the three-way junction with the κ motif. In our nuclear magnetic resonance studies of this substructure derived from the yeast mitochondrial group II intron Sc.ai5γ, we show that a high affinity Mg(II) ion stabilizes the κ element and enables coaxial stacking between helices d′ and d′′, favoring a rigid duplex across the three-way junction. The κ-element folds into a stable GAAA-tetraloop motif and engages in A-minor interactions with helix d′. The addition of cobalt(III)hexammine reveals three distinct binding sites. The Mg(II)-promoted structural rearrangement and rigidification of the D1 core can be identified as the first micro-step of D1 folding.  相似文献   

15.
Abstract

Chemical speciation of binary complexes of Co(II), Ni(II) and Cu(II) with L-valine in 0.0-60.0% v/v acetonitrile-water mixtures was studied pH-metrically at an ionic strength of 0.16 mol L-1 at 303.0 K. The existence of different binary complexes was established from the modelling studies, using the computer program MINIQUAD75. The appropriateness of the model was ascertained by studying the effect of errors in concentrations of the reagents. The trend in variation of stability constants with change in the permittivity of the medium is explained on the basis of electrostatic and non-electrostatic forces. The species distribution diagrams and the plausible equilibria for the formation of the species are also presented.  相似文献   

16.
《Inorganica chimica acta》1988,151(4):243-248
The interactions of dimeric complex bis-[μ-chloro-chlorotricarbonylruthenium(II)], [Ru(CO)3Cl2]2, and the polymeric complex poly-[μ-dichlorodicarbonylruthenium(II)], [Ru(CO)2Cl2]x, with nucleosides (Nucl) in a 1:1 Ru:Nucl molar ratio for the dimer and 1:2 Ru:Nucl for the polymer, resulted in formation of the monomeric mononucleoside [Ru(CO)3(Nucl)Cl2] and bis-nucleoside [Ru(CO)2(Nucl)2Cl2] complexes, respectively. The dimer [Ru(CO)3Cl2]2 also gave the ionic bis-nucleoside complexes [Ru(CO)3(Nucl)2Cl]Cl in the molar ratio 1:2 Ru:Nucl. The mononucleoside complexes are stable in solution while the bis-nucleoside complexes tend to lose one nucleoside in strong complexing solvents, probably by solvent substitution. The complexes [Ru(CO)3(Nucl)Cl2] and [Ru(CO)2(Nucl)2Cl2] with one N(1)H ionizable imino proton undergo ionization in alkaline solution and the complexes [Ru(CO)3(NuclH+)Cl] and [Ru(CO)2(NuclH+)2], respectively, were isolated. In these deprotonated complexes the nucleosides behave as bidentate ligands, while in the protonated ones they act as monodentate. All Complexes were characterized by elemental analyses and various spectroscopic methods.  相似文献   

17.
Abstract

Chemical speciation of Mg(II) and Ca(II) complexes of L-histidine in the presence of water–surfactant mixtures in the concentration range 0.0–2.5% w/v CTAB and SDS, 0.0–5.0% v/v TX-100 maintaining an ionic strength of 0.16 mol dm?3 at 303 K has been studied pH metrically. The active forms of the ligand are LH32+, LH2+, LH and L?. The models containing different numbers of species were refined by using the computer program, MINIQUAD75. The predominant species detected were ML2H44+, ML2H33+, ML2H22+, and ML2. The best fit chemical models were arrived at based on statistical parameters. The trend in variation of complex stability constants with change in the composition of the medium is explained on the basis of electrostatic and non-electrostatic forces. The effect of errors in the stability constants was also studied. Chemical speciation was also discussed based on the distribution diagrams.  相似文献   

18.
19.
20.
Low molecular weight zinc(II) and copper(II) binding ligands were detected in ultrafiltered human, bovine, and goat milk by the application of the method of modified gel chromatography. Human milk contains at least three detectable low molecular weight copper binders, whereas bovine and goat milk contain at least two. All three milks show two copper binding peaks with the same elution volumes. Zinc chromatograms were less specific than copper. Zinc showed only a single detectable low molecular weight binding ligand common to all three milks. Elution volumes for both zinc(II) and copper(II) citrate and picolinate systems were measured. Elution volumes of both copper(II) and zinc(II) citrate complexes are identical to elution volumes of an intense peak observed with all three milks; it is reasonable to assume that at least part of this peak corresponds to citrate. Human milk alone has a relatively intense binding peak for copper(II) at the same elution volume as the glutamate complex. Human and goat milk have another low intensity copper(II) binding ligand peak at the same elution volume; a number of amino acid complexes have binding peaks at this position. No peak characteristic of the zinc(II) or copper(II) picolinate systems could be found with any of the milks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号