首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four series of borosilicate glasses modified by alkali oxides and doped with Tb3+ and Sm3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B2O3 + 10SiO2 + 5MgO + R + 0.5(Tb2O3/Sm2O3) [where R = 10(Li2O /Na2O/K2O) for series A and C, and R = 5(Li2O + Na2O/Li2O + K2O/K2O + Na2O) for series B and D]. The X‐ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5D47F5 (543 nm) transition of the Tb3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm3+ ions with the series C and D glasses showed strong reddish‐orange emission at 600 nm (4G5/26H7/2) with an excitation wavelength λexci = 404 nm (6H5/24F7/2). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb3+ and Sm3+ ions was studied to optimize the potential alkali‐oxide‐modified borosilicate glass.  相似文献   

2.
Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g? based on the reactions of SnO2 + 4Li+ + 4e? ? Sn + 2Li2O and Sn + 4.4Li+ + 4.4e? ? Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted.  相似文献   

3.
The anionic redox activity in lithium‐rich layered oxides has the potential to boost the energy density of lithium‐ion batteries. Although it is widely accepted that the anionic redox activity stems from the orphaned oxygen energy level, its regulation and structural stabilization, which are essential for practical employment, remain still elusive, requiring an improved fundamental understanding. Herein, the oxygen redox activity for a wide range of 3d transition‐metal‐based Li2TMO3 compounds is investigated and the intrinsic competition between the cationic and anionic redox reaction is unveiled. It is demonstrated that the energy level of the orphaned oxygen state (and, correspondingly, the activity) is delicately governed by the type and number of neighboring transition metals owing to the π‐type interactions between Li? O? Li and M t2g states. Based on these findings, a simple model that can be used to estimate the anionic redox activity of various lithium‐rich layered oxides is proposed. The model explains the recently reported significantly different oxygen redox voltages or inactivity in lithium‐rich materials despite the commonly observed Li? O? Li states with presumably unhybridized character. The discovery of hidden factors that rule the anionic redox in lithium‐rich cathode materials will aid in enabling controlled cumulative cationic and anionic redox reactions.  相似文献   

4.
The crystal structure of Na[Co(NC6H6O6)] · H2O is reported. The structure is compared to similar transition-metal nitrilotriacetate complexes containing different alkali cations and transition metals (Cu2+ and Zn2+). Inner-sphere coordination of the metals is similar, but the arrangement of counter-ions and water molecules in the unit cells vary with the size of the alkali cation.  相似文献   

5.
It has become clear that cycling lithium‐oxygen cells in carbonate electrolytes is impractical, as electrolyte decomposition, triggered by oxygen reduction products, dominates the cell chemistry. This research shows that employing an α‐MnO2/ramsdellite‐MnO2 electrode/electrocatalyst results in the formation of lithium‐oxide‐like discharge products in propylene carbonate, which has been reported to be extremely susceptible to decomposition. X‐ray photoelectron data have shown that what are likely lithium oxides (Li2O2 and Li2O) appear to form and decompose on the air electrode surface, particularly at the MnO2 surface, while Li2CO3 is also formed. By contrast, cells without α‐MnO2/ramsdellite‐MnO2 fail rapidly in electrochemical cycling, likely due to the differences in the discharge product. Relatively high electrode capacities, up to 5000 mAh/g (carbon + electrode/electrocatalyst), have been achieved with non‐optimized air electrodes. Insights into reversible insertion reactions of lithium, lithium peroxide (Li2O2) and lithium oxide (Li2O) in the tunnels of α‐MnO2, and the reaction of lithium with ramsdellite‐MnO2, as determined by first principles density functional theory calculations, are used to provide a possible explanation for some of the observed results. It is speculated that a Li2O‐stabilized and partially‐lithiated electrode component, 0.15Li2α‐LixMnO2, that has Mn4+/3+ character may facilitate the Li2O2/Li2O discharge/charge chemistries providing dual electrode/electrocatalyst functionality.  相似文献   

6.
The coordination chemistry of a potentially tridentate, dianionic biphenolato phosphine ligand with respect to group 1 metals is described. Deprotonation of bis-(3,5-di-tert-butyl-2-hydroxyphenyl)phenylphosphine (H2[OPO]) with two equivalents of n-BuLi, NaH, or KH in dimethoxyethane (DME) solutions produces the corresponding dinuclear alkali metal complexes [OPO]M2(DME)2 (M = Li, Na, K). The X-ray structure of [OPO]Li2(DME)2 reveals that the two lithium atoms are bridged by both phenolato oxygen donors with only one lithium being coordinated to the phosphorus donor. Consistently, variable-temperature 31P{1H} and 7Li{1H} NMR spectroscopic studies elucidate the coordination of the phosphorus donor in [OPO]Li2(DME)2 to one of the lithium atoms in solution. Interestingly, an X-ray diffraction study of the potassium complex indicates a dimeric structure with S2 symmetry for this species in which the four potassium atoms are bridged by both phosphorus and oxygen donors of the biphenolato phosphine ligands. These alkali metal complexes are active initiators for catalytic ring-opening polymerization of ε-caprolactone.  相似文献   

7.
In an attempt to overcome the problems associated with LiNiO2, the solid solution series of lithium nickel‐metal oxides, Li[Ni1–xMx]O2 (with M = Co, Mn, Al, Ti, Mg, etc.), have been investigated as favorable cathode materials for high‐energy and high‐power lithium‐ion batteries. However, along with the improvement in the electrochemical properties in Ni‐based cathode materials, the thermal stability has been a great concern, and thus violent reaction of the cathode with the electrolyte needs to be avoided. Here, we report a heterostructured Li[Ni0.54Co0.12Mn0.34]O2 cathode material which possesses both high energy and safety. The core of the particle is Li[Ni0.54Co0.12Mn0.34]O2 with a layered phase (R3‐m) and the shell, with a thickness of < 0.5 μm, is a highly stable Li1+x[CoNixMn2–x]2O4 spinel phase (Fd‐3m). The material demonstrates reversible capacity of 200 mAhg‐1 and retains 95% capacity retention under the most severe test condition of 60 °C. In addition, the amount of oxygen evolution from the lattice in the cathode with two heterostructures is reduced by 70%, compared to the reference sample. All these results suggest that the bulk Li[Ni0.54Co0.12Mn0.34]O2 consisting of two heterostructures satisfy the requirements for hybrid electric vehicles, power tools, and mobile electronics.  相似文献   

8.
Various doped materials have been investigated to improve the structural stability of layered transition metal oxides for lithium‐ion batteries. Most doped materials are obtained through solid state methods, in which the doping of cations is not strictly site selective. This paper demonstrates, for the first time, an in situ electrochemical site‐selective doping process that selectively substitutes Li+ at Li sites in Mn‐rich layered oxides with Mg2+. Mg2+ cations are electrochemically intercalated into Li sites in delithiated Mn‐rich layered oxides, resulting in the formation of [Li1?xMgy][Mn1?zMz]O2 (M = Co and Ni). This Mg2+ intercalation is irreversible, leading to the favorable doping of Mg2+ at the Li sites. More interestingly, the amount of intercalated Mg2+ dopants increases with the increasing amount of Mn in Li1?x[Mn1?zMz]O2, which is attributed to the fact that the Mn‐to‐O electron transfer enhances the attractive interaction between Mg2+ dopants and electronegative Oδ? atoms. Moreover, Mg2+ at the Li sites in layered oxides suppresses cation mixing during cycling, resulting in markedly improved capacity retention over 200 cycles. The first‐principle calculations further clarify the role of Mg2+ in reduced cation mixing during cycling. The new concept of in situ electrochemical doping provides a new avenue for the development of various selectively doped materials.  相似文献   

9.
S Makino  H Noguchi 《Biopolymers》1971,10(7):1253-1260
The measurements were made for the volume and the sound velocity changes (ΔV and ΔU) on titrating the sodium salt of poly (S-carboxymethyl L -cysteine) with dilute HCl. For the reaction, ? COO? + H+ → ? COOH, ΔV per mole of H+ bound was + 12. 7 ml and +11. 4 ml in salt-free and 0. 2 M NaCl solutions, respectively. Corresponding ΔU was about ?13 cm/sec in salt-free polymer solution where 11.5 mM carboxylate ion reacts with equimolar hydrogen ion. ΔV associated with the coil-to-β transition was found to be +2. 35 ml in H2O and +1. 90 ml in 0. 2 M NaCl per mole of amino acid residue, respectively. These values are larger than those obtained for the coil-to-helix transition of poly (L -glutamic acid). ΔU for the transition was about ?30 cm/sec in salt-free solution of polymer concentration 0.0115 mole/liter. Possible sources of ΔV and ΔU for reaction; coil → β, are (1) the formation of void volume and (2) the changes in the extent of solvation in amide linkage and in side chain.  相似文献   

10.
Metal oxides, such as Fe3O4, hold promise for future battery applications due to their abundance, low cost, and opportunity for high lithium storage capacity. In order to better understand the mechanisms of multiple‐electron transfer reactions leading to high capacity in Fe3O4, a comprehensive investigation on local ionic transport and ordering is made by probing site occupancies of anions (O2?) and cations (Li+, Fe3+/Fe2+) using multiple synchrotron X‐ray and electron‐beam techniques, in combination with ab‐initio calculations. Results from this study provide the first experimental evidence that the cubic‐close‐packed (ccp) O‐anion array in Fe3O4 is sustained throughout the lithiation and delithiation processes, thereby enabling multiple lithium intercalation and conversion reactions. Cation displacement/reordering occurs within the ccp O‐anion framework, which leads to a series of phase transformations, starting from the inverse spinel phase and turning into intermediate rock‐salt‐like phases (LixFe3O4; 0 < x < 2), then into a cation‐segregated phase (Li2O?FeO), and finally converting into metallic Fe and Li2O. Subsequent delithiation and lithiation processes involve interconversion between metallic Fe and FeO‐like phases. These results may offer new insights into the structure‐determined ionic transport and electrochemical reactions in metal oxides, and those of other compounds sharing a ccp anion framework, reminiscent of magnetite.  相似文献   

11.
The sec, rac-CH3Co(H2O)L2+ (L=5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) was prepared successfully via meso-CH3Co(H2O)L2+ in aqueous solution. The isomerizations from meso-RCo(H2O)L2+ (R=CH3, C2H5 and C3H7) and sec, rac-CH3Co(H2O)L2+ to pri, rac-RCo(H2O)L2+ were both base catalyzed in aqueous solution. The kinetic results showed the reaction to be first order in both organocobalt complex and hydroxide ion with the reactivity order for the alkyl group being C3H7 ∼ C2H5 ? CH3. However, the conversion from the most steric hindered isomer form of sec, rac- was slow. The ratio of the isomerization rate constants between meso-CH3Co(H2O)L2+ and sec, rac-CH3Co(H2O)L2+ to pri, rac-CH3Co(H2O)L2+ is almost a factor of 100. The thermodynamic activation parameters for these isomerization reactions were investigated.  相似文献   

12.
Lithium‐rich layered oxides are promising candidate cathode materials for the Li‐ion batteries with energy densities above 300 Wh kg?1. However, issues such as the voltage hysteresis and decay hinder their commercial applications. Due to the entanglement of the transition metal (TM) migration and the anionic redox upon lithium extraction at high potentials, it is difficult to recognize the origin of these issues in conventional Li‐rich layered oxides. Herein, Li2MoO3 is chosen since prototype material to uncover the reason for the voltage hysteresis as the TM migration and anionic redox can be eliminated below 3.6 V versus Li+/Li in this material. On the basis of comprehensive investigations by neutron powder diffraction, scanning transmission electron microscopy, synchrotron X‐ray absorption spectroscopy, and density functional theory calculations, it is clarified that the ordering–disordering transformation of the Mo3O13 clusters induced by the intralayer Mo migration is responsible for the voltage hysteresis in the first cycle; the hysteresis can take place even without the anionic redox or the interlayer Mo migration. A similar suggestion is drawn for its iso‐structured Li2RuO3 (C2/c). These findings are useful for understanding of the voltage hysteresis in other complicated Li‐rich layered oxides.  相似文献   

13.
Crystalline, multinuclear [FeX(OCOAr)]n (X = Cl, Br, I; Ar = C6H5, C6H5CHCH, C6H5CH2) is produced by reactions acids (ArCOOH) and alkyl halides (RX). The reactions proceed smoothly above 180 °C, and the formation of [FeX(OCOAr)]n is accompanished by formation of ester (ArCOOR), and H2; the stoichiometry of the reaction is expressed by an equation, Fe + 2 ArCOOH + RX → (1/n)[FeX(OCOAr)]n + ArCOOR + H2. [FeX(OCOAr)]n has been characterized by elemental analysis, its chemical reactivities with basic ligands, IR spectroscopy, powder X-ray diffraction pattern, thermogravimetric analysis, and magnetic susceptibility. A reaction mechanism involving a successive reaction of ArCOOH and RX with iron is proposed to elucidate the formation of [FeX(OCOAr)]n. A reaction of metallic iron with a mixture of C6H5COOH and CCl4 gives C6H5COCl in a good yield.  相似文献   

14.
The spatial distribution and transport characteristics of lithium ions (Li+) in the electrochemical interface region of a lithium anode in a lithium ion battery directly determine Li+ deposition behavior. The regulation of the Li+ solvation sheath on the solid electrolyte interphase (SEI) by electrolyte chemistry is key but challenging. Here, 1 m lithium trifluoroacetate (LiTFA) is induced to the electrolyte to regulate the Li+ solvation sheath, which significantly suppresses Li dendrite formation and enables a high Coulombic efficiency of 98.8% over 500 cycles. With its strong coordination between the carbonyl groups (C?O) and Li+, TFA? modulates the environment of the Li+ solvation sheath and facilitates fast desolvation kinetics. In addition, due to relatively smaller lowest unoccupied molecular orbital energy than solvents, TFA? has a preferential reduction to produce a stable SEI with uniform distribution of LiF and Li2O. Such stable SEI effectively reduces the energy barrier for Li+ diffusion, contributing to low nucleation overpotential, fast ion transfer kinetics, and uniform Li+ deposition with high cycling stability. This work provides an alternative insight into the design of interface chemistry in terms of regulating anions in the Li+ solvation sheath. It is anticipated that this anion‐tuned strategy will pave the way to construct stable SEIs for other battery systems.  相似文献   

15.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

16.
The single channel conductivity of the gramicidin channel has been measured for all the alkali ions using both H2O and 2H2O as a medium. Significant changes in conductivity with medium have been observed in all cases except lithium.  相似文献   

17.
Cation‐disordered lithium‐excess metal oxides have recently emerged as a promising new class of high‐energy‐density cathode materials for Li‐ion batteries, but the exploration of disordered materials has been hampered by their vast and unexplored composition space. This study proposes a practical methodology for the identification of stable cation‐disordered rocksalts. Here, it is established that the efficient method, which makes use of special quasirandom structures, correctly predicts cation‐ordering strengths in agreement with accurate Monte‐Carlo simulations and experimental observations. By applying the approach to the composition space of ternary oxides with formula unit LiA0.5B0.5O2 (A, B: transition metals), this study discovers a previously unknown cation‐disordered structure, LiCo0.5Zr0.5O2, that may function as the basis for a new class of cation‐disordered cathode materials. This computational prediction is confirmed experimentally by solid‐state synthesis and subsequent characterization by powder X‐ray diffraction demonstrating the potential of the computational screening of large composition spaces for accelerating materials discovery.  相似文献   

18.
《Inorganica chimica acta》1986,121(2):237-241
Kinetic studies on the oxidative coupling of methane over Sm2O3 have been carried out. The experimental rate equation observed could be well explained in terms of the reaction mechanism proposed. The reaction is initiated by abstracting hydrogen atom from the methane adsorbed by the diatomic oxygen on the surface. The coupling of two CH3· radicals leads to C2H6. Deep oxidation of CH3· produces CO and CO2. The large activation energy (149 kJ mol−1) needed for the formation of CH3· explains the sharp increase in the selectivity to C2-compounds (C2H6 + C2H4) as raising temperatures. The oxygen species responsible for initiating the reaction was suggested to be O22− or O2 on the surface.  相似文献   

19.
Acyl-CoA oxidase was purified from rat liver based on the palmitoyl-CoA-dependent H2O2-forming activity. Enoyl-CoA formation from palmitoyl-CoA by this enzyme was shown by the following observations; first, palmitoyl-CoA-dependent NAD+ reduction in the presence of this enzyme, crotonase, and 3-hydroxyacyl-CoA dehydrogenase, and, second, palmitoyl-CoA-dependent increase in absorbance at 263 nm. Same amounts of enoyl-CoA and H2O2 were formed during the reaction. It is concluded that this enzyme catalyzes the following reaction: Palmitoyl-CoA + O2transm-2-Hexadecenoyl-CoA + H2O2. It was most active toward C12-C18 acyl-CoAs. C20 and C22 acyl-CoAs were also oxidized, but C4 and C6 acyl-CoAs were hardly oxidized at all.  相似文献   

20.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号