首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low concentrations of chelating agents such as EDTA prevent the air oxidation of vanadyl (VO2+, +4 oxidation state) to vanadate (VO3?, +5 oxidation state). Under these conditions, the ionophore A23187 mediates the rapid entry of vanadyl into human erythrocytes. In the presence of A23187, vanadyl at concentrations in excess of EDTA gives rise to a dramatic increase in K+ permeability, which is very similar to the Gardos Ca2+-induced K+ permeability increase with respect to ion selectivity, response to inhibitors, effects of pH, and stimulation by external K+. In ultrapure media with very low Ca2+, however, vanadyl has no effect on K+ permeability. These experiments suggest that Ca2+ is displaced from EDTA by vanadyl and then enters the cell via A23187 where it triggers the increase in K+ permeability. This hypothesis is confirmed by experiments demonstrating that vanadyl does displace Ca2+ from EDTA. Vanadate, an inhibitor of Ca2+-ATPase, causes a selective increase in K+ permeability in metabolically depleted cells, but the increase is abolished by low concentrations of EDTA, indicating that this effect is also due to entry of extracellular Ca2+. Earlier observations of effects of vanadyl and vanadate on erythrocyte K+ permeability can thus be explained on the basis of inhibition of the Ca2+ pump by vanadium, leading to an increase in intracellular Ca2+ concentration.  相似文献   

2.
Electron paramagnetic resonance (epr) and ultraviolet difference spectroscopy of vanadyl conalbumin indicate a binding capacity of two vanadyl ions, VO2+, per protein molecule in the pH 8–11 range; the binding capacity drops in the pH 6–8 range with an apparent pKa′ = 6.6. Iron-saturated conalbumin does not bind vanadyl ions, which suggests common binding sites for iron and vanadium. Ultraviolet difference spectroscopy indicates 2–3 tyrosines are involved in the binding of each metal ion; pH titrations show that three protons are released per vanadyl ion bound by conalbumin. Room and liquid nitrogen temperature X-band (ca. 9.2–9.5 gHz) epr spectra show that the vanadyl ion binds in three magnetically distinct environments (A, B, and C) that arise from interconvertible metal site configurations. These configurations are probably examples of conformational substrates of the protein. Q-band (ca 34 gHz) epr spectra resolve the spectral features more clearly and show that two configurations (A and B) have axially symmetric epr parameters but angles of noncoincidence of 12° and 8°, respectively, between the z components of the g and nuclear hyperfine tensors. The third (C) configuration has rhombic magnetic symmetry and a 6° angle of noncoincidence. These observations demonstrate that the metal sites are of low symmetry and are flexible in their geometry about the metal.The isotropic g and nuclear hyperfine tensor values and the line widths used in computer-simulated epr spectra are consistent with four oxygen or three oxygen and one nitrogen donor atoms binding equatorially to the VO2+ group. The apparent stability constant indicates that vanadyl ion binds to conalbumin approximately twelve orders of magnitude more weakly than iron to human serotransferrin but still sufficiently strongly to overcome hydrolysis.  相似文献   

3.
Oxidation of vanadyl sulfate by H2O2 involves multiple reactions at neutral pH conditions. The primary reaction was found to be oxidation of V(IV) to V(V) using 0.5 equivalent of H2O2, based on the loss of blue color and the visible spectrum. The loss of V(IV) and formation V(V) compounds were confirmed by ESR and51V-NMR spectra, respectively. In the presence of excess H2O2 (more than two equivalents), the V(V) was converted into diperoxovanadate, the major end-product of these reactions, identified by changes in absorbance in ultraviolet region and by the specific chemical shift in NMR spectrum. The stoichiometric studies on the H2O2 consumed in this reaction support the occurrence of reactions of two-electron oxidation followed by complexing two molecules of H2O2. Addition of a variety of compounds—Tris, ethanol, mannitol, benzoate, formate (hydroxyl radical quenching), histidine, imidazole (singlet oxygen quenching), and citrate—stimulated a secondary reaction of oxygen-consumption that also used V(IV) as the reducing source. This reaction requires concomitant oxidation of vanadyl by H2O2, favoured at low H2O2:V(IV) ratio. Another secondary reaction of oxygen release was found to occur during vanadyl oxidation by H2O2 in acidic medium in which the end-product was not diperoxovanadate but appears to be a mixture of VO 3 + (–546 ppm), VO3+ (–531 ppm) and VO 2 + (–512 ppm), as shown by the51V-NMR spectrum. This reaction also occurred in phosphate-buffered medium but only on second addition of vanadyl. The compounds that stimulated the oxygen-consumption reaction were found to inhibit the oxygen-release reaction. A combination of these reactions occur depending on the proportion of the reactants (vanadyl and H2O2), the pH of the medium and the presence of some compounds that affect the secondary reactions.  相似文献   

4.
Shewanella oneidensis couples anaerobic oxidation of lactate, formate, and pyruvate to the reduction of vanadium pentoxide (VV). The bacterium reduces VV (vanadate ion) to VIV (vanadyl ion) in an anaerobic atmosphere. The resulting vanadyl ion precipitates as a VIV-containing solid.  相似文献   

5.
Two new mononuclear Fe(III) complexes, [FeCl3{PPh2(p-C6H4NMe2)-P}3](1) (PPh2(p-C6H4NMe2): 4-(dimethylamino)phenyldiphenylphosphine) and [FeCl3(PPh2py-P)(PPh2py-P,N)] (2) (PPh2py: diphenyl(2-pyridyl)phosphine) were synthesized by reacting anhydrous FeCl3 with respective ligand in acetonitrile solution under refluxing condition. Both the complexes were characterized by elemental analysis, FAB-Mass, FTIR, UV-Vis, ESR, Cyclic Voltammetry and magnetic measurement. The FAB mass spectra of complexes 1 and 2 show molecular ion peak at m/z 1078 [M]+ and m/z 687 [M−1]+, respectively, indicating mononuclear nature of the complexes. UV-Vis spectra of the complexes were consistent with low-spin, octahedral geometry. The variable temperature magnetic susceptibility measurement (73-323 K) of these complexes is also consistent with the paramagnetic nature of the complexes with a ground state spin S = ½. The Fe(III) centers of these two complexes remain low-spin, both at room temperature and liquid nitrogen temperature, was also indicated by the ESR analysis. Cyclic Voltammetry of both the complexes show an irreversible oxidation wave attributed to Fe3+ → Fe4+ + e along with the peak for ligand oxidation. Theoretical calculations (B3LYP) of the complexes show that for complex 1, a trans geometry of the two phosphorous atoms and for complex 2, a mer,cis structures are the most favored geometrical isomer. TDDFT calculations were performed to interpret the observed bands in the UV-Visible spectra.  相似文献   

6.
Vanadyl ion (+4 oxidation state) has been shown to be an effective agent for chemoprotection of cancers in animals. For understanding the mechanism, distribution of vanadium was studied. More vanadium was found to accumulate in the nuclei of the liver of rats when it was given as vanadyl sulfate than when it was given as sodium vanadate (+5 oxidation state). The reactivity of vanadyl ion with DNA was investigated by the DNA cleavage technique and the reaction mechanism by ESR spectroscopy. Incubation of double-strand DNA with vanadyl ion and hydrogen peroxide resulted in marked concentration- and pH-dependent DNA cleavage. Studies by the ESR spin-trap method demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion with hydrogen peroxide. Thus the antineoplastic action of vanadyl ion is proposed to be due to DNA cleavage by hydroxyl radicals generated in the cells.  相似文献   

7.
Sequential addition of vanadyl sulfate to a phosphate-buffered solution of H2O2 released oxygen only after the second batch of vanadyl. Ethanol added to such reaction mixtures progressively decreased oxygen release and increased oxygen consumption during oxidation of vanadyl by H2O2. Inclusion of ethanol after any of the three batches of vanadyl resulted in varying amounts of oxygen consumption, a property also shared by other alcohols (methanol, propanol and octanol). On increasing the concentration of ethanol, vanadyl sulfate or H2O2, both oxygen consumption and acetaldehyde formation increased progressively. Formation of acetaldehyde decreased with increase in the ratio of vanadyl:H2O2 above 2:1 and was undetectable with ethanol at 0.1 mM. The reaction mixture which was acidic in the absence of phosphate buffer (pH 7.0), released oxygen immediately after the first addition of vanadyl and also in presence of ethanol soon after initial rapid consumption of oxygen, with no accompanying acetaldehyde formation. The results underscore the importance of some vanadium complexes formed during vanadyl oxidation in the accompanying oxygen-transfer reactions.  相似文献   

8.
Irradiating the aqueous solution of SOD with 60Co γ-rays at 77 K and recording the ESR spectra during thermal annealing one observes, beside the signal of Cu++, the paramagnetic intermediate with g = 2.008 and g = 2.039. Because of its thermal stability, up to about 250 K, the formation of the complex ECu++…HO2 is suggested.  相似文献   

9.
Tartrate-resistant acid phosphatase (TR-AcPh) from the ameba Amoeba proteus is represented by 3 bands (electromorphs) revealed after disk-electrophoresis in PAAG, using 2-naphthylphosphate as substrate. The presence of 50 mmol/l MgCl2 or CaCl2 in the incubation mixture increases activities of all electromorphs of TR-AcPh, while of ZnCl2, of two of them. The activity of the TR-AcPh electromorphs also rose after the 30-min incubation of the gels in MgCl2, CaCl2 or ZnCl2 (10 and 100 mM) before gel staining. However, 1 M ZnCl2, unlike 1 M CaCl2 or 1 M MgCl2, partly inactivated two out of three TR-AcPh electromorphs. The TR-AcPh electromorphs were inhibited by 1,10-phenanthroline (1,10-Ph), EDTA, and EGTA (all at a concentration of 5 mM) faster than by H2O2 (10 mM). The inactivation of the TR-AcPh electromorphs by the chelating agents did not depend (EGTA) or nearly did not depend (EDTA, 1,10-Ph) on their concentration (0.05, 0.5, and 5 mM). Out of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+, and Zn2+), only Zn ions reactivated the TR-AcPh electromorphs inactivated by 1,10-Ph, EDTA or EGTA. The TR-AcPh electromorphs were reactivated worse after inactivation by EGTA than by EDTA or 1,10-Ph. It is suggested that the active site of TR-AcPh contains the zinc ion essential for catalytic activity of this enzyme, i.e., TR-AcPh of A. proteus is a metallophosphatase performing the phosphomonoesterase activity in acidic medium.  相似文献   

10.
The ATP.Mg-dependent type 1 protein phosphatase is inactive as isolated but can be activated in several different ways. In this report, we show that the phosphatase can also be activated by the Fe2+/ascorbate system. Activation of the phosphatase requires both Fe2+ ion and ascorbate and the level of activation is dependent on the concentrations of Fe2+ ion and ascorbate. In the presence of 20 mM ascorbate, the Fe2+ ion concentrations required for half-maximal and maximal activation are about 0.3 and 3mM, respectively. Several common divalent metal ions, including Co2+, Ni2+, Cu2+, Mg2+, and Ca2+ ions, cannot cooperate with ascorbate to activate the phosphatase, and SH-containing reducing agents such as 2-mercaptoethanol and dithiothreitol cannot cooperate with Fe2+ ion to activate the phosphatase, indicating that activation of the phosphatase by the Fe2+/ascorbate system is a specific process. Moreover, H2O2, a strong oxidizer, could significantly diminish the phosphatase activation by the Fe2+/ascorbate system, suggesting that reduction mechanism other than SH-SS interchange is a prerequisite for the Fe2+/ascorbate-mediated phosphatase activation. Taken together, the present study provides initial evidence for a new mode of type 1 protein phosphatase activation mechanism.Abbreviations MAPK mitogen-activated protein kinase - MCO metal ion-catalyzed oxidation - kinase FA the activating factor of ATP.Mg-dependent protein phosphatase - I2 inhibitor-2 - EDTA ethylenediaminetetraacetic acid - MBP myelin basic protein  相似文献   

11.
Vanadium compounds are known to stimulate the oxidation of NAD(P)H, but the mechanism remains unclear. This reaction was studied spectrophotometrically and by electron spin resonance spectroscopy (ESR) using vanadium in the reduced state (+4, vanadyl) and the oxidized state (+5, vanadate). In 25 mM sodium phosphate buffer at pH 7.4, vanadyl was slightly more effective in stimulating NADH oxidation than was vanadate. Addition of a superoxide generating system, xanthine/xanthine oxidase, resulted in a marked increase in NADH oxidation by vanadyl, and to a lesser extent, by vanadate. Decreasing the pH with superoxide present increased NADH oxidation for both vanadate and vanadyl. Addition of hydrogen peroxide to the reaction mixture did not change the NADH oxidation by vanadate, regardless of concentration or pH. With vanadyl however, addition of hydrogen peroxide greatly enhanced NADH oxidation which further increased with lower pH. Use of the spin trap DMPO in reaction mixtures containing vanadyl and hydrogen peroxide or a superoxide generating system resulted in the detection by ESR of hydroxyl. In each case, the hydroxyl radical signal intensity increased with vanadium concentration. Catalase was able to inhibit the formation of the DMPO--OH adduct formed by vanadate plus superoxide. These results show that the ability of vanadium to act in a Fenton-type reaction is an important process in the vanadium-stimulated oxidation of NADH.  相似文献   

12.
Electron paramagnetic resonance (epr) studies demonstrate that at low levels of conalbumin (CA) saturation with Fe3+ or VO2+, a ph-dependent preference of the metal exists for different protein binding-site configurations,A, B, and C. The vanadyl ion epr spectra of mixed VO2+, Fe3+-conalbumin in which Fe3+ is preferentially bound to the N- or C-terminal binding site are consistent with all three configurations being formed at both metal sites. At high pH the spectra suggest interaction between binding sites. In the absence of HCO3?, VO2+ is bound almost exclusively in B configuration; a full binding capacity of 2 VO2+ per CA is retained. Stoichiometric amounts of HCO3? convert the epr spectrum from B to an A, B, C type. Addition of oxalate to bicarbonate-free preparations converts the B spectrum to an A′, B, C′ type where the B resonances have lost intensity to the A′ and C′ resonances but have not changed position. The data suggest that configuration B is anion independent and that only one equivalent of binding sites at pH 9 responds to the presence of HCO31? or oxalate by changing configuration but not metal binding capability. The form of the bound anion may be HCO3? rather than CO32?. The formation rate of the colored ferric conalbumin complex by oxidizing Fe2+ to Fe3+ in limited HCO3? at pH 9 is also consistent with one equivalent of sites having different anion requirements than the remaining sites. Increased NaCl or NaClO4 concentration or substitution of D2O for water as solvent affect the environment of bound VO2+, but the mechanisms of action are unknown.  相似文献   

13.
Summary Oxidation of aminoethylcysteine ketimine (AECK) is followed by the change of 296nm absorbance, by the O2 consumption and by the HPLC analysis of the oxidation products. The oxidation is strongly inhibited by the addition of superoxide dismutase (SOD) but not by hydroxyl radical scavengers or catalase. Addition of EDTA or o-phenanthroline (OPT) favours the oxidation, probably by keeping contaminating metals in solution at the pH studied. Addition of Fe3+ ions strongly accelerates the oxidation in the presence of EDTA or OPT. AECK reacts stoichiometrically with OPT-Fe3+ complex producing the Fe2+ complex which is not reoxidised by bubbling O2. HPLC analyses of the final oxidation products reacting with 2,4-dinitrophenylhydrazine (DNPH) confirm the AECK sulfoxide as the main product of the slow spontaneous oxidation. The detection of other oxidation products when the reaction is speeded up by the addition of the OPT-Fe3+ complex, suggests that the oxidation takes place essentially on the carbon portion of the AECK molecule in the side of the double bond. On the basis of the results presented here, a scheme of reactions is illustrated which starts with the transfer of one electron from AECK to a contaminating metal ion (possibly Fe3+) producing the radical AECK as the initiator of a self propagating reaction. The radical AECK reacting with O2 starts a series of reactions accounting for most of the products detected.Abbreviations AECK S-aminoethyl-L-cysteine ketimine - AECK-SO aminoethylcysteine ketimine sulfoxide - CMCA S-carboxymethylcysteamine - DNPH 2,4-dinitrophenylhydrazine - OPT o-phenanthroline - DTPA diethylenetriaminepentaacetic acid - SOD superoxide dismutase  相似文献   

14.
《FEBS letters》1987,222(2):246-250
Desferrioxamine mesylate (Desferal), a transition metal ion chelator, has been used to inhibit the in vitro redox cycling of transition metal ions. ESR spectroscopy was utilized to detect and identify Desferal's one-electron oxidation product. We demonstrate that a horseradish peroxidase/H2O2 system, a xanthine oxidase/hypoxanthine system, and a hydroxyl radical-generating system are all capable of oxidizing Desferal to a nitroxide free radical. The same 9-line ESR spectrum (g = 2.0065, aN = 7.85 G, aH(2) = 6.35 G) was detected in all of the above systems. We, therefore, stress that care must be taken when using Desferal as a transition metal ion chelator to keep its concentration low enough to minimize these reactions, or to use a different metal ion chelator.  相似文献   

15.
The effects of lead were investigated in bean plants (Phaseolus vulgaris L. cv. Zlota Saxa) grown hydroponically in nutrient solution and exposed to Pb(NO3)2 (0.1, 0.5, 1 mM) with or without equimolar concentrations of chelator ethylenediaminetetraacetic acid (EDTA). The roots treated only with Pb(NO3)2 accumulated up to 25 g(Pb) kg−1(d.m.), during 4-d exposure. However, in bean plants exposed to 0.5 mM Pb + 0.5 mM EDTA or 1 mM Pb + 1 mM EDTA 2.5 times less Pb was determined. In bean plants treated only with Pb, less than 6 % of total lead accumulated was transported to the aboveground parts, while in the case of plants grown with Pb + EDTA, around 50 % of total Pb was transported to the shoots.  相似文献   

16.
17.
The uptake of D-[14C]xylose by rat soleus muscle was stimulated rapidly and transiently by brief exposure to EDTA (0.1–20 mM). EDTA also stimulated xylose uptake in the presence of insulin (0.1 U/ml). Prolonged exposure to EDTA (60 min) inhibited insulin-stimulated xylose uptake and depressed 125I-insulin binding; these effects were associated with the lowering of muscle ATP. The stimulatory effect was abolished by the substitution of Ca-EDTA (or Mg-EDTA) for EDTA; Ca-EDTA did not eliminate the inhibitory effect. There was no inhibitory effect when Ca2+ (5 mM) was added along with Ca-EDTA, or when Zn-EDTA was used instead. There was no effect of EGTA (5 mM) on xylose uptake measured in the presence or absence of insulin. It is concluded (1) that the stimulatory effect of EDTA is most likely due to the chelation of Mg2+, (2) that the inhibitory effects of EDTA are due to the chelation of some metal ion whith a higher affinity for the chelator than either Ca2+ or Mg2+.  相似文献   

18.
Rita Khanna  S. Rajan  H.S. Gutowsky 《BBA》1983,725(1):10-18
Measurements were made of the water proton relaxation rate (T?12 = R2), electron spin resonance (ESR) six-line signal of ‘free’ Mn2+, and O2-evolution activity in thylakoid membranes from pea leaves. The main results are: (1) Aging of thylakoids at 35°C causes a parallel decrease in O2-evolution activity, in R2 and in the content of bound Mn, suggesting that R2 may be related to the loosely bound Mn involved in O2 evolution. (2) Treatment of thylakoids with tetraphenylboron (TPB) at [TPB] > 2 mM produces a 2-fold increase in R2, without release of Mn2+. The titration curve exhibits three sharp end points. The first end point occurs at a [TPB][chlorophyll] of 1.25, at which the O2 evolution is completely inhibited. (3) Treatment of thylakoids with NH2OH also increases R2 by nearly 2-fold, either by the reduction of the higher oxidation states of Mn to Mn2+ and / or by exposing the Mn to solvent protons. Also, progressive release of bound Mn occurs at [NH2OH] ≥ 1 mM as shown by an increase increase in the Mn2+ ESR signal and a decrease in R2. (4) Addition of H2O2 (0.1–1.0%) to thylakoids causes an enhancement of R2 similar to that by NH2OH, but without the release of Mn2+. (5) Heat treatment of thylakoids at 40–50°C releases Mn2+ and increases R2. Conversely, pH values of 7 to 4 release Mn2+ without changing R2 while pH values of 7–9 increase R2 without releasing Mn2+. Thus, both high and low pH values as well as the heat treatment cause structural changes enhancing the relaxivity of the bound Mn or of other paramagnetic species.  相似文献   

19.
Different carbon and nitrogen sources had little effect on the level of dihydroxyacetone kinase formed in the cells of Gluconobacter suboxydans. The enzyme was purified to homogeneity from cell-free extract of the organism by ammonium sulfate fractionation and chromatographies on DEAE-cellulose, hydroxyapatite and Sephadex G-200 (60-fold purification, 6% yield). Its molecular weight was 260,000; it was stabilized by addition of ATP, dithiothreitol, 2-mercaptoethanol or EDTA, and it reacted optimally at pH 6.5. d-Glyceraldehyde was equally as effective as DHA as a phosphate acceptor (Km: 0.30 mM each). UTP showed 15% of the reactivity of ATP as a phosphate donor. Km values for ATP were 0.33 mM in phosphorylation of dihydroxyacetone and 0.39 mM with d-glyceraldehyde. The enzyme activity was dependent on Mg2+ but not on Mn2+. The reaction with dihydroxyacetone as an acceptor was inhibited by d-glyceraldehyde. The inhibition was competitive with respect to dihydroxyacetone 3Ki=0.09 mM) and noncompetitive with respective to ATP (Ki=5.7 mM).  相似文献   

20.
Summary Uranyl sulphate (0.2–0.9 mM) inhibited ferrous iron oxidation by growing cultures ofThiobacillus ferrooxidans. The addition of 5–100 mM uranium to the cultures caused immediate cessation of carbon dioxide fixation, rapid loss of viability and gradual depression of ferrous iron oxidation. Virtually no uranium was found in washed cells grown in the presence of subtoxic to toxic amounts of uranyl sulphate. Uranium-poisoned organisms appeared plasmolyzed in electron micrographs. Cultures tolerant to 5 mM UO2 2+ were develoepd by successive subculturing in increased uranium concentrations. The tolerance was maintained during subculturing in uranium-free medium. Frequency of mutants resistant to 1.0 and 1.5 mM UO2 2+ was 1 per 1.3×106 and 1 per 9.0×108, respectively. The frequency was increased in the presence of 15–150 mM nickel, zinc and manganese. In liquid cultures, bivalent cations and EDTA alleviated the toxicity of 2 mM uranyl sulphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号