首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inorganica chimica acta》1988,151(4):243-248
The interactions of dimeric complex bis-[μ-chloro-chlorotricarbonylruthenium(II)], [Ru(CO)3Cl2]2, and the polymeric complex poly-[μ-dichlorodicarbonylruthenium(II)], [Ru(CO)2Cl2]x, with nucleosides (Nucl) in a 1:1 Ru:Nucl molar ratio for the dimer and 1:2 Ru:Nucl for the polymer, resulted in formation of the monomeric mononucleoside [Ru(CO)3(Nucl)Cl2] and bis-nucleoside [Ru(CO)2(Nucl)2Cl2] complexes, respectively. The dimer [Ru(CO)3Cl2]2 also gave the ionic bis-nucleoside complexes [Ru(CO)3(Nucl)2Cl]Cl in the molar ratio 1:2 Ru:Nucl. The mononucleoside complexes are stable in solution while the bis-nucleoside complexes tend to lose one nucleoside in strong complexing solvents, probably by solvent substitution. The complexes [Ru(CO)3(Nucl)Cl2] and [Ru(CO)2(Nucl)2Cl2] with one N(1)H ionizable imino proton undergo ionization in alkaline solution and the complexes [Ru(CO)3(NuclH+)Cl] and [Ru(CO)2(NuclH+)2], respectively, were isolated. In these deprotonated complexes the nucleosides behave as bidentate ligands, while in the protonated ones they act as monodentate. All Complexes were characterized by elemental analyses and various spectroscopic methods.  相似文献   

2.
Rapid oxidation processes relevant to the degradation of [4Fe4S] clusters in Clostridium pasteurianum ferredoxin were studied via direct (unmediated) heterogeneous electron transfer at a pyrolytic graphite electrode. Differential-pulse voltammograms of native [4Fe4S] ferredoxin showed two well-defined oxidation peaks corresponding to apparent E-values of +793 and +1120 mV at 5°C. Direct involvement of the cluster was established through parallel experiments with the 2[4Fe4Se] derivative for which peak positions were shifted. Square-wave voltammetry showed that the product of the first electron transfer, which may correspond to the ‘super-oxidised’ [4Fe4S]3+ oxidation level, undergoes rapid degradation (t12 < 1.6 ms at 5°C). The second oxidation process, as characterised by a significant (?100 mV) negative shift upon selenium substitution, very likely represents oxidation of S(Se) still associated with the protein and possibly contained within the remaining FES(Se) substructure.  相似文献   

3.
The complex cations [Ru(C7H16N2)(C10H14)Cl]+, [Ru(C7H16N2)(C6H6)Cl]+, [Ru(C9H18N2)(C6H6)Cl]+, [Ru(C9H18N2)(C10H14)Cl]+ and [Ru(C14H16N2)(C10H14)Cl]+ have been synthesised from the reaction between the ruthenium-arene complexes [with C6H6 (benzene) or C10H14 (p-cymene)] and the respective chiral diamines [C7H16N2=(S)-(−)-2-aminomethyl-1-ethylpyrrolidine, C9H18N2=(S)-(+)-2-(pyrrolidinylmethyl)-pyrrolidine, or C14H16N2=(1R,2R)-(+)-1,2-diphenylethylenediamine], isolated and characterised as chloride salts using single-crystal X-ray diffraction. All complexes were fully characterised by elemental analysis, mass spectrometry, 13C and 1H NMR, and also found to exhibit catalytic activity in the transfer hydrogenation of acetophenone to 1-phenylethanol at 50 °C (enantiomeric excesses range from ca. 25% to 60%, and conversions from ca. 30% to 50%).  相似文献   

4.
Two new porphyrins, meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3,4DMPP) and meso-tris-3-methoxy-4-hydroxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3M4HPP), and their ruthenium analogs obtained by coordination of [Ru(bpy)2Cl]+ groups (where bpy = 2,2′-bipyridine) to the pyridyl nitrogens have been synthesized and studied by electronic absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry. These ruthenated porphyrins couple Ru chromophores to porphyrins containing electroactive meso-substituents. The highest energy electronic absorption for the ruthenated complexes is assigned as a bpy(π) → bpy(π*) intraligand charge transfer while the next lowest energy electronic absorption is assigned as Ru(dπ) → bpy(π*) metal-to-ligand charge transfer (MLCT) transition. The RuIII/II couples occur at approximately 0.95 V versus the SHE reference electrode in acetonitrile solutions. The first oxidation of the porphyrin is localized on the 3,4-dimethoxyphenyl and 3-methoxy-4-hydroxyphenyl substituents, respectively. Electroactive surfaces result from adsorption of these compounds onto glassy carbon electrodes followed by anodic cycling in acidic media.  相似文献   

5.
The new complex, [RuII(bpy)2(4-HCOO-4′-pyCH2 NHCO-bpy)](PF6)2 · 3H2O (1), where 4-HCOO-4′-pyCH2NHCO-bpy is 4-(carboxylic acid)-4′-pyrid-2-ylmethylamido-2,2′-bipyridine, has been synthesised from [Ru(bpy)2(H2dcbpy)](PF6)2 (H2dcbpy is 4,4′-(dicarboxylic acid)-2,2′-bipyridine) and characterised by elemental analysis and spectroscopic methods. An X-ray crystal structure determination of the trihydrate of the [Ru(bpy)2(H2dcbpy)](PF6)2 precursor is reported, since it represented a different solvate to an existing structure. The structure shows a distorted octahedral arrangement of the ligands around the ruthenium(II) centre and is consistent with the carboxyl groups being protonated. A comparative study of the electrochemical and photophysical properties of [RuII(bpy)2(4-HCOO-4′-pyCH2NHCO-bpy)]2+ (1), [Ru(bpy)2(H2dcbpy)]2+ (2), [Ru(bpy)3]2+ (3), [Ru(bpy)2Cl2] (4) and [Ru(bpy)2Cl2]+ (5) was then undertaken to determine their variation upon changing the ligands occupying two of the six ruthenium(II) coordination sites. The ruthenium(II) complexes exhibit intense ligand centred (LC) transition bands in the UV region, and broad MLCT bands in the visible region. The ruthenium(III) complex, 5, displayed overlapping LC bands in the UV region and a LMCT band in the visible. 1, 2 and 3 were found, via cyclic voltammetry at a glassy carbon electrode, to exhibit very positive reversible formal potentials of 996, 992 and 893 mV (versus Fc/Fc+) respectively for the Ru(III)/Ru(II) half-cell reaction. As expected the reversible potential derived from oxidation of 4 (−77 mV (versus Fc/Fc+)) was in excellent agreement with that found via reduction of 5 (−84 mV (versus Fc/Fc+)). Spectroelectrochemical experiments in an optically transparent thin-layer electrochemical cell configuration allowed UV-Vis spectra of the Ru(III) redox state to be obtained for 1, 2, 3 and 4 and also confirmed that 5 was the product of oxidative bulk electrolysis of 4. These spectrochemical measurements also confirmed that the oxidation of all Ru(II) complexes and reduction of the corresponding Ru(III) complex are fully reversible in both the chemical and electrochemical senses.  相似文献   

6.
A site-directed mutant of spinach plastocyanin, Pc(Tyr83-His), has been modified by covalent attachment of a photoactive [Ru(bpy)2(im)]2+ complex to the His83 residue. The residue is surface exposed and located about 10–12?Å from the copper ion at the entrance of a proposed natural electron transfer pathway from cytochrome f. Electron transfer within the Ru-Pc complex has been studied with time-resolved optical spectroscopy using two different approaches. In the first, the fully reduced [Cu(I), Ru(II)] protein was photoexcited and subsequently oxidized by an external quencher, forming the [Cu(I), Ru(III)] protein. This was followed by an electron transfer from reduced Cu(I) to Ru(III). In the second method, the initially oxidized Cu(II) ion acted as an internal quencher for excited Ru(II) and the photoinduced reduction of the Cu(II) ion was followed by a thermal recombination with the Ru(III) ion. The reoxidation of the Cu ion, which has an estimated driving force of 0.56?eV, occured with a rate constant k et?=?(9.5±1.0)×106?s–1, observed with both methods. The results suggest a strong electronic coupling (H DA>0.3?cm–1) along the Ru-His(83)-Cys(84)-Cu pathway.  相似文献   

7.
New ruthenium(II) complexes carrying methionine and phenylalanine in the bipyridine ligand, [Ru(bpy)2(4-Me-4′-(CONH-l-methionine methyl ester)-2,2′-bipyridine)](PF6)2 (IV) and [Ru(bpy)2(4-Me-4′-(CONH-l-phenylalanine ethyl ester)-2,2′-bpy)](PF6)2(V) have been synthesized and characterized and their photophysical properties studied. Flash photolysis measurements of complex IV, in the presence of an electron acceptor, methyl viologen (MV2+) show that an intermolecular electron transfer from the excited state of Ru(II) in complex IV, to MV2+ takes place, forming Ru(III) and the methyl viologen cation radical, MV+. The formation of MV+ in this system is confirmed using time-resolved transient absorption spectroscopy. This intermolecular electron transfer is followed by intramolecular electron transfer from the thioether moiety (methionine) to the photogenerated Ru(III), regenerating Ru(II).  相似文献   

8.
Rate parameters have been obtained for the oxidation of cuprous stellacyanin by cobalt(III) ions of the form cis(N)-[CoN2O4]?, including cis(N)-[Co(NTA)(gly)]?, cis(N)-[Co(IDA)2]?, [Co(en)(ox)2]?(μ 0.5 M(phosphate), pH 7.0), and Co(EDTA)?(μ 0.1 M(NaCl), pH 7.2, 0.001 M phosphate). An excellent isokinetic correlation between the activation parameters ΔH and ΔS exists for the reactions of aminopolycarboxylatocobalt(III) ions with reduced stellacyanin (β = 300 ± 12 K; correlation coefficient = 0.995). It is concluded that enthalpy-entropy compensation in these reactions may be understood in terms of differing orientations preferred by the various oxidants in forming precursor complexes with the reduced blue protein. While ΔH and ΔS values for electron transfer from stellacyanin to cis(N)-[CoN2O4]? ions vary over ranges of 10.7 kcal/mol and 34 cal/mol-deg, respectively, room temperature rate constants are relatively constant (3.6–34.5 M?1 sec?1), as expected from Marcus theory for outer sphere electron transfer.  相似文献   

9.
Mixed-ligand ruthenium(II) complexes of three photoactive ligands, viz., (E)-1-[2-(4-methyl-2-pyridyl)-4-pyridyl]-2-(1-naphthyl)-1-ethene (mppne), (E)-1-(9-anthryl)-2-[2-(4-methyl-2-pyridyl)-4-pyridyl]-1-ethene (mppae) and (E)-1-[2-(4-methyl-2-pyridyl)-4-pyridyl]-2-(1-pyrenyl)-1-ethene (mpppe), in which a 2,2′-bipyridyl unit is linked via an ethylinic linkage to either a naphthalene, an anthracene or a pyrene chromophore and three electroactive ligands, viz., 4-(4-pyridyl)-1,2-benzenediol (catpy), 5,6-dihydroxy-1,10-phenanthroline (catphen) and 1,2-benzenediol (cat), were synthesized in good to moderate yields. Complexes [Ru(bpy)2(mppne)]2+ (bpy is 2, 2′–bipyridyl), [Ru(bpy)2(mppae)]2+, [Ru(bpy)2(mpppe)]2+, [Ru(bpy)2(sq-py)]+, [Ru(bpy)2(sq-phen)]+ and [Ru(phen)2(bsq)]+ (phen is 1,10-phenanthroline) were fully characterized by elemental analysis, IR, 1H NMR, fast-atom bombardment or electron-impact mass, UV–vis and cyclic voltammetric methods. In the latter three complexes, the ligands catpy, catphen and cat are actually bound to the metal center as the corresponding semiquinone species, viz., 4-(4-pyridyl)-1,2-benzenedioleto(+I) (sq-py), 1,10-phenanthroline-5,6-dioleto(+I) (sq-phen) and 1,2-benzenedioleto(+I) (bsq), thus making the overall charge of the complexes formally equal to + 1 in each case. These three complexes are electron paramagnetic resonance active and exhibit an intense absorption band between 941 and 958 nm owing to metal-to-ligand charge transfer (MLCT, d Ruπ*sq) transitions. The other three ruthenium(II) complexes containing three photoactive ligands, mppne, mppae and mpppe, exhibit MLCT (d Ruπ*bpy ) bands in the 454–461-nm region and are diamagnetic. These can be characterized by the 1H NMR method. [Ru(bpy)2(mppne)]2+, [Ru(bpy)2(mppae)]2+ and [Ru(bpy)2(mpppe)]2+ exhibit redox waves corresponding to the RuIII/RuII couple along with the expected ligand (bpy and substituted bpy) based ones in their cyclic and differential pulse voltammograms (CH3CN, 0.1 M tetrabutylammonium hexafluorophosphate)—corresponding voltammograms of [Ru(bpy)2(sq-py)]+, [Ru(bpy)2(sq-phen)]+ and [Ru(phen)2(bsq)]+ are mainly characterized by waves corresponding to the quinone/semiquinone (q/sq) and semiquinone/1,2-diol (sq/cat) redox processes. The results of absorption and fluorescence titration as well as thermal denaturation studies reveal that [Ru(bpy)2(mppne)]2+ and [Ru(bpy)2(mppae)]2+ are moderate-to-strong binders of calf thymus DNA with binding constants ranging from 105 to 106 M−1. Under the identical conditions of drug and light dose, the DNA (supercoiled pBR 322) photocleavage activities of these two complexes follow the order:[Ru(bpy)2(mppne)]2+>[Ru(bpy)2(mppae)]2+, although the emission quantum yields follow the reverse order. The other ruthenium(II) complexes containing the semiquinone-based ligands are found to be nonluminescent and inefficient photocleavage agents of DNA. However, experiments shows that [Ru(bpy)2(sq)]+-based complexes oxidize the sugar unit and could be used as mild oxidants for the sugar moiety of DNA. Possible explanations for these observations are presented.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

10.
《Inorganica chimica acta》1988,151(2):125-128
The interactions of dichloro-bis(η5-cyclopentadienyl)titanium(IV) (titanocene dichloride, Cp2TiCl2) with nucleosides have been studied in methanolic solutions. Complexes of the general formula [Cp2Ti(Nucl)MeOH]Cl2 were isolated. The nucleoside complexes with one N(1)H ionizable imino proton (i.e. inosine and guanosine) undergo ionization in alkaline solution and complexes of the formula [Cp2Ti(NuclH+)] Cl were isolated. All complexes have been characterized by elemental analyses and various spectroscopic techniques. In the first series of complexes, [Cp2Ti(Nucl)MeOH]Cl2, the nucleosides act as monodentate ligands with an intramolecular hydrogen bond between the coordinated methanol and the C6O group, while in the second, [Cp2Ti(NuclH+)] Cl, they coordinate through both their N7 and O6 atoms.  相似文献   

11.
We have studied the mechanism of the response to iron deficiency in rape (Brassica napus L.), taking into account our previous results: net H+ extrusion maintains a pH shift between the root apoplast and the solution, and the magnitude of the pH shift decreases as the buffering power in the solution increases. The ferric stress increased the ability of roots to reduce Fe[III]EDTA. Buffering the bulk solution (without change in pH) inhibited Fe[III]EDTA reduction. At constant bulk pH, the inhibition (ratio of the Fe[III]EDTA-reduction rates measured in the presence and in the absence of buffer) increased with the rate of H+ extrusion (modulated by the length of a pretreatment in 0.2 mM CaSO4). These results support the hypothesis that the apoplastic pH shift caused by H+ excretion stimulated Fe[III] reduction. The shape of the curves describing the pH-dependency of Fe[III]EDTA reduction in the presence and in the absence of a buffer fitted this hypothesis. When compared to the titration curves of Fe[III]citrate and of Fe[III]EDTA, the curves describing the dependency of the reduction rate of these chelates on pH indicated that the stimulation of Fe[III] reduction by the apoplastic pH shift due to H+ excretion could result from changes in electrostatic interactions between the chelates and the fixed chargers of the cell wall and-or plasmalemma. Blocking H+ excretion by vanadate resulted in complete inhibiton of Fe[III] reduction, even in an acidic medium in which there was neither a pH shift nor an inhibitory effect of a buffer. This indicates that the apoplastic pH shift resulting from H+ pumping is not the only mechanism which is involved in the coupling of Fe[III] reduction to H+ transport. Our results shed light on the way by which the strong buffering effect of HCO 3 - in some soils may be involved in iron deficiency encountered by some of the plants which grow in them.  相似文献   

12.
Activation and Deactivation of H-ATPase in Intact Chloroplasts   总被引:4,自引:2,他引:2       下载免费PDF全文
The light activation mechanism of the latent H+-ATPase was investigated in intact spinach (Spinacia oleracea, Hybrid 424) chloroplasts. The following observations were made. (a) Photosystem I electron acceptors such as methyl viologen, nitrite, oxaloacetate, etc., inhibit the light activation of the enzyme. (b) The electron transfer inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) fully inhibits the process. (c) Ascorbate plus diaminodurene or dithionite can restore light activation in DCMU-poisoned chloroplasts. (d) The activated state of the enzyme decays rather slowly (within a few minutes) after illumination of the intact chloroplasts. (e) The rate of dark decay is accelerated by oxidants (H2O2 or ferricyanide) and slowed down by dithiothreitol.

It is suggested that the physiological mechanism for regulation of the H+-ATPase involves oxidation and reduction reactions in a manner which resembles the regulation of the light-activated carbon cycle enzymes.

  相似文献   

13.
1. When cytochrome c2 is available for oxidation by the photosynthetic reaction centre, the decay of the carotenoid absorption band shift generated by a short flash excitation of Rhodopseudomonas capsulata chromatophores is very slow (half-time approximately 10 s). Otherwise the decay is fast (half-time approximately 1 s in the absence and 0.05 s in the presence of 1,10-ortho-phenanthroline) and coincides with the photosynthetic back reaction.2. In each of these situations the carotenoid shift decay, but not electron transport, may be accelerated by ioniophores. The ionophore concentration dependence suggests that in each case the carotenoid response is due to a delocalised membrane potential which may be dissipated either by the electronic back reaction or by electrophoretic ion flux.3. At high redox potentials, where cytochrome c2 is unavailable for photo-oxidation, electron transport is believed to proceed only across part of the membrane dielectric. Under such conditions it is shown that the driving force for carbonyl cyanide trifluoromethoxyphenyl hydrazone-mediated H+ efflux is nevertheless decreased by valinomycin/K+; demonstrating that the [BChl]2 → Q electron transfer generates a delocalised membrane potential.  相似文献   

14.
The hydrolysis of [Ru(η6-p-cymene)Cl2(PTA)] (PTA = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decanephosphine; RAPTA-C) was studied using UV-visible (UV-vis) spectrophotometry and NMR spectroscopy. In analogy to in silico studies, [Ru(η6-p-cymene)Cl(H2O)(PTA)]+ was found to be the most abundant hydrolysis product, although the dihydrolysed species [Ru(η6-p-cymene)(OH)(H2O)(PTA)]+ and the dichloro compound are present. Rate constants for the different aquation and anation steps and the equilibrium constants were determined. Hydrolysis is suppressed at high chloride concentrations. These results have important implications on the mode of action of the RAPTA drug candidates.  相似文献   

15.
James A. Mccray  Toru Kihara 《BBA》1979,548(2):417-426
The oxidation of reduced cytochrome c by ferricyanide has been studied over a wide range of ferricyanide concentrations using a continuous-flow apparatus. The formation of a ferrocytochrome c-ferricyanide complex has been demonstrated and the binding and electron transfer processes separated to give both the oxidation electron transfer rate and the binding rate parameters. The electron transfer rate has been found to be 1.86 · 103 s?1 in H2O buffer and 1.36 · 103 s?1 in 2H2O demonstrating that a deuterium isotope effect of similar magnitude (R = 1.37) to that found in the cytochrome reactions in photosynthetic bacteria [18] is also found in the reaction studied here. The binding association rate parameters also show a similar deuterium isotope effect suggesting that water rotation may be involved in both the binding of ferricyanide to reduced cytochrome c and the subsequent oxidation electron transfer.  相似文献   

16.
A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)2(Hbptip)](PF6)2 {bpy?=?2,2′-bipyridine, Hbptip?=?2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, 1H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid–base properties of the complex were studied by UV–visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK a1?=?1.31?±?0.09 and pK a2?=?5.71?±?0.11 with the pK a2 associated deprotonation/protonation process occurring over 3 pK a units more acidic than thiophenyl-free parent complex of [Ru(bpy)2(Hpip)]2+ {Hpip?=?2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)2(Hbptip)]2+ in Tris–HCl buffer (pH 7.1 and 50?mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV–visible and emission spectroscopy techniques of UV–visible and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4?, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)2(Hip)]2+, [Ru(bpy)2(Htip)]2+, and [Ru(bpy)2(Haptip)]2+ {Hip?=?1H-imidazo[4,5-f][1,10]phenanthroline, Htip?=?2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip?=?2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

17.
We report here the synthesis, characterization and kinetic studies of cis-[RuCl2(cyclen)]+ in aqueous solution, where cyclen is the macrocyclic ligand 1,4,7,10-tetraazacyclododecane. The complex releases one Cl producing cis-[RuCl(OH)(cyclen)]+ in aqueous solution at pH 4.60. The product of this reaction was characterized by Ultraviolet-Visible (UV-Vis) spectrum in comparison to the synthesized cis-[RuCl(OH)(cyclen)](BF4)·2H2O. The electrochemical data showed that Epc of the Ru(III/II) peak increases as the macrocycle ring size decreases and also when the trans conformation is changed to cis. The chloride affinity of Ru(III) depends on the macrocycle ring size since cis-[RuCl2(cyclam)]+ (cyclam=1,4,8,11-tetraazacyclotetradecane) does not release chloride for at least 12 h. The overall effect between cyclam and cyclen reflects the fact that the electron involved in the reduction enters a nonbonding π-d orbital and its energy is affected by the macrocyclic ligand.  相似文献   

18.
The anaerobic oxidation of cysteine, Cys, by Mn(III) in acetic acid solutions has been followed by use of a stopped-flow spectrophotometric method at a temperature of 20 °C. The formation and disappearance of the [Mn(OAc)2Cys] complex was monitored at 350 nm. The rate depends strongly on the acetic acid concentration (and hence also on pH) and led to the conclusion that more than one cysteine-containing species was involved. These mono-cysteinyl complexes are formed by the loss of two protons from the cysteine - one from the - SH and the other from either the -NH3+ or, more likely, the -COOH which is partially protonated at the low pH values involved (0.5-2.5). The rate-determining reprotonation of the bound -COO (or -NH2) is then accompanied by internal electron transfer yielding Mn(II) and the cysteinyl radical, Cys•, which then dimerises to form (inactive) cystine. At high acetic acid concentrations (60-90% AcOH) the tris-acetato species, [Mn(OAc)3], predominates together with some of the bis-complex, [Mn(OAc)2]+, and the active species is [Mn(OAc)2Cys] which decomposes with a rate constant of k2=16.8±0.9 M−1 s−1. At low acetic acid concentrations (20-30% AcOH) the mono-acetato species predominates and the reactive species is [Mn(OH)Cys] for which the rate of decomposition=k2=(1.32±0.11)×104 M−1 s−1. The relative values of the rate constants obtained are discussed, as is the bonding of cysteine to manganese(III).  相似文献   

19.
《BBA》2020,1861(1):148087
Electron bifurcating, [FeFe]-hydrogenases are recently described members of the hydrogenase family and catalyze a combination of exergonic and endergonic electron exchanges between three carriers (2 ferredoxinred + NAD(P)H + 3 H+ = 2 ferredoxinox + NAD(P)+ + 2 H2). A thermodynamic analysis of the bifurcating, [FeFe]-hydrogenase reaction, using electron path-independent variables, quantified potential biological roles of the reaction without requiring enzyme details. The bifurcating [FeFe]-hydrogenase reaction, like all bifurcating reactions, can be written as a sum of two non-bifurcating reactions. Therefore, the thermodynamic properties of the bifurcating reaction can never exceed the properties of the individual, non-bifurcating, reactions. The bifurcating [FeFe]-hydrogenase reaction has three competitive properties: 1) enabling NAD(P)H-driven proton reduction at pH2 higher than the concurrent operation of the two, non-bifurcating reactions, 2) oxidation of NAD(P)H and ferredoxin simultaneously in a 1:1 ratio, both are produced during typical glucose fermentations, and 3) enhanced energy conservation (~10 kJ mol−1 H2) relative to concurrent operation of the two, non-bifurcating reactions. Our analysis demonstrated ferredoxin E°′ largely determines the sensitivity of the bifurcating reaction to pH2, modulation of the reduced/oxidized electron carrier ratios contributed less to equilibria shifts. Hydrogenase thermodynamics data were integrated with typical and non-typical glycolysis pathways to evaluate achieving the ‘Thauer limit’ (4 H2 per glucose) as a function of temperature and pH2. For instance, the bifurcating [FeFe]-hydrogenase reaction permits the Thauer limit at 60 °C if pH 2 ≤ ~10 mbar. The results also predict Archaea, expressing a non-typical glycolysis pathway, would not benefit from a bifurcating [FeFe]-hydrogenase reaction; interestingly, no Archaea have been observed experimentally with a [FeFe]-hydrogenase enzyme.  相似文献   

20.
We wish to report the synthesis of the Ru(II) crown thioether complex, (1,4,7,10,13-pentathiacyclopentadecane)chlororuthenium(II) hexafluorophosphate, [Ru([15]aneS5)Cl](PF6), and a study of its properties utilizing single crystal X-ray diffraction, electronic spectroscopy, NMR spectroscopy, density functional theory calculations and cyclic voltammetry. The crystal structure shows a single [15]aneS5 macrocycle and a chloro ligand coordinated in a distorted octahedral fashion around the ruthenium(II) center. A significant shortening (0.15 Å) of the trans Ru-S bond length occurs in this complex compared to the related PPh3 complex (2.4458(10) to 2.283(1) Å) due to the differences in the trans influence of the two ligands. 13C NMR spectroscopy demonstrates that the structure of [Ru([15]aneS5)Cl]+ is retained in solution. As expected for a Ru(II) complex, the electronic absorption spectrum shows two d-d transitions at 402 and 331 nm. These are red-shifted compared to hexakis(thioether)ruthenium(II) complexes and consistent with the weaker ligand field effect of the chloro ligand. The electrochemical behavior of the complex in acetonitrile shows a single one-electron reversible oxidation-reduction at +0.722 V versus Fc/Fc+ which is assigned as the Ru(II)/Ru(III) couple. DFT calculations for [Ru([15]aneS5)Cl]+ show a HOMO with orbital contributions from a t2g type orbital of the Ru ion, a π component from a p orbital of the axial S atom of [15]aneS5, and a p orbital of the chloro ligand while the LUMO consists of orbital contributions of dx2-y2 orbital of the Ru center and p orbitals of the four equatorial S donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号