首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human serum heme–albumin (HSA-heme) displays globin-like properties. Here, the allosteric inhibition of ferric heme [heme-Fe(III)] binding to human serum albumin (HSA) and of ferric HSA–heme [HSA-heme-Fe(III)]-mediated peroxynitrite isomerization by isoniazid and rifampicin is reported. Moreover, the allosteric inhibition of isoniazid and rifampicin binding to HSA by heme-Fe(III) has been investigated. Data were obtained at pH 7.2 and 20.0 °C. The affinity of isoniazid and rifampicin for HSA [K 0 = (3.9 ± 0.4) × 10−4 and (1.3 ± 0.1) × 10−5 M, respectively] decreases by about 1 order of magnitude upon heme-Fe(III) binding to HSA [K h = (4.3 ± 0.4) × 10−3 and (1.2 ± 0.1) × 10−4 M, respectively]. As expected, the heme-Fe(III) affinity for HSA [H 0 = (1.9 ± 0.2) × 10−8 M] decreases by about 1 order of magnitude in the presence of saturating amounts of isoniazid and rifampicin [H d = (2.1 ± 0.2) × 10−7 M]. In the absence and presence of CO2, the values of the second-order rate constant (l on) for peroxynitrite isomerization by HSA-heme-Fe(III) are 4.1 × 105 and 4.3 × 105 M−1 s−1, respectively. Moreover, isoniazid and rifampicin inhibit dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) in the absence and presence of CO2. Accordingly, isoniazid and rifampicin impair in a dose-dependent fashion the HSA-heme-Fe(III)-based protection of free l-tyrosine against peroxynitrite-mediated nitration. This behavior has been ascribed to the pivotal role of Tyr150, a residue that either provides a polar environment in Sudlow’s site I (i.e., the binding pocket of isoniazid and rifampicin) or protrudes into the heme-Fe(III) cleft, depending on ligand binding to Sudlow’s site I or to the FA1 pocket, respectively. These results highlight the role of drugs in modulating heme-Fe(III) binding to HSA and HSA-heme-Fe(III) reactivity.  相似文献   

2.
The possibility that glutathione-S-transferases can serve as heme carriers in cells was studied via the following two characteristics: the ability to bind hemin reversibly and the coordination between heme and glutathione-S-transferases level in the cell. two erythroleukemic cell lines that can be induced to synthesize hemoglobin were studied, K-562 and Friend murine erythroleukemia cells. It was found that hemin-associated glutathione-S-transferase tends to lose its native structure as expressed by partial irreversible inhibition of glutathione conjugation activity. In K-562 cells, a small increase in heme synthesis was induced, but under no condition could glutathione-S-transferase be elevated. In addition, introduction of high hemin from without caused large hemoglobin production but did not induce changes in the glutathione-S-transferase content. Dimethyl sulfoxide-induced Friend murine erythroleukemia cells synthesized a large amount of endogenous hemin that had to be transported from the mitochondria for hemoglobin synthesis. Although a concomitant increase in glutathione-S-transferase level (20-40%) was observed, it was only short-lived, unlike hemin, which continued to increase. These data indicate a lack of correlation between glutathione-S-transferase and hemin or hemoglobin levels. Finally, dimethyl sulfoxide-induced cells were treated with succinyl acetone to inhibit heme synthesis. These cells showed the same increased levels and time-dependent pattern of glutathione-S-transferase as untreated cells. A similar phenomenon was observed when different substrates were used to measure the activities of glutathione-S-transferases. These results raise doubts about the possibility of glutathione-S-transferases functioning as heme carriers in cells.  相似文献   

3.
Ken Okada 《FEBS letters》2009,583(2):313-319
The metabolic pathways in apicoplasts of human malaria parasites are promising drug targets. The apicomplexan parasites exhibit delayed cell death when their apicoplast is impaired, but the metabolic pathways within apicoplasts are poorly understood. A nuclear-encoded heme oxygenase (HO)-like protein with an apicoplast-targeted bipartite transit peptide was identified in the Plasmodiumfalciparum genome. Purified mature recombinant PfHO protein converted heme into bilirubin IXα as confirmed by high-performance liquid chromatography. In addition, PfHO required an iron chelator such as deferoxamine for complete activity. These observations lead to the conclusion that a novel enzymatic heme degradation system is present in human malaria parasites.  相似文献   

4.
The isomeric composition of biliverdin formed by the degradation of heme by purified NADPH-cytochrome c reductase has been determined by high performance liquid chromatography. Methemalbumin heme yields a mixture of the four biliverdin IX isomers while myoglobin yields only the IX-α isomer of biliverdin. In both cases biliverdin is a minor product of the reaction. Addition of purified heme oxygenase to the methemalbumin NADPH-cytochrome c reductase system confers α-selectivity on the reaction and allows stoichiometric conversion of heme to biliverdin. Thus the role of heme oxygenase in enzymatic heme degradation appears to be to provide a suitable environment for quantitative conversion of heme to biliverdin in addition to conferring α-selectivity on the reaction.  相似文献   

5.
Bali S  Warren MJ  Ferguson SJ 《The FEBS journal》2010,277(23):4944-4955
The cytochrome cd? nitrite reductase from Paracoccus pantotrophus catalyses the one electron reduction of nitrite to nitric oxide using two heme cofactors. The site of nitrite reduction is the d? heme, which is synthesized under anaerobic conditions by using nirECFD-LGHJN gene products. In vivo studies with an unmarked deletion strain, ΔnirF, showed that this gene is essential for cd? assembly and consequently for denitrification, which was restored when the ΔnirF strain was complemented with wild-type, plasmid-borne, nirF. Removal of a signal sequence and deletion of a conserved N-terminal Gly-rich motif from the NirF coded on a plasmid resulted in loss of in vivo NirF activity. We demonstrate here that the product of the nirF gene is a periplasmic protein and, hence, must be involved in a late stage of the cofactor biosynthesis. In vitro studies with purified NirF established that it could bind d? heme. It is concluded that His41 of NirF, which aligns with His200 of the d? heme domain of cd?, is essential both for this binding and for the production of d? heme; replacement of His41 by Ala, Cys, Lys and Met all gave nonfunctional proteins. Potential functions of NirF are discussed.  相似文献   

6.
7.
Free oxygen radicals contribute to gastric mucosal damage induced by acetylic-salicylic acid (ASA). Vitamin C has been shown to reduce gastric toxicity of ASA in humans. We intended to assess the role of heme oxygenase-1 (HO-1) in this process by application of these substances to AGS and KATO III cells. HO-1 expression was monitored by real-time RT-PCR, Western blot, and HO activity measurement. HO-1 mRNA was significantly elevated by either ASA or vitamin C in gastric epithelial cells, combination of both substances further increased expression. HO-1 protein and enzyme activity rose in cells exposed to vitamin C alone or combined with ASA, but not after stimulation with ASA alone. In contrast to endothelia, in which ASA simultaneously induces HO-1 mRNA and protein expression, gastric epithelial cells require vitamin C to translate HO-1 mRNA into active protein, which then may exert gastroprotection by its antioxidant and vasodilative properties.  相似文献   

8.
In the past years, in our laboratory, several cell lines have been generated starting from a human liver (H7). Some of them have been used successfully in studies of the infection with and propagation of Hepatitis B and Hepatitis C viruses. Recently, several lines of evidence indicated that the origin of these cell lines was uncertain. Therefore, we now have determined the genetic characteristics of these cell lines in comparison to HepG2 cells received from ATCC and to HepG2 isolates grown at other laboratories. Quadruplex fluorescent short tandem repeat (STR) typing and karyotyping were performed. In addition, some biochemical characteristics of selected clones were studied. Genetically, all H7-derived cell lines were identical to HepG2 cells. However, some liver-specific functions varied between the different sub-cloned lines. The H7-derived cell lines that were generated proved to be sub-cloned lines of HepG2. The problem of cross-contamination during cloning of cell lines appears to be not uncommon. We found that two out of six HepG2 isolates obtained from other laboratories were not derived from the same individual as the original HepG2 cells. Therefore, STR typing should be applied as a rapid and sensitive technique to determine and monitor the origin of cell lines and to safeguard against contamination.  相似文献   

9.
A b-type heme is conserved in membrane-bound complex II enzymes (SQR, succinate–ubiquinone reductase). The axial ligands for the low spin heme b in Escherichia coli complex II are SdhC His84 and SdhD His71. E. coli SdhD His71 is separated by 10 residues from SdhD Asp82 and Tyr83 which are essential for ubiquinone catalysis. The same His-10x-AspTyr motif dominates in homologous SdhD proteins, except for Saccharomyces cerevisiae where a tyrosine is at the axial position (Tyr-Cys-9x-AspTyr). Nevertheless, the yeast enzyme was suggested to contain a stoichiometric amount of heme, however, with the Cys ligand in the aforementioned motif acting as heme ligand. In this report, the role of Cys residues for heme coordination in the complex II family of enzymes is addressed. Cys was substituted to the SdhD-71 position and the yeast Tyr71Cys72 motif was also recreated. The Cys71 variant retained heme, although it was high spin, while the Tyr71Cys72 mutant lacked heme. Previously the presence of heme in S. cerevisiae was detected by a spectral peak in fumarate-oxidized, dithionite-reduced mitochondria. Here it is shown that this method must be used with caution. Comparison of bovine and yeast mitochondrial membranes shows that fumarate induced reoxidation of cytochromes in both SQR and the bc1 complex (ubiquinol–cytochrome c reductase). Thus, this report raises a concern about the presence of low spin heme b in S. cerevisiae complex II.  相似文献   

10.
Equilibrium unfolding experiments provide access to protein thermodynamic stability revealing basic aspects of protein structure–function relationships. A limitation of these experiments stands on the availability of large amounts of protein samples. Here we present the use of the NanoDrop for monitoring guanidinium chloride-induced unfolding by Soret absorbance of monomeric heme proteins. Unfolding experiments using 2 μl of reactant are validated by fluorescence and circular dichroism spectroscopy and supported with five heme proteins including neuroglobin, cytochrome b5, and cyanoglobin. This work guarantees 2 orders of magnitude reduction in protein expense. Promising low-cost protein unfolding experiments following other chromophores and high-throughput screenings are discussed.  相似文献   

11.
Heme–copper oxidases (HCuOs) terminate the respiratory chain in mitochondria and most bacteria. They are transmembrane proteins that catalyse the reduction of oxygen and use the liberated free energy to maintain a proton-motive force across the membrane. The HCuO superfamily has been divided into the oxygen-reducing A-, B- and C-type oxidases as well as the bacterial NO reductases (NOR), catalysing the reduction of NO in the denitrification process. Proton transfer to the catalytic site in the mitochondrial-like A family occurs through two well-defined pathways termed the D- and K-pathways. The B, C, and NOR families differ in the pathways as well as the mechanisms for proton transfer to the active site and across the membrane. Recent structural and functional investigations, focussing on proton transfer in the B, C and NOR families will be discussed in this review. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

12.
Human serum heme–albumin (HSA–heme–Fe) displays reactivity and spectroscopic properties similar to those of heme proteins. Here, the nitrite reductase activity of ferrous HSA–heme–Fe [HSA–heme–Fe(II)] is reported. The value of the second-order rate constant for the reduction of $ {\text{NO}}_{2}^{ - } $ to NO and the concomitant formation of nitrosylated HSA–heme–Fe(II) (i.e., k on) is 1.3 M?1 s?1 at pH 7.4 and 20 °C. Values of k on increase by about one order of magnitude for each pH unit decrease between pH 6.5 to 8.2, indicating that the reaction requires one proton. Warfarin inhibits the HSA–heme–Fe(II) reductase activity, highlighting the allosteric linkage between the heme binding site [also named the fatty acid (FA) binding site 1; FA1] and the drug-binding cleft FA2. The dissociation equilibrium constant for warfarin binding to HSA–heme–Fe(II) is (3.1 ± 0.4) × 10?4 M at pH 7.4 and 20 °C. These results: (1) represent the first evidence for the $ {\text{NO}}_{2}^{ - } $ reductase activity of HSA–heme–Fe(II), (2) highlight the role of drugs (e.g., warfarin) in modulating HSA(–heme–Fe) functions, and (3) strongly support the view that HSA acts not only as a heme carrier but also displays transient heme-based reactivity.  相似文献   

13.
Kinetics of the reconstitution of hemoglobin from semihemoglobins and with hemin dicyanide have been investigated using three kinds of stopped-flow technique (Soret absorption, fluorescence quenching of tryptophan, and Soret CD). The semihemoglobins and are occupied by heme in the and chains, respectively, the other chain being heme-free. Based on the kinetic results, the following scheme for the reconstitution is proposed; First, hemin dicyanide enters the pocket-like site of the apo chains. Second, in semihemoglobin , the CN-ligand in the fifth coordination position of iron is replaced by the imidazole ring of the proximal His immediately after the heme insertion. In contrast, semihemoglobin changes its conformation after the heme insertion, and this is followed by the ligand replacement. Finally, the partial structure changes induced by the ligand replacement propagate onto the whole molecule and the final conformation is attained. The results indicate that semihemoglobin retains a more rigid and organized structure, and more closely approaches its final structure than does semihemoglobin . Correspondence to: Y. Kawamura-Konishi  相似文献   

14.
15.
We have investigated CO migration and binding in CuBMb, a copper-binding myoglobin double mutant (L29H–F43H), by using Fourier transform infrared spectroscopy and flash photolysis over a wide temperature range. This mutant was originally engineered with the aim to mimic the catalytic site of heme–copper oxidases. Comparison of the wild-type protein Mb and CuBMb shows that the copper ion in the distal pocket gives rise to significant effects on ligand binding to the heme iron. In Mb and copper-free CuBMb, primary and secondary ligand docking sites are accessible upon photodissociation. In copper-bound CuBMb, ligands do not migrate to secondary docking sites but rather coordinate to the copper ion. Ligands entering the heme pocket from the outside normally would not be captured efficiently by the tight distal pocket housing the two additional large imidazole rings. Binding at the Cu ion, however, ensures efficient trapping in CuBMb. The Cu ion also restricts the motions of the His64 side chain, which is the entry/exit door for ligand movement into the active site, and this restriction results in enhanced geminate and slow bimolecular CO rebinding. These results support current mechanistic views of ligand binding in hemoglobins and the role of the CuB in the active of heme–copper oxidases. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

16.

Abstract  

The structure of a carbon monoxide (CO) adduct of a complex between heme and a parallel G-quadruplex DNA formed from a single repeat sequence of the human telomere, d(TTAGGG), has been characterized using 1H and 13C NMR spectroscopy and density function theory calculations. The study revealed that the heme binds to the 3′-terminal G-quartet of the DNA though a ππ stacking interaction between the porphyrin moiety of the heme and the G-quartet. The ππ stacking interaction between the pseudo-C 2-symmetric heme and the C 4-symmetric G-quartet in the complex resulted in the formation of two isomers possessing heme orientations differing by 180° rotation about the pseudo-C 2 axis with respect to the DNA. These two slowly interconverting heme orientational isomers were formed in a ratio of approximately 1:1, reflecting that their thermodynamic stabilities are identical. Exogenous CO is coordinated to heme Fe on the side of the heme opposite the G-quartet in the complex, and the nature of the Fe–CO bond in the complex is similar to that of the Fe–CO bonds in hemoproteins. These findings provide novel insights for the design of novel DNA enzymes possessing metalloporphyrins as prosthetic groups.  相似文献   

17.
We measured the circular dichroism (CD) and absorption spectra of the B-band region of microperoxidase 11 (MP11) as a function of temperature and peptide concentration. At micromolar concentrations, small MP11 dimers or trimers lead to excitonic coupling between low-spin and high-spin heme groups, to which the NH2 group of the MP11 N-terminal and H2O are bound as a sixth ligand, respectively. These aggregates convert into monomers with hexacoordinated high-spin heme groups with increasing temperature. This transition can be described by a two-state model. Aggregation becomes more extended at 50 μM concentration and causes some B-band hyperchromism, which reflects a J-type arrangement of heme groups linked together in the aggregates formed. At near-millimolar concentration, the CD and absorption spectra of the B-band region suggest the existence of even more extended and thermally stable aggregates, which might involve μ-oxo dimers of the heme groups. The degree of aggregation at 50 and 500 μM concentration increases substantially if the sample is freed from most of its oxygen in a N2 atmosphere. The CD spectrum of the monomeric high-spin species is reminiscent of that observed for the unfolded alkaline conformation of the intact protein. Finally, we investigated the binding of acetylmethionine (AcM) ligands to the heme at aggregation-supporting conditions (500 μM concentration). The data suggest that the ligand prevents any substantial aggregation. As a surprising result, our data reveal that AcM–MP11 complexes exhibit a high-spin/low-spin mixture, with the high-spin configuration being stabilized at high temperatures.  相似文献   

18.
We are employing a number of selective in vitro and in vivo methods including NMR to screen compounds that bind to heme oxygenases from pathogenic bacteria. We report the nearly complete HN, N, CO, Cα and Cβ chemical shift assignments of a 215-amino acid HO from Corynebacterium diphtheria in three forms, apo cd-HO-G135A, apo cd-HO and CO-bound ferrous holo cd-HO; these assignments will enable us to identify residues on cd-HO that are perturbed upon binding to selected compounds, and to help with the development of inhibitors specific to the bacterial proteins.  相似文献   

19.
Intestinal epithelium undergoes a rapid self-renewal process characterized by the proliferation of the crypt cells, their differentiation into mature enterocytes as they migrate up to the villi, followed by their shedding as they become senescent villus enterocytes. The exact mechanism that regulates the intestinal epithelium renewal process is not well understood, but the differential expression of regulatory genes along the crypt-villus axis may have a role. Heme oxygenase-1 (HO-1) is involved in endothelial cell cycle progression, but its role in the intestinal epithelial cell turnover has not been explored. With its effects on cell proliferation and its differential expression along the crypt-villus axis, HO-1 may play a role in the intestinal epithelial cell renewal process. In this study, we examined the role of HO-1 in the proliferation and differentiation of Caco-2 cells, a well-established in vitro model for human enterocytes. After confluence, Caco-2 cells undergo spontaneous differentiation and mimic the crypt to villus maturation observed in vivo. In preconfluent and confluent Caco-2 cells, HO-1 protein expression was determined with the immunoblot. HO-1 activity was determined by the ability of the enzyme to generate bilirubin from hemin. The effect of a HO-1 enzyme activity inhibitor, tin protoporphyrin (SnPP), on Caco-2 cell proliferation and differentiation was examined. In preconfluent cells, cell number was determined periodically as a marker of proliferation. Cell viability was measured with MTT assay. Cell differentiation was assessed by the expression of a brush border enzyme, alkaline phophatase (ALP). HO-1 was expressed in subconfluent Caco-2 cells and remained detectable until 2 days postconfluency. This timing was consistent with cells starting their differentiation and taking the features of normal intestinal epithelial cells. HO-1 was inducible in confluent Caco-2 cells by the enzyme substrate, hemin in a dose- and time-dependent manner. SnPP decreased the cell number and viability of preconfluent cells and delayed the ALP enzyme activity of confluent cells. HO-1 may be involved in intestinal cell cycle progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号