首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ruthenium complexes [RuII(bbp)(L)(Cl)] (1), [RuII(bbp)(L)(H2O)] (2) and [RuII(bbp)(L)(DMSO)] (3) {bbp = 2,6-bis(benzimidazol-2-yl)pyridine, L = o-iminoquinone} have been synthesized in a stepwise manner starting from [RuIII(bbp)Cl3]. The single crystal X-ray structures, except for the complex 2, have been determined. All the complexes were characterized by UV-Vis, FT-IR, 1H NMR, Mass spectroscopic techniques and cyclic voltammetry. The RuIII/RuII couple for complexes 1, 2, and 3 appears at 0.63, 0.49, 0.55 V, respectively versus SCE. It is observed that complex 2, on refluxing in acetonitrile, results into [RuII(bbp)(L)(CH3CN)], 4 which has been prepared earlier in a different method. The structural, spectral and electrochemical properties of complexes 1, 2 and 3 were compared to those of earlier reported complex 4, [RuII(bbp)(L)(CH3CN)].  相似文献   

2.
We describe the synthesis, characterization, and reactivity of several Ru(II) complexes of the type cis-L2Ru(Z)n+, where L is an α-diimine [e.g. 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen)] ligand and Z is a bis-coordinated scorpionate ligand such as tris-(1-pyrazolyl)methane (HC(pz)3, PZ=1-pyrazolyl; n=2) or tetrakis-(1-pyrazolyl)borate anion (B(pz)4; n=1). The complexes each exhibit strong visible absorption assigned as a π*(L)←dπ(Ru) metal-to-ligand charge-transfer (MLCT) transition characteristic of the cis-L2Ru2+ kernel. A corresponding MLCT excited state emission is observed in room temperature CH3CN solution, although emission energies, lifetimes, and quantum yields are reduced relative to Ru(bpy)3 2+. Electronic spectra and cyclic voltammetry measurements indicate that the relative π-acceptor abilities of the coordinated Z are: Z=(1H-pyrazolyl)2(pz)2B(pz)2<(pyridine)2<(pz)2CH(pz). Uncoordinated pz groups of cis-(bpy)2Ru(pz)2B(pz)2 + can be reacted to form a sterically hindered, localized-valence (Kcom33 l mol−1) cis,cis-(bpy)2RuII(pz)2B(pz)2RuII(bpy)2 3+ dimer. The dimer properties are interpreted by comparison to the known cis-(bpy)2RuII(pz)2RuII(bpy)2 2+ analog. The dimer is photoreactive and undergoes an asymmetrical photocleavage in CH3CN (yielding cis-(bpy)2RuIII(pz)2B(pz)2 2+ and cis-(bpy)2RuII(CH3CN)2 2+), similar to the corresponding thermal reaction observed for the mixed-valence cis-(bpy)2RuII(pz)2RuIII(bpy)2 3+ system.  相似文献   

3.
The electrochromic properties of two new mixed valence ruthenium complexes: K[(NC5H4CH2PO3H2)RuIII(NH3)4(NC)RuII(CN)5] and K[(NC5H4PO3H2)RuIII(NH3)4(NC)RuII(CN)5], where phosphonic acid groups have been introduced at the pyridine ligand, have been studied in homogeneous solution and adsorbed on transparent nanocrystalline SnO2 electrodes. These species exhibit a superior stability with respect to the previously studied, K[(NC5H4CO2H)RuIII(NH3)4NCRuII(CN)5] complex, showing negligible optical density changes after cycling 20 000 times the electrodes between −0.5 and 0.5 V versus SCE.  相似文献   

4.
5.
The trinuclear [{RuII(bpy)2(bpy-terpy)}2CoII]6+ complex (16+) in which a Co(II)-bis-terpyridine-like centre is covalently linked to two Ru(II)-tris-bipyridine-like moieties by a bridging bipyridine-terpyridine ligand has been synthesised and characterised. Its electrochemical, photophysical and photochemical properties have been investigated in CH3CN. The cyclic voltammetry exhibits two successive reversible oxidation processes, corresponding to the CoIII/CoII and RuIII/RuII redox couples at E1/2 = −0.06 and 0.91 V vs Ag/Ag+ 10 mM, respectively. The one-electron oxidized form of the complex, [{RuII(bpy)2(bpy-terpy)}2CoIII]7+ (17+) obtained after exhaustive electrolysis carried out at 0.2 V is fully stable. 16+ and 17+ are only poorly luminescent, indicating that the covalent linkage of the Ru(II)-tris-bipyridine centre to the cobalt subunit leads to a strong quenching of the RuII excited state by an intramolecular process. Luminescence lifetime experiments carried out at different temperatures indicate that the transfer is more efficient for 17+ compare to 16+ due to lower activation energy. Continuous irradiation of 17+ performed at 405 nm in the presence of P(Ph)3 acting as sacrificial electron donor leads to its quantitative reduction into 16+, whereas similar experiment starting from 16+ with a sulfonium salt as sacrificial electron acceptor converts 16+ into 17+ with a slower rate and a maximum yield of 80%. These photoinduced electron transfers were followed by UV-Visible spectroscopy and compared with those obtained with a simple mixture of both mononuclear parent complexes i.e. [RuII(bpy)3]2+ and [CoII(tolyl-terpy)2]2+ or [CoIII(tolyl-terpy)2]3+ (tolyl-terpy = 4′-(4-methylphenyl)-2,2′:6′,2′′-terpyridine).  相似文献   

6.
The present paper describes a new tripodal ligand containing imidazole and pyridine arms and its first cis-[RuIII(L)(Cl)2]ClO4 complex (1). The crystal structure of 1 shows RuIII in a distorted octahedral geometry, in which two chloride ions, cis-positioned to each other, are coordinated besides the four nitrogen atoms from the tetradentate ligand L. The cyclic voltammogram of 1 exhibits three redox processes at −67, +73 and +200 mV versus SCE, which are attributed to the RuIII/RuII couple in the cis-[RuIII(L)(Cl)2]+, cis-[RuII(L)(H2O)(Cl)]+ and cis-[RuII(L)(H2O)2]2+, respectively. After chemical reduction (Zn(Hg) or EuII) only the cis-[RuII(L)(H2O)2]2+ species is observed in the cyclic voltammetry. Complex 1 absorbs at 470 nm (ε=1.4×103 mol−1 L cm−1), 335 nm (ε=7.9×103 mol−1 L cm−1), 301 nm (ε=6.7×103 mol−1 L cm−1) and 264 nm (ε=9.9×103 mol−1 L cm−1), in water solution (CF3COOH, 0.01 mol L−1, μ=0.1 mol L−1 with CF3COONa). Spectroelectrochemical experiments show a decrease of the bands at 335 and 301 nm, which are attributed to LMCT transitions from the chloride to the RuIII center and the appearance of a broad band at 402 nm ascribed to MLCT transition from the RuII center to the pyridine ligand. The lability of the water ligands in the cis-[RuII(L)(H2O)2]2+ species has been investigated using the auxiliary ligand pyrazine. Reactions in the presence of stoichiometric and excess of pyrazine yield the same species, cis-[RuII(L)(H2O)(pz)]2+, which exhibits a reversible redox process at 493 mV versus SCE and absorbs at 438 nm (ε=5.1×103 mol−1 L cm−1) and 394 nm (ε=4.2×103 mol−1 L cm−1). Experiments performed with a large excess of pyrazine gave a specific rate constant k1=(2.8±0.5)×10−2 M−1 s−1, at 25 °C, in CF3COOH, 0.01 mol L−1, μ=0.1 mol L−1 (with CF3COONa).  相似文献   

7.
We present here the syntheses of a mononuclear CuII complex and two polynuclear CuII NiII complexes of the azenyl ligand, 4‐(pyridin‐2‐ylazenyl)resorcinol (HL; 1). The reaction of HL ( 1 ) and copper(II) perchlorate with KCN gave a mononuclear complex [CuL(CN)] ( 4 ). Using 4 , one pentanuclear complex, [{CuL(NC)}4Ni](ClO4)2 ( 5 ) and one trinuclear complex, [{CuL(CN)}2NiL]ClO4 ( 6 ), were prepared and characterized by elemental analyses, magnetic susceptibility, molar conductance, IR, and thermal analysis. Stoichiometric and spectral results of the mononuclear CuII complex indicated that the metal/ligand/CN ratio was 1 : 1 : 1, and the ligand behaved as a tridentate ligand forming neutral metal chelates through the pyridinyl and azenyl N‐, and resorcinol O‐atom. The interaction between the compounds (the ligand 1 , its NiII and CuII complexes without CN, i.e., 2 and 3 , and its complexes with CN, 4 – 6 ) and DNA has also been investigated by agarose gel electrophoresis. The pentanuclear Cu4Ni complex ( 5 ) with H2O2 as a co‐oxidant exhibited the strongest DNA‐cleaving activity.  相似文献   

8.
[RuIV(tpy)(pic)(O)]+ (1) was synthesized by chemical oxidation of the corresponding aqua-complex [RuII(tpy)(pic)(H2O)]+ (2) and characterized by analytical, spectroscopic (UV-vis and IR) and magnetic moment studies. Complex 1 effected epoxidation of styrene and substituted styrenes, cis- and trans-stilbenes and cyclohexene, in CH3CN at room temperature. Epoxides were found to be the major product for styrenes and stilbenes, whereas, the oxidation of cyclohexene yielded allylic oxidation product. Detailed kinetic studies were performed under pseudo-first order conditions of excess alkene concentrations. A working mechanism in agreement with the rate and activation parameters is presented, and the results are discussed in reference to the data reported for the alkene oxidation by relevant RuIVO system in CH3CN.  相似文献   

9.
Reactions of 2-(arylazo)aniline, HL [H represents the dissociable protons upon orthometallation and HL is p-RC6H4N = NC6H4-NH2; R = H for HL1; CH3 for HL2 and Cl for HL3] with Ru(R1-tpy)Cl3 (where R1-tpy is 4′-(R1)-2,2′,6′′,2′′-terpyridine and R1 = H or 4-N,N-dimethylaminophenyl or 4-methylphenyl) afford a group of complexes of type [Ru(L)(R1-tpy)]·ClO4 each of which contains C,N,N coordinated L as a tridentate ligand along with a terpyridine. Structure of one such complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, display characteristic 1H NMR signals and intense dπ(RuII) → π∗(tpy) MLCT transitions in the visible region. Cyclic voltammetric studies on [Ru(L)(R1-tpy)]·ClO4 complexes show Ru(II)-Ru(III) oxidation within 0.63-0.67 V versus SCE.  相似文献   

10.
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)4]2− (NN = 2,2′-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)4]2− salts, in the formation of small amounts of salts of the dinuclear species [Ru2(NN)2(CN)7]3−. These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)4]2− following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)5.5][Ru2(bipy)2(CN)7] · 11H2O and [Pr(H2O)6][Ru2(phen)2(CN)7] · 9H2O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru2Ln2(μ-CN)4 squares and Ru4Ln2(μ-CN)6 hexagons, which alternate to form a one-dimensional chain. In [CH6N3]3[Ru2(bipy)2(CN)7] · 2H2O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru2(NN)2(CN)7]3− anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4′-tBu2-2,2′-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3]2[Ru(tBu2bipy)(CN)4] · 2H2O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru2(phen)2(CN)7]3− could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)4]2− if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru2(bipy)2(CN)7]3− (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)4]2−, with a 3MLCT emission at 581 nm.  相似文献   

11.
The reaction of [C5H4(CH2)nX]Tl (1: n = 2, X = NMe2, OMe, CN; n = 3, X = NMe2) with [(η6-C6H6)RuCl(μ-Cl)]2, 2, afforded the sandwich compounds [{η5-C5H4(CH2)nX}Ru(η6-C6H6)]PF6, 3, and [η5-C5H4(CH2)nX]2Ru, 4. Photolytic cleavage of 3 in acetonitrile afforded the tethered products [{η5N-C5H4(CH2)nX}Ru(CH3CN)2]PF6, 5.  相似文献   

12.
Preliminary pharmacological studies of various nitric oxide (NO) photo-releasing agents are reported based on the flash-photolysis studies of the nitro ruthenium complexes cis-[RuII(NO2)L(bpy)2]+ (bpy = 2,2′-bipyridine and L = pyridine, 4-picoline and pyrazine) and [RuII(NO2)(bpy)(terpy)]+ (terpy = terpyridine) in physiological medium. The net photoreactions under these conditions are two primary photoproducts, in (I) there is RuII-NO2 photoaquation, where the photoproducts are RuII-H2O plus and (II) homolytic dissociation of NO from a coordinated nitrito to derive the RuII-OH2 specie and NO. Based on photochemical processes, the nitro ruthenium complexes were incorporated in water in oil (W/O) microemulsion and used in the vasorelaxation induced experiment. Denuded rat aortas were contracted with KCl and nitro ruthenium complexes in microemulsion were added. Perfusion pressures were recorded while arteries were irradiated at 355 nm The time to reach maximum relaxation was longer for [RuII(NO2)(bpy)(terpy)]+ complex (ca. 50 min, n = 6) than for cis-[Ru(NO2)L(bpy)2]+ with L = py and 4-pic complex (ca. 28 min, n = 6) and cis-[Ru(NO2)(bpy)2 (pz)]2+ complex (ca. 24 min, n = 5).  相似文献   

13.
The electrochemical and photophysical properties of two bis-nitrilo ruthenium(II) complexes formulated as [Ru(bpy)2(L)2](PF6)2, where bpy is 2,2′-bipyridine and L is AN = CH3CN and sn = NC-CH2CH2-CN, have been investigated. Electrochemical data are typical of Ru-bpy complexes with two reversible reduction peaks located near −1.3 and −1.6 V assigned to each bipyridine ligand and one RuII/RuIII oxidation wave centered at approximately +1.5 V. The sn derivative is both IR and Raman active with its coordinated CN stretch appearing at 2277 cm−1 and 2273 cm−1, respectively. The UV/Vis absorption spectrum of the sn derivative is dominated by an intense (εmax ∼ 58700 M−1 cm−1) absorption band at 287 nm assigned as a LC (π → π∗) transition. The peak observed at 418 nm (ε ∼ 10 400 M−1 cm−1) is an MLCT band while the one at 244 nm (ε ∼ 23 600 M−1 cm−1) is of LMLCT character. The AN derivative behaves similarly. Both complexes show low-temperature emission at around 537 nm with a lifetime near 10.0 μs. 1H and 13C assignments are consistent with the formulation of the complexes. The complexes undergo photosubstitution of solvent with quantum efficiencies near one. Calculated and experimental results support replacement of the nitrile ligands by solvent. Based on DFT calculations, the electron density of the HOMO lies on the metal center, the bipyridine ligands and the nitrile ligands and electron density of the LUMO resides primarily on the bipyridine ligands. The electronic spectra obtained from TDDFT calculations closely match the experimental ones.  相似文献   

14.
Synthesis of new bichromophoric di- and pentanuclear complexes 2-7 by datively binding (bpy)2RuII, (phen)2RuII and Cp (PPh3)RuII units to the periphery of [Co(OBTTAP)], 1, and their spectroscopic properties are described. IR, 1H NMR, UV-Vis, and mass spectral data were used for their characterization. Relative intensities and positions of the Soret and Q-bands absorptions in the di- and pentanuclear complexes were observed shifted vis-à-vis that in the precursor complex [Co(OBTTAP)], 1. These complexes particularly, those possessing [Co(OBTTAP)] and (bpy)2RuII/(phen)2RuII units, exhibited efficient inter-component electronic excitation energy transfer in their fluorescence excitation-emission spectra, that are suggestive of a high degree of inter-component electronic interaction in them. Also, the electrode activity of the complexes improved upon binding of the peripheral units and they exhibited multiple one-electron reversible oxidation waves in the cyclic voltammograms. These effects have been explained in terms of dπ(S)-dπ(Ru) interactions.  相似文献   

15.
Two new porphyrins, meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3,4DMPP) and meso-tris-3-methoxy-4-hydroxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3M4HPP), and their ruthenium analogs obtained by coordination of [Ru(bpy)2Cl]+ groups (where bpy = 2,2′-bipyridine) to the pyridyl nitrogens have been synthesized and studied by electronic absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry. These ruthenated porphyrins couple Ru chromophores to porphyrins containing electroactive meso-substituents. The highest energy electronic absorption for the ruthenated complexes is assigned as a bpy(π) → bpy(π*) intraligand charge transfer while the next lowest energy electronic absorption is assigned as Ru(dπ) → bpy(π*) metal-to-ligand charge transfer (MLCT) transition. The RuIII/II couples occur at approximately 0.95 V versus the SHE reference electrode in acetonitrile solutions. The first oxidation of the porphyrin is localized on the 3,4-dimethoxyphenyl and 3-methoxy-4-hydroxyphenyl substituents, respectively. Electroactive surfaces result from adsorption of these compounds onto glassy carbon electrodes followed by anodic cycling in acidic media.  相似文献   

16.
The photoluminescence (PL) and electrogenerated chemiluminescence (ECL) of [H2(MPy3,4DMPP)Ru(bpy)2Cl](PF6), where H2MPy3,4DMPP = meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin and bpy = 2,2′-bipyridine, are reported in acetonitrile. The compound has a complex absorbance spectrum with bands characteristic of both the porphyrin and ruthenium moieties. PL emission maxim are observed at 655 nm when excited at the maximum absorption intensity corresponding to the porphyrin Soret π → π band, and around 600 nm when excited at wavelengths corresponding to Ru(dπ)-bpy (π) MLCT transition. The photoluminescence efficiency (?em) of the 655 nm emission is 0.039 and that of the free porphyrin is 0.69 compared to at 0.042.[H2(MPy3,4DMPP)Ru(bpy)2Cl](PF6) displays complex electrochemical behavior, with one electrochemically reversible RuII-RuIII oxidation and two quasi-reversible waves at more cathodic potentials corresponding to the porphyrin moiety. Oxidative ECL was generated using the coreactant tri-n-propylamine (TPrA). ECL efficiencies (?ecl) were 0.14 for [H2(MPy3,4DMPP)Ru(bpy)2Cl]+ and 0.099 for H2MPy3,4DMPP using as the standard (?ecl = 1). ECL intensity was linear with respect to concentration from 1 to 0.001 μM.The ECL intensity peaks at potentials corresponding to oxidation both the ruthenium and porphyrin moieties as well as TPrA, indicating that multiple pathways for formation of the excited state are possible. However, an ECL spectrum shows a band similar in energy and shape to that of the Soret emission (655 nm for the PL and 656 nm for the ECL, respectively), indicating the same excited state is formed in each experiment.  相似文献   

17.
Synopsis By application of appropriate blocking reactions (acetylation, de-amination, methylation and NaHSO3-treatment) it is demonstrated that the tissue ligands involved in the selective glycogen contrast staining reaction with the OsVI. FeII complex (known to be present in the combination K2OsO 4 K 4Fe(CN)6) are the glycogen C2–C3 di-hydroxyl groups. Deliberate conversion of the diols into di-aldehydes and (di-)carboxyl groups by the application of specific oxidative agents followed, by application of the OsVI.FeII-complex results morphologically in identical selective contrast staining of glycogen.By applying appropriate blocking reactions to such pre-oxidized aldehyde fixed glycogen, evidence is accumulated that K2OsO4 and K3Fe(CN)6 are unable to oxidize diols, whereas OsO4 and H2O2 are able to convert diols into carboxyl groups.From these results it is concluded that in the combination K2OsO 4 K 4Fe(CN)6 the OsVI.FeII complex reacts with unchanged diols in the glycogen, whereas the OsO4 in the combination OsO 4 K 4Fe(CN)6 can petentially create carboxyl groups in the aldehydefixed glycogen.The addition of urea to the two glycogen contrasting combinations (K2OsO 4 K 4Fe(CN)6 or OsO 4 K 4Fe(CN)6), also emphasizes that, although morphologically both combinations produceidentical contrast stained glycogen, chemically the contrast staining is apparently obtained in a different way, as urea prevented the contrast for mation in the glycogen by the combination K2OsO 4 K 4Fe(CN)6, but not by the combination OsO 4 K 3Fe(CN)6.  相似文献   

18.
19.
HbA O2 reacts readily with FeII(CN)5H2O3? to form aquometHb and peroxide via a second order process: rate=k[HbO2][FeII(CN)5H2O3?]. A slight enchancement in the rate of metHb formation due to the H2O2 produced can be prevented by addition of catalase. The reaction is free from complications exhibited by other reductants. The hexacyanide, ferrocyanide, reacts with HbA O2 but at only ca. 0.02% the rate and with formation of cyanometHb. Reductants such as phenols and sulfa drugs may produce radicals that can enter into side reactions. FeII(CN)5H2O3? shows promise as an effective probing reagent for the characterization of H2O2 production from oxygenated heme and other proteins.  相似文献   

20.
The tartaric acid (H4L), serving as versatile tectons, link CuII atoms with three different bridging modes to form a unique double-bowed nanosized Cu10-assembly, namely, [CuII10(H2L)4(HL)4]·(apy)8·13H2O (1) (apy = 2-aminopyridine). Single-crystal analysis reveals that the nano-cluster is composed of two bow-shaped pentameric subunits joined together by carboxyl O bridges, in which eight CuII atoms are in distorted octahedral site, while the other two CuII atoms display the square-pyramidal geometries. Interestingly, such decanuclear SUBs are connected by (12) H-bonding rings into a 3D α-Po network. Magnetic studies show an antiferromagnetic interaction between CuII centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号