首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of the heterobimetallic platinum(II)-palladium(II) complexes with poly fluorinated benzenethiolates as intermetallic bridges, [(dppe)Pd(μ-SRF)2Pt(dppe)](SO3CF3)2 with SRp-SC6F4(CF3) (1), SC6F5 (2), p-SC6HF4 (3) and o-SC6H4(CF3) (4), have been accomplished either by a redistribution reaction in mixtures of the homonuclear bimetallic species, [(dppe)Pd(μ-SRF)2Pd(dppe)]2+/[(dppe)Pt(μ-SRF)2Pt(dppe)]2+ or by assembling the monometallic building blocks [(dppe)M(μ-SRF)2]/[(dppe)M′(solvent)2]2+, M, M′ = Pd or Pt. Both experimental systems reach an equilibrium state which is independent of the temperature within the probed range, −90 °C to +50 °C. A single crystal of the heterobimetallic compound [(dppe)Pd(μ-SC6F5)2Pt(dppe)](SO3CF3)2(acetone)2 (2) was isolated and analyzed by X-ray diffraction. Comparison with the corresponding structures exhibited by the homobimetallic analogous, [Pd2(μ-SC6F5)2(dppe)2](SO3CF3)2(acetone)2 (5) and [Pt2(μ-SC6F5)2(dppe)2](SO3CF3)2(acetone)2 (6) shows that all three structures are isostructural in space group . All three compounds exhibit a centrosymmetric planar [M2(μ-S)2] ring in which the sulfur substituents are arranged in an anti configuration.  相似文献   

2.
The electrochemical behavior of the Pt(II)-based Baeyer-Villiger catalysts of the general formulae [Pt(μ-OH)(PP)]2(BF4)2 (PP = dppe (1a), 2Fdppe (1 b), 4Fdppe (1c), dfppe (1d), dmpe (1e), depe (1f), dippe (1g), dtbpe (1h)) and [Pt(OH2)2(PP)](OTf)2 (PP = dppe (2a), 2Fdppe (2b), 4Fdppe (2c), dfppe (2d)) is reported. They exhibit irreversible reduction processes whose potentials reflect the Lewis acidity of the metal centres, showing (for the aromatic diphosphine complexes) overall relations with the number of fluorine atoms, with JPt-P, with the ν(CN) coordination shift of a ligand isocyanide probe and with the catalytic activity. Single-crystal X-ray diffraction analyses were carried out for [Pt(μ-OH)(4Fdppe)]2(BF4)2 (1c) and [Pt(μ-OH) (dippe)]2(BF4)2 (1g).  相似文献   

3.
Reaction of the complex [Pt(η2-CS2)(dppe)] [dppe=1,2-bis(diphenylphosphino)ethane] with excess methyl iodide results in the formation in high yield of the dimeric complex [(dppe)IPt(μ-C(S)SC(SMe)2)Pt(dppe)]+I·C7H8·Et2O, the crystal structure of which has been determined. Crystals of the complex are monoclinic, space group P21/c, with Z=4, in a unit cell with lattice parameters a=21.082(4), b=17.304(3), c=21.423(3) Å, and β=116.62(1)°. The structure has been refined to R1=0.054 (R2=0.059) for 4512 unique data and 333 variables. The complex consists of two distorted square-planar Pt fragments which are held together by a novel bridging CS2C(SMe)2 group. The complex has been independently prepared by the reaction of [Pt(η2-CS2)(dppe)] with the carbene complex [Pt(I)(dppe){C(SMe)2}]+I, and has been further characterized by elemental analysis, 1H, 31P{1H} NMR, IR spectroscopy, and conductivity measurements.  相似文献   

4.
The interaction of an excess of the title ligands L with the cis-Pt(phos)2 moieties gives compounds a-bcis-[Pt(L-O)2(phos)2] (a, phos = P(Ph)3; b, phos = 1/2 dppe), in which O- is preferred to S-coordination. Such preference is confirmed by the fact that the same products are obtained by reaction of excess of L with the previously reported a-d complexes [Pt(L-O,S)(phos)2]+, (c, phos = PPh3, d, phos = 1/2 dppe), for which chelate ring opening occurs with rupture of Pt-S rather than Pt-O bonds. Compound a can be obtained also by oxidative addition of HL to [Pt(PPh3)3]. The Pt-O bonds in compounds a-d are stable towards substitution by Me2SO, pyridine and tetramethylthiourea. Substitution of L’s occurs with N,N′-diethyldithiocarbamate, which forms a very stable chelate with Pt(II). Thiourea and N,N′-dimethylthiourea also react, because they give rise to cyclometallated products [Pt(phos)2(NRC(S)NHR)]+ (R = H, CH3), with one ionised thioamido group, as revealed by an X-ray investigation of [Pt(PPh3)2(NHC(S)NH2)]+. The preference of O versus S coordination, as well as the stability of the Pt-O bonds, are discussed in terms of antisymbiosis.  相似文献   

5.
A variety of platinum(II) complexes of methimazole (2-mercapto-1-methylimidazole; HImS = neutral form and ImS = thiolate form), coordinated in both thione and thiolate forms, have been isolated by reacting methimazole with [PtCl(terpy)]Cl (terpy = 2,2′:6′,2″ terpyridine), [PtCl2(bipy)] (bipy = bipyridine), [PtCl2(o-phen)] (o-phen = o-phenanthroline), [PtCl2(CH3CN)2] and [PtCl2(COD)] (COD = 1,5-cyclooctadiene). These complexes were characterized by electronic absorption, IR and NMR (1H, 13C, 195Pt) spectroscopies. Molecular structure of [Pt(bipy)(HImS)2]Cl2·3H2O (3a·3H2O) has been established by single crystal X-ray crystallography. Platinum thiolate complex, [Pt(ImS)2(HImS)2] (5), could be obtained by treatment of [Pt(HImS)4]Cl2 with sodium methoxide in methanol. The solution of 5 in organic solvents yielded bi- and tri-nuclear platinum complexes. The effect of diimine ligands on oxidation of methimazole moiety in the complexes has been studied by electrochemical oxidation and pulse radiolytic oxidation employing specific one-electron oxidant, radical.  相似文献   

6.
The Pt(II) and Pt(IV) complexes with histamine were calculated by using more than 20 DFT functionals and various basis sets. Based on the comparison between the X-ray and theoretical geometrical parameters of the Pt(II)(Hist)Cl2 complex the MPW1PW91, OPW91 and SVWN5 functionals combined with the 6-311G∗∗ basis set for non-metallic and SDD (ECP) basis set for platinum were found to yield the most satisfactory agreement. The structure of the Pt(II) complex with iodohistamine important for pharmacy, so far isolated only in minute amounts, was predicted by using the MPW1PW91 functional. Comparison of the theoretical NMR chemical shifts of the Pt(II)(Hist)Cl2 complex with those found experimentally have shown that the theoretical 1H and 13C NMR chemical shifts are in plausible agreement with the experimental ones, whereas the theoretical 195Pt chemical shifts fit the experimental values only when the relativistic approach is applied within the ZORA formalism. We confirmed suitability of the three selected functionals for reproduction of the experimental structure of Pt complexes at fourth oxidation state by using the cis- and ions as models. Finally, with the selected theoretical methods, the structures and stabilities of four Pt(IV)(Hist)2Cl2 complex isomers were predicted.  相似文献   

7.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

8.
Complexes of the type [Pt(amine)4]I2 were synthesized and characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The compounds were prepared with different primary amines, but not with bulky amines, due to steric hindrance. In 195Pt NMR, the signals were observed between −2715 and −2769 ppm in D2O. The coupling constant 3J(195Pt-1H) for the MeNH2 complex is 42 Hz. In 13C NMR, the average values of the coupling constants 2J(195Pt-13C) and 3J(195Pt-13C) are 18 and 30 Hz, respectively. The crystal structure of [Pt(EtNH2)4]I2 was determined by X-ray diffraction methods. The Pt atom is located on an inversion center. The structure is stabilized by H-bonding between the amines and the iodide ions. The compound with n-BuNH2 was found by crystallographic methods to be [Pt(n-BuNH2)4]2I3(n-BuNHCOO). The crystal contains two independent [Pt(CH3NH2)4]2+ cations, three iodide ions and a carbamate ion formed from the reaction of butylamine with CO2 from the air. When the compound [Pt(CH3NH2)4]I2 was dissolved in acetone, crystals identified as trans-[Pt(CH3NH2)2(H3CNC(CH3)2)2]I2 were isolated and characterized by crystallographic methods. Two trans bonded MeNH2 ligands had reacted with acetone to produce the two N-bonded Schiff base Pt(II) compound.  相似文献   

9.
Reaction between the binuclear hydroxo complex cis-[(PPh3)2Pt(μ-OH)]2X2 (X = NO3, 1a; , 1b) and the model DNA base 9-methyladenine (9-MeAd) leads to the formation of the mononuclear species cis-[(PPh3)2Pt{9-MeAd(-H),N6N7}]X (X = NO3, 2a; PF6, 2b), in which the nucleobase chelates the Pt(II) ion with the N6 and N7 atoms. The coordination mode of the nucleobase has been determinated through a multinuclear (1H, 31P, 13C, 15N and 195Pt) NMR analysis and the nuclearity of the complex has been obtained by E.S.I. mass spectrometry. 2 represents the first example of an isolated platinum complex in which the NH2-deprotonated adenine exhibits this binding mode.  相似文献   

10.
The synthesis and characterisation of [Pt{4′-(Np1)-trpy}(CCPh)]SbF6 (1) and [Pt{4′-(Np1)-trpy}{CC(CH2)2CH3}]SbF6 (2) [4′-(Np1)-trpy = 4′-(1-naphthyl)-2,2:6′,2′-terpyridine] are described. Complexes 1 and 2 exhibit unimolecular 3MLCT (MLCT = metal-to-ligand charge transfer) emission in acetonitrile and in a low concentration 77 K glass solution in butyronitrile. The high concentration glass emission as well as the emission in the solid state is from a 3MMLCT (MMLCT, metal-metal-to-ligand charge transfer) excited state, reflecting the presence of interactions in these media.  相似文献   

11.
The synthesis and structural characterization of series of copper and silver homoleptic complexes [M(R-pyX)], M = Cu, Ag, X = S, Se; R = H, 3-CF3, 5-CF3 (not all combinations), is described. The copper compounds, as well as [Ag(pySe)] and [Ag(3-CF3-pySe)], were synthesised by electrochemical oxidation of anodic metal in a cell containing an acetonitrile solution of the corresponding proligand. The other homoleptic silver complexes were obtained by direct reaction between AgNO3 and the salt of the corresponding ligand in methanol. In addition, the reaction of the metal thiolate compounds with bis(diphenylphosphino)ethane (dppe) in acetone allowed the synthesis of heteroleptic compounds [M2(R-pyX)2(dppe)3]. The compounds obtained have been characterized by microanalysis, IR spectroscopy and mass spectrometry and, in cases where the complexes were sufficiently soluble, by 1H NMR spectroscopy. The proligands (3-CF3pySe)2 (1), (5-CF3-pySe)2 (2) and (5-CF3-pySe-DMF) (3) and the complexes [Cu(3-CF3-pyS)] (4), [Ag(3-CF3-pyS)] (5) and [Cu2(5-CF3-pyS)2(dppe)3] (6) were obtained as crystalline products and were studied by X-ray diffraction methods.  相似文献   

12.
The metal-mediated coupling between the nitriles RCN in the platinum(IV) complexes trans-[PtCl4(RCN)2] (RMe, Et, CH2Ph, Ph), cis/trans-[PtCl4(MeCN)(Me2SO)] and the newly synthesized bifunctional oximehydroxamic acid, viz. N,2-dihydroxy-5-(1-hydroxyiminoethyl)benzamide, proceeds smoothly in CH2Cl2 at 40-45 °C to accomplish the new metallaligands HNC(R)ONHC(O)C6H3(2-OH)(5-C(Me)NOH) with pendant oxime functionalities due to the regioselective addition of the reagent via its hydroxamic groups. The obtained iminoligands exist in hydroxamic/hydroximic tautomeric equilibrium in solution. The structures of the isolated compounds are based on elemental analyses (C, H, N), IR, 1D 1H, 13C{1H}, and 2D NMR correlation experiments, i.e. 1H,13C-COSY, 1H,13C long range COSY, 1H,15N-COSY, and 1H,15N long range COSY.  相似文献   

13.
Iron (II) and iron (III) complexes, [FeII(DEDTC)2(dppe)] · CH2Cl2 (1), [FeII(ETXANT)2(dppe)] (2) (DEDTC = diethyldithiocarbamate, ETXANT = ethyl xanthate, dppe = 1,2-bis (diphenylphosphino) ethane), and [FeIII(DEDTC)2(dppe)] [FeIIICl4] (3) have been synthesized and characterized. Since 3 contains two magnetic centers, an anion metathesis reaction has been conducted to replace the tetrahedral FeCl4 by a non-magnetic BPh4 ion producing [FeIII(DEDTC)2(dppe)]BPh4 (4) for the sake of unequivocal understanding of the magnetic behavior of the cation of 3. With the similar end in view, the well-known FeCl4 ion, the counter anion of 3, is trapped as PPh4[FeIIICl4] (5) and its magnetic property from 298 to 2 K has been studied. Besides the spectroscopic (IR, UV-Vis, NMR, EPR, Mass and XPS) characterization of the appropriate compounds, especially 2, others viz. 1, 3 and 4 have been structurally characterized by X-ray crystallography. While FeII complexes, 1 and 2, are diamagnetic, the FeIII systems, namely the cations of 3, and 4 behave as low-spin (S = 1/2) paramagnetic species from 298 to 50 K. Below 50 K 3 shows gradual increase of χMT up to 2 K suggesting ferromagnetic behavior while 4 exhibits gradual decrease of magnetic moment from 60 to 2 K, indicating the occurrence of weak antiferromagnetic interaction. These conclusions are supported by the Mössbauer studies of 3 and 4. The Mössbauer pattern of 1 exhibits a doublet site for diamagnetic (2-400 K) FeII. The compounds 1, 2 and 4 encompass interesting cyclic voltammetric responses involving FeII, FeIII and FeIV.  相似文献   

14.
Reaction of the ligands 3-phenyl-5-(2-pyridyl)pyrazole (HL1), 3,5-bis(2-pyridyl)pyrazole (HL2), 3-methyl-5-(2-pyridyl)pyrazole (HL3) and 3-methyl-5-phenylpyrazole (HL4) with [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) or [PdCl2(cod)] gives complexes with stoichiometry [PdCl2(HL)2] (HL = HL1, HL2, HL3), [Pt(L)2] (L = L1, L2, L3) and [MCl2(HL4)2] (M = Pd(II), Pt(II)). The new complexes were characterised by elemental analyses, conductivity measurements, infrared and 1H NMR spectroscopies. The crystal and molecular structure of [PdCl2(HL1)] was resolved by X-ray diffraction, and consists of monomeric cis-[PdCl2(HL1)] molecules. The palladium centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated metal atom is bonded to one pyridine nitrogen, one pyrazolic nitrogen and two chloro ligands in a cis disposition. The ligand HL1 is not completely planar.  相似文献   

15.
The reaction of the N-alkylaminopyrazole (NN′) ligands 1-[2-(ethylamino)ethyl]-3,5-dimethylpyrazole (deae), 1-[2-(tert-butylamino)ethyl]-3,5-dimethylpyrazole (deat), or (NNN) ligands bis[(3,5-dimethylpyrazolyl)methyl]ethylamine (bdmae) and bis[(3,5-dimethylpyrazolyl)ethyl]ethylamine (ddae) with [PtCl2(CH3CN)2] affords a series of square-planar Pt(II) complexes with formula [PtCl2(NN′)] (NN′ = deae (1); deat (2)), [PtCl2(bdmae)] (3), or [PtCl(ddae)]Cl (4). Treatment of complex 4 in the presence of AgBF4 in CH2Cl2/methanol (3:1) gives [PtCl(ddae)](BF4) (5). These Pt(II) complexes have been characterised by elemental analyses, conductivity measurements and IR, 1H, 13C{1H}, and 195Pt{1H} NMR spectroscopies. The 1H NMR spectroscopic studies of the complexes prove the rigid conformation of the ligands when they are complexed. The solid-state structure of complex 1 was determined by single crystal X-ray diffraction methods. The deae ligand is coordinated through the Npz and Namino atoms to the metallic centre, which completes its coordination with two chlorine atoms in cis disposition.  相似文献   

16.
We describe the synthesis, structure and reactivity of novel bis(1-alkenyl)platinum(II) complexes, Pt[CH2(CH2)nCHCH2]2L2 (where L2 = dppp, dppe, dppm and n = 1, 2). The stability of the title complexes with the different ligands is discussed. The steric, chelating and electronic properties of the ligands have a significant impact on the structure as well as on the reactivity of the complexes. Novel reactions with elemental sulfur and carbon dioxide are described and discussed.  相似文献   

17.
The novel cis-platinum(II) complexes [(dppe)Pt(μ-OH)]2(BF4)2 and [(dppe)Pt(DMF)2](BF4)2 have been prepared and characterized by 31P NMR, together with cis-[(dppe)Pt(μ-Cl)]2(BF4)2, both in poorly and strongly coordinating solvents (dppe = 1,2-bis(diphenylphosphino)ethane). All these complexes and their dppf analogs (dppf = 1,1′-bis(diphenylphosphino)ferrocene) as well as (dppf)PtCl2, (dppe)PtCl2, (dppf)PdCl2, [(dppf)Pd(μ-Cl)]2(BF4)2 and [(dppf)Pd(μ-OH)]2(BF4)2 have been tested as antiproliferating agents towards Eagle's KB cell-line. Their activity is compared with that of free diphosphine ligands. For Pt(II) complexes, the ID50 figures are found to be higher than those observed for free dppf and dppe. On the contrary, the activity of the palladium dppf complexes is substantially identical to that of free diphosphine.  相似文献   

18.
A complex containing a protonated and N3-platinated cytosine (C), [CH][Cl3Pt(C)] (1a) has been prepared, converted into its K[Cl3Pt(C)] (1b) and NH4[Cl3]Pt(C)]·H2O (1c) analogs, and structurally characterized (X-ray, Raman, NMR). Reaction of 1b with L = 1-methylcytosine and with L = Me2SO gave the neutral mixed-ligand complexes cis-Cl2Pt(C)L. Excess NH3 was used to convert the anion of 1b into the cation [(NH3)3Pt(C)]2+ (3a). The pKa of the N(1)H proton in 3a is 9.4, as determined by UV spectroscopy. The N(1)H is displaced by Pt(II) electrophiles even at neutral pH to give N3,N1-diplatinated cytosinato complexes, as shown by 1H NMR (3J coupling or 195Pt at N(1) with H6, 29 Hz, and 4J coupling of 195Pt at N(3) with H5, 14Hz). The results of the X-ray structure determination of 1a (R = 0.031, Rw = 0.034) are of relevance in that they permit a direct comparison of the effect of a proton as opposed to that of a Pt electrophile on the nucleobase geometry. Moreover, the expected decrease in CO(2) bond length as a consequence of Pt binding is observed.  相似文献   

19.
Treatment of MCl2(PP) or MCl2(PnPr3)2 with two equivalents of ArCOSeK readily yields cis-[M(SeCOAr)2(PP)] and trans-[M(SeCOAr)2(PnPr3)2], respectively (M = Pd or Pt; Ar = Ph or 4-MeC6H4; PP = dppm, dppe, dppp). The reaction of Pd(SeCOAr)2(dppe) with PdCl2(dppe) in the presence of NaBPh4 in methanol gave a tri-nuclear ionic complex, [Pd33-Se)2(dppe)3][BPh4]2. These complexes were characterized by UV-Vis, IR and NMR spectroscopy. The complex [Pt(SeCOPh)2(dppp)] has been structurally characterized by X-ray crystallography. The coordination environment around square planar platinum atom is defined by chelating dppp ligand and two unidentate selenocarboxylates bonded through selenium atoms. Pyrolysis of [Pd(SeCOAr)2(PnPr3)2] either in tri-n-butylphosphate (TBP) (at 200 °C) or in the solid state (furnace heating at 350 °C) gave Pd17Se15.  相似文献   

20.
The 16-electron, coordinatively unsaturated, dicationic ruthenium complex [Ru(P(OH)2(OMe))(dppe)2][OTf]2 (1a) brings about the heterolysis of the C-H bond in phenylacetylene to afford the phenylacetylide complex trans-[Ru(CCPh)(P(OH)2(OMe))(dppe)2][OTf] (2). The phenylacetylide complex undergoes hydrogenation to give a ruthenium hydride complex trans-[Ru(H)(P(OH)2(OMe))(dppe)2][OTf] (3) and phenylacetylene via the addition of H2 across the Ru-C bond. The 16-electron complex also reacts with HSiCl3 quite vigorously to yield a chloride complex trans-[Ru(Cl)(P(OH)2(OMe))(dppe)2][OTf] (4). On the other hand, the other coordinatively unsaturated ruthenium complex [Ru(P(OH)3)(dppe)2][OTf]2 (1b) reacts with a base N-benzylideneaniline to afford a phosphonate complex [Ru(P(O)(OH)2)(dppe)2][OTf] (5) via the abstraction of one of the protons of the P(OH)3 ligand by the base. The phenylacetylide, chloride, and the phosphonate complexes have been structurally characterized. The phosphonate complex reacts with H2 to afford the corresponding dihydrogen complex trans-[Ru(η2-H2)(P(O)(OH)2)(dppe)2][OTf] (5-H2). The intact nature of the H-H bond in this species was established using variable temperature 1H spin-lattice relaxation time measurements and the observation of a significant J(H,D) coupling in the HD isotopomer trans-[Ru(η2-HD)(P(O)(OH)2)(dppe)2][OTf] (5-HD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号