首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1988,142(2):315-320
A new series of dibenzylsulfoxide (DBSO) compounds of empirical formula [Ln(DBSO)x(NO3)3] are reported, where x = 3 for Ln = Pr; x = 2.5 for Ln = Nd, Sm, Eu, Gd, Er and La; and x=2 for Ln = Dy. The compounds were synthesized from a non-aqueous solvent and isolated as dibenzylsulfoxide salts. Infrared spectral data established coordination by the anion groups and also that coordination of DBSO is through the oxygen. Additional information based on the nature of bonding and geometrical structure was obtained from the electronic absorption spectra, X-ray diffraction analysis, molecular conductivities and molecular weight measurements (as well as magnetic susceptibility measurements). All these physical measurements indicate octahedral coordination. The 20% decrease in the metal ion radius across the lanthanide series and the competition between DBSO and nitrate groups for the coordination site affect the number of DBSO molecules bonded to a tripositive lanthanide ion.  相似文献   

2.
《Inorganica chimica acta》1987,126(1):125-129
Lanthanide chlorides form adducts of the type [Ln(L)nCl3] (where Ln = La, Pr, Nd, Sm, Eu, when n = 6; and Ln = Gd, Tb, Dy or Yb when n = 5; and L = (EtO)2P(O)H or (PriO)2P(O)H upon interacting with the diethyl and diisopropyl phosphites in dry ethyl and isopropyl alcohol, respectively. Complexes were recrystallised from ethanol or isopropanol and washed with n-hexane. On the basis of elemental analysis, infrared, 1H NMR and 31P NMR spectral studies, it is concluded that these phosphites coordinate to the lanthanide metal atom through the oxygen atom which has the greatest affinity for lanthanides in these adducts.  相似文献   

3.
New solid complex compounds of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) ions with morin were synthesized. The molecular formula of the complexes is Ln(C15H9O7)3 · nH2O, where Ln is the cation of lanthanide and n = 6 for La(III), Sm(III), Gd(III) or n = 8 for Ce(III), Pr(III), Nd(III) and Eu(III). Thermogravimetric studies and the values of dehydration enthalpy indicate that water occurring in the compounds is not present in the inner coordination sphere of the complex. The structure of the complexes was determined on the basis of UV-visible, IR, MS, 1H NMR and 13C NMR analyses. It was found that in binding the lanthanide ions the following groups of morin take part: 3OH and 4CO in the case of complexes of La, Pr, Nd, Sm and Eu, or 5OH and 4CO in the case of complexes of Ce and Gd. The complexes are five- and six-membered chelate compounds.  相似文献   

4.
Five lanthanide coordination polymers with composition {[Ln(pzdc)1.5(H2O)3] · 0.5H2O}, (Ln = Pr, 1; Nd, 2; Sm, 3; Eu, 4; Gd, 5; pzdc = 2,5-pyrazinedicarboxylate), have been synthesized by reacting Ln(NO3)3 · 6H2O with 2,5-pyrazinedicarboxylic acid under hydrothermal condition in the absence of additional base and characterized by elemental analysis, IR spectra and TG analysis, as well as single-crystal X-ray diffraction. They crystallize isostructurally in the triclinic space group P-1 and the cell parameters agree with the ionic radii of the Ln(III) ions. Each trivalent rare earth ion is nine coordinate in an N2O7 environment. The ligand 2,5-pyrazinedicarboxylate adopts three coordination modes, through which the lanthanide ions are linked together to form an infinite three dimensional structure. A 1D channel exists along the (1 0 0) direction which accommodates uncoordinated water by hydrogen bonds. Heating of 4 at 120 °C evacuated the uncoordinated water while retaining its single crystallinity with only minor change in cell parameters (crystal 6, [Eu(pzdc)1.5(H2O)3]). This hydrophilic ultramicroporous channel is selective to accommodate water only among common solvents, which has some potential interest for solvent separation.  相似文献   

5.
Reactions of N,N′‐bis (salicylidene)‐1,2‐cyclohexanediamine (H2L) with mixed lanthanide counterions of LnCl3·6H2O and Ln (NO3)3·6H2O afford six H2L lanthanide coordination polymers, e.g. {[Pr(H2L)2(NO3)2Cl]·2CH2Cl2}n ( 1 ); {[Ln(H2L)1.5(NO3)3]2·5CHCl3·mCH3OH}n [Ln = Sm ( 2 ), Eu ( 3 ), Gd ( 4 ), Tb ( 5 ) and Yb ( 6 ); m = 1 ( 2 – 5 ); m = 0 ( 6 )]. X‐ray crystallographic analysis reveals that complex 1 exhibits three‐dimensional diamondoid topologic structure and complexes 2 – 6 are of two‐dimensional structure. Luminescent spectra show that complexes 1 and 6 have characteristic near‐infrared (NIR) emission of praseodymium (III) and ytterbium (III) ions and complexes 2 – 5 emit luminescence in the visible region. Complexes 3 and 6 reveal sensitive luminescence responses to formaldehyde.  相似文献   

6.
《Inorganica chimica acta》1988,147(2):265-274
Trifunctional dialkyl [1,2-bis(diethylcarbamoyl)- ethyl] phosphonates, (RO)2P(O)CH[C(O)N(C2H5)2]- [CH2C(O)N(C2H5)2] R  CH3, C2H5, i-C3H7, n-C6H13 were prepared from the respective sodium salts, Na[(RO)2P(O)CHC(O)N(C2H5)2] and N,N- diethylchloroacetamide, and they were characterized by elemental analysis, mass, infrared and NMR spectroscopy. The molecular structure of (i-C3H7O)2- P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2] was determined by single crystal X-ray diffraction analysis and found to crystallize in the monoclinic space group P21/c with a=15.589(6), b=9.783(4), c= 16.283(7) Å, β = 110.90(3)°, Z = 4 and V= 2320(2) Å3. The structure was solved by direct methods and blocked least-squares refinement converged with Rf = 5.7% and RwF= 4.4% on 2266 unique data with F>4σ(F). Important bond distances include PO 1.459(3) Å, CHCO 1.228(3) Å and CHCH2CO 1.223(3) Å. The coordination chemistry of the ligand with several lanthanides was examined, and the structure of the complex Gd(NO3)3{[(i-C3H7O)2P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2]}2·H2O was determined. The complex crystallized in the monoclinic space group P21/n with a = 13.524(5), b = 22.033(4), c = 19.604(4) Å β = 106.22(2)°, Z = 4 and V= 5609(3) Å3. The structure was solved by heavy atom techniques and blocked least-squares refinement converged with RF = 5.9% and RwF = 4.1% on 5275 reflections with F > 4σ(F). Both trifunctional ligands were found to bond to Gd(III) through only the phosphoryl oxygen atoms. The remainder of the Gd coordination sphere was composed of three bidentate nitrate oxygen atoms and an oxygen bonded water molecule. Several important bond distances include GdO(phosphoryl)av = 2.343(5) Å, GdO(nitrate)av = 2.475(7) Å, GdO(water) = 2.354(5) Å, PO(phosphoryl)av = 1.467(6) Å, CHCOav = 1.242(10) Å and CHCH2COav = 1.209(11) Å.  相似文献   

7.
Naphthalene-1-acetic acid (HNAA), dichlorophenoxy acetic acid (HDAA), and indole-3-acetic acid (HIAA) are auxinhormones that can affect the growth of plants. The lanthanide complexes of the above auxinhormone LnA3-3H2O (Ln = La3+, Ce3+, Sm3+, Er3+, Yb3+; HA = HNAA, HDAA, HIAA; A = NAA-, DAA-, IAA-) were synthesized and are characterized in this paper. The solubility and IR spectra of these complexes were also studied. Experiments of the effects of LnCl3-nH2O, HA, and LnA3-3H2O on the growth rate of wheat coleoptile sections show, that LnCl3-nH2O promotes the growth of wheat coleoptile when this compounds concentration is lower than 2 x 10-5 M and the promotion is very significant when the concentration of Ln3+ is lower than 8 x 10-6 M. It was also found that the effect of LnA3· 3H2O on the growth of wheat coleoptile is stronger than that of LnCl3·nH2O and HA, which indicates that the combination of Ln3+ with HA act synergistically.  相似文献   

8.
《Inorganica chimica acta》1988,145(1):157-161
By reacting aquobis(1,2-naphthoquinone 1-oximato)copper(II) [Cu(nqo)2·H2O] with lanthanide chlorides, new heteropolynuclear complexes containing both CuII and LnIII (LnIII = LaIII, NdIII) were obtained. The compounds have been characterized by elemental and thermogravimetric analysis, electron microprobe analysis, and electronic and vibrational spectral data. A different CuII complex, containing nqo ligands and ionic perchlorate but no lanthanide ions, was obtained by reaction of Cu(nqo)2·H2O with lanthanide perchlorates.  相似文献   

9.
The reaction between hydrated lanthanide bromides and triphenylphosphine oxide in 1:3 and 1:4 ratios in ethanol gave a series of complexes [LnBr2(Ph3PO)4]Br (Ln = Pr, Nd, Gd, Tb, Er, Yb, Lu) which contain ethanol and water in the lattice, regardless of the ratio of reactants used. The single crystal X-ray structures of [NdBr2(Ph3PO)4]Br, [GdBr2(Ph3PO)4]Br and [YbBr2(Ph3PO)4]Br have been determined and have an octahedral geometry about the metal ion. Analysis of the bond distances shows that the Ln-O and Ln-Br distances change in accord with the lanthanide contraction, but the non-bonded Ln?P distances and the Ln-O-P angles differ significantly for the Yb complex. Conductivity and variable temperature 31P NMR measurements in dichloromethane indicate that the complexes dissolve as [LnBr2(Ph3PO)4]+ for the lighter lanthanides with further ionisation becoming progressively more important for the heavier metals. In methanol more extensive dissociation is apparent. The electrospray mass spectra obtained from methanol solution show [LnBr2(Ph3PO)4]+ is present in high abundance in the gas phase with other species formed due to ligand redistribution, ionisation and solvolysis.  相似文献   

10.
The apparent molal volumes of the complexes KLnedta (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er and Yb), KCoedta and KCredta were determined from density measurements. The apparent molal volumes of the complexes KLnedta show a non-monotonous change with increasing atomic number; there is a significant increase in the values between Nd and Gd. To explain the observed trend, a structural change is postulated to take place gradually on progressing from Gd towards La. With increasing ionic size, there is an increase in the metal-ligand bond distances and in the mobility of the functional groups, resulting in a jump in the number of coordinated water molecules by one between Gd and Nd. There is a further increase in the hydration of the central ions, connected with the gradual de-coordination of a carboxylate group. As a result of the gradual structural change there is one free carboxylate group on average in Laedta? and about four water molecules are coordinated in the inner sphere, while in the complexes of the elements heavier than Gd the ligand is hexadentate and only two water molecules are in the inner sphere. The apparent molal volumes of KCoedta and KCredta are practically equal and are higher than those of the lanthanide complexes; this has been explained by the stronger hydration and the more significant water-ordering effect of the Ln3+ ions coordinated in the complexes Lnedta?.The postulated structural changes correlate with the trend of the protonation constant values, as well as with the results of 1H NMR studies on the complexes Lnedta?.  相似文献   

11.
《Inorganica chimica acta》2006,359(5):1589-1593
Hydrothermal reactions of Gd(III) nitrate with N,N,N′,N′-tetramethylenephosphono-1,4-diaminobutane, (H2O3PCH2)2N–(CH2)4–N(CH2PO3H2)2 (H8L), afforded a novel Gd(III) phosphonate, namely, Gd[(O3PCH2)(HO3PCH2)N(H)(CH2)4N(H)(CH2PO3H)2] · 2H2O, [Gd(H5L)] · 2H2O. Its structure was established by a single-crystal X-ray diffraction study. In this compound, the Gd(III) ion is coordinated by eight phoshonate oxygen atoms from five different phosphonate groups, which belong to five different phosphonic ligands. Each Gd atom is connected with its neighboring Gd atoms by two phosphonate oxygens, forming a gadolinium phosphonate slab along the a-axis. Such slabs are bridged by tetraphosphonate H5L anions, resulting in a 〈0 1 1〉 layer with the butane groups toward the interlayer space. These layers are further interlinked by strong hydrogen bonds formed by uncoordinated phosphonate oxygens into a 3D supermolecular structure. Luminescent studies indicate that this compound exhibits a broad blue fluorescent emission band at 441 nm.  相似文献   

12.
Some new dimethoxyethane (DME) adducts of lanthanide trichlorides of formula [LnCl3(DME)2]n, n=1 or 2; (n=2, Ln=La, Ce, Pr, Nd; n=1, Ln=Eu, Tb, Ho, Tm, Lu) have been prepared by treating Ln2O3, or LnCl3 · nH2O, or Ln2(CO3)3, in DME as medium, with thionyl chloride at room temperature, eventually in the presence of water in the case of Ln2O3 and Ln2(CO3)3. The complexes from lanthanum to praseodymium included are chloro-bridged dimers. In the case of neodymium, the new results complement the literature data, showing that both the mononuclear and dinuclear species exist: neodymium can therefore be regarded as the turning element from dinuclear to mononuclear structures along the series. Only mononuclear complexes were isolated in the Eu-Lu sequence. The lanthanide contraction has been evaluated on the basis of the Ln-O and Ln-Cl bond distances on the isotypical series of the mononuclear complexes LnCl3(DME)2 covering a range of 12 atomic numbers.  相似文献   

13.
Six lanthanide two-dimensional network coordination polymers with the general formula of [Ln(pmida)(NO3)(H2O)]n, where Ln = La (1), Nd (2), Sm (3), Gd (4), Dy (5), Er (6) and pmida2− = N-(2-pyridylmethyl)iminodiacetate, have been synthesized by hydrothermal process and characterized by elemental analysis, Infrared spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction. All crystals are isostructural and crystallize in the monoclinic space group P21/a. The lanthanide(III) ion is nine-coordinated in a geometry of distorted tricapped trigonal prism by two N atoms and two O atoms from one pmida2− ligand, two bridging carboxylate O atoms from other two pmida2− ligands, two O atoms of a bidentate chelating nitrate and a O atom of a coordinated water molecule. The luminescent properties of [Sm(pmida)(NO3)(H2O)]n (3) and [Dy(pmida)(NO3)(H2O)]n (5) were investigated.  相似文献   

14.
《Inorganica chimica acta》1987,130(1):131-137
The interaction of hydrated chloride salts of Gd3+ and Lu3+ with 15-crown-5 in a 1:3 mixture of CH3OH:CH3CN produces crystalline [M(OH2)8]Cl3· (15-crown-5) (M = Gd, Lu). The crystal and molecular structures of both complexes have been determined by single crystal X-ray diffraction. Both are isostructural with previously determined Y analog and crystallize in the monoclinic space group P21/n with Z = 4. Lattice parameters are a = 9.247(4), b = 17.312(5), c = 15.191(6) Å, β = 92.19(3)°, Dcalc = 1.72 g cm−3 for M = Gd and a = 9.150(1), b = 17.171(1), c = 15.217(1) Å, β = 92.64(1)°, Dcalc = 1.80 g cm−3 for M = Lu. Each complex was refined by least-squares to final conventional R values of 0.052 (M = Gd, 2932 observed [Fo⩾5σ(Fo) reflections) and 0.036 (M = Lu, 3313 observed reflections). The octaaquo M(III) ions exist as a distorted dodecahedron with average MOH2 separations of 2.41(4) Å (M = Gd) and 2.35(4) Å (M = Lu). The crown ether molecule is hydrogen bonded to metal coordinated water molecules to form polymeric chains along b. The remaining water molecule hydrogen atoms participate in hydrogen bonds with the chloride ions essentially in the ac plane. Two resolvable disordered crown ether conformations are observed with occupancies of 60%/40% (M = Gd) and 75%/25% (M = Lu).  相似文献   

15.
The complexes of lanthanide shift reagents (LSR) with permethylated aldo-hexopyranosides and their 6-deoxy analogues having the gluco, galacto, and manno configurations have been studied. On the basis of shift data from Eu(fod)3 and Pr(fod)3, and broadening data from Gd(fod)3, it was found that the LSR bind preferentially to two neighbouring MeO-oxygens having the axial-equatorial relationship. Because of its steric requirements, the C-5 substituent hinders the binding increasingly in the following order: O-2(ax)-O-3(eq)<O-1(ax)-O-2(eq)<O-4(ax)-O-3(eq). Equatorial groups bind the LSR only weakly. Strong binding to O-6 was found when MeO-6 is predominantly “axially” oriented; when this group has the “equatorial” position, O-6 is not favoured over any other equatorial oxygen. In view of the preference of the LSR to bind to an O(ax)-O(eq) site, it is proposed that O-5 is involved in the binding to the axial O-6. Eu(fod)3 seems to have less tendency to bind to the O-6(ax)-O-5 site than the other two LSR.  相似文献   

16.
With a novel asymmetric Schiff‐base zinc complex ZnL (H2L = N‐(3‐methoxysalicylidene)‐N′‐(5‐bromo‐3‐methoxysalicylidene)phenylene‐1,2‐diamine), obtained from phenylene‐1,2‐diamine, 3‐methoxysalicylaldehyde and 5‐bromo‐3‐methoxysalicylaldehyde, as the precursor, a series of heterobinuclear Zn‐Ln complexes [ZnLnL(NO3)3(CH3CN)] (Ln = La, 1; Ln = Nd, 2; Ln = Eu, 3; Ln = Gd, 4; Ln = Tb, 5; Ln = Er, 6; Ln = Yb, 7) were synthesized by the further reaction with Ln(NO3)3·6H2O, and characterized by Fourier transform‐infrared, fast atom bombardment mass spectroscopy and elemental analysis. Photophysical studies of these complexes show that the strong and characteristic near‐infrared luminescence of Nd3+, Yb3+and Er3+ with emissive lifetimes in the microsecond range has been sensitized from the excited state of the asymmetric Schiff‐base ligand due to effective intramolecular energy transfer; the other complexes do not show characteristic emission due to the energy gap between the chromophore and lanthanide ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
《Inorganica chimica acta》1988,144(2):269-273
Lanthanoid nitrates react with 1,7,10,16-tetraoxa- 4,13-diaza-N,N′-dimethylcyclooctadecane, Me2(2,2), to give complexes with two different metal:ligand ratios, 1:1 (Ln = La, Ce, Tb) and 4:3 (Ln = Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho). The complexes were isolated from anhydrous solutions in acetonitrile and characterized by elemental analysis, X-ray diffraction, magnetic susceptibility measurements and vibrational analysis.The La and Ce 1:1 complexes are non-ionic and probably 12-coordinated, with the metal ion bound to the six donor atoms of the ligand and to three bidentate nitrate ions. The 4:3 complexes are ionic; they contain three bis(nitrato) complex cations [Ln(NO3)2·Me2(2,2)]+ and one hexakis(nitrato) anion [Ln(NO3)6]3−. Spectroscopic data, including luminescence spectra, point to the 1:1 Tb-complex as being a 4:3 complex with an additional outer-sphere coordinated molecule of ligand.In solution, the 1:1 complexes remain essentially non-ionic, although some dissociation cannot be ruled out, whereas the 4:3 complexes behave as 2:1 (of even 3:1) electrolytes.  相似文献   

18.
《Inorganica chimica acta》1988,149(2):307-314
When slowly evaporated, the reaction of NdCl3· nH2O with 15-crown-5 in a 3:1 mixture of acetonitrile:methanol produces two crystalline hydrates. The decahydrate, [Nd(OH2)9]Cl3·15-crown-5·H2O, is orthorhombic, P212121, with (at −150 °C) a = 10.571(4), b = 15.220(7), c = 15.686(7) Å, and Dcalc = 1.71 g cm−3 for Z = 4. These crystals are stable to the moisture in air. Each Nd is nine-coordinate with tricapped trigonal prismatic geometry. The nine coordinated water molecules are hydrogen bonded to two symmetry related crown ethers, all three chloride ions, and the tenth water molecule. The crown has a total of six hydrogen bonds, four on one side (two to a single oxygen atom) and two on the other. This ether exhibits conformational disorder. The hexahydrate, [NdCl2(OH2)6]Cl·15-crown-5 is deliquescent, dissolving in air and recrystallizing as [NdCl2(OH2)6]Cl. Crystals of this complex are monoclinic, P21/n, with (at 20 °C) a = 9.821(3), b = 16.978(9), c = 12.849(8) Å, β = 94.06(5)°, and Dcalc = 1.80 g cm−3 for Z = 4. The Nd atom exists in a distorted dodecahedral geometry with one chlorine in an A site and one in a B site. The coordinated chlorine atoms accept hydrogen bonds producing polymeric zigzag hydrogen bonded chains along c. The third noncoordinated chloride ion accepts four hydrogen bonds, three from one formula unit and one from a second formula unit related by a unit translation along a. The crown ethers accept five hydrogen bonds, two on one side, and three on the other, thus separating the zigzag chains along b.  相似文献   

19.
20.
By reacting neodymium nitrate hexahydrate with the cryptand 〈222〉 in methanol, the complex Nd2-(NO3)6[C18H36O6N2]·H2O was obtained and analyzed by single-crystal X-ray diffraction. The cell is triclinic P1 with a = 14.870(2) Å, b = 13.261(2) Å, c = 8.832(1) Å, α = 91.2(1)°, β = 93.4(1)°, γ = 87.6(1)°, Z = 2 and U = 1736.6 Å3. The structure was refined by least-squares methods to the conventional R = 0.039 for 6177 observed reflections. The compound contains the cations [Nd〈222〉(NO3)]2+ and the anions [Nd(NO3)5·H2O]2?, and is isostructural with the samarium analogue. Solid state fluorescence spectra of the title complex were measured at room and liquid nitrogen temperature, and the transitions 4F3/24I9/2 and 4F3/24I11/2 analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号