首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inorganica chimica acta》1986,123(4):181-187
The compounds [(CH3Hg)AAdH]NO3 (1) and [(CH3Hg)AAd]·4H2O (2) have been isolated from aqueous 1:1 solutions of CH3HgOH and 8-azaadenine (AAdH) at respective pH values of 2 and 5. Their structures have been established by X-ray structural analysis. N9 is the metal binding site in both complexes. Alteration of the metal to ligand ratio to 2:1 at a pH of 5 allows the preparation of [(CH3Hg)2AAd]NO3·H2O (3) in which the base is coordinated at both N3 and N9. The compound [(CH3Hg)3AAdH−1]NO3 (4), in which N1, N6 and N9 function as binding sites for the CH3Hg+ cation, is formed in a 3:1 solution at a pH of 6.5. X-ray structural analyses have been performed on 3 and 4. N8 takes part in weak intermolecular secondary bonds to symmetry related Hg9 atoms in all four complexes. The relevance of the structures to an understanding of the basicities of the nitrogen atoms in 8-azaadenine and their alteration upon metal coordination of N9 and N6 is discussed.  相似文献   

2.
The interaction of guanine, guanosine or 5-GMP (guanosine 5-monophosphate) with [Pd(en)(H2O)2](NO3)2 and [Pd(dapol)(H2O)2](NO3)2, where en is ethylenediamine and dapol is 2-hydroxy-1,3-propanediamine, were studied by UV-Vis, pH titration and 1H NMR. The pH titration data show that both N1 and N7 can coordinate to [Pd(en)(H2O)2]2+ or [Pd(dapol)(H2O)2]2+. The pKa of N1-H decreased to 3.7 upon coordination in guanosine and 5-GMP complexes, which is significantly lower than that of ∼9.3 in the free ligand. In strongly acidic solution where N1-H is still protonated, only N7 coordinates to the metal ion, but as the pH increases to pH ∼3, 1H NMR shows that both N7-only and N1-only coordinated species exist. At pH 4-5, both N1-only and N1,N7-bridged coordination to Pd(II) complexes are found for guanosine and 5-GMP. The latter form cyclic tetrameric complexes, [Pd(diamine)(μ-N1,N7-Guo]44+ and [Pd(diamine)(μ-N1,N7-5-GMP)]4Hx(4−x)−, (x=2,1, or 0) with either [Pd(en)(H2O)2](NO3)2 or [Pd(dapol)(H2O)2](NO3)2. The pH titration data and 1H NMR data agree well with the exception that the species distribution diagrams show the initial formation of the N1-only and N1,N7-bridged complexes to occur at somewhat higher pH than do the NMR data. This is due to a concentration difference in the two sets of data.  相似文献   

3.
Dinuclear cobalt(II) complexes were synthesised from 1,4,8,11-tetrakis-(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tmpc), [Co2(tmpc)Cl2][CoCl4] (1), [Co2(tmpc)Cl2][PF6]2 (1a) and [Co2(tmpc)(NO3)2][NO3]2 · MeOH (2) and characterised by magnetic, spectroscopic and electrochemical techniques and by single-crystal X-ray diffraction. The X-ray structures of 1 and 2 demonstrate that in both complexes the metal ion is exo-coordinated with respect to the macrocyclic ligand. In 1, the Co(II) ions are fivefold coordinated with trigonal bipyramidal geometry, while in 2 they are sixfold coordinated with a distorted octahedral geometry. The high magnetic moments obtained for these complexes are explained in terms of a spin–orbit coupling. Magnetic measurements show a deviation from the Curie–Weiss law at low temperatures. Two magnetic orderings were observed, at high temperatures an antiferromagnetic coupling was found, below 20 K a change to a weak ferromagnetic coupling was observed. Isothermal magnetic measurements at low temperature show a weak hysteresis, which was confirmed by the small coercive field found at low temperature. In addition, for the first time an explanation for the observation that these cobalt(II) compounds are very stable towards oxidation is offered in terms of the high redox potential values obtained for 1, 1a, and 2.  相似文献   

4.
New homoleptic diphosphanylamido compounds of the lanthanides, [Ln{N(PPh2)2}3] (Ln = Sm, Gd, Dy), were synthesized and characterized by single crystal X-ray diffraction in the solid state and partly by NMR in solution. In the solid state the complexes solely show a η2-coordination of the {(Ph2P)2N} ligand. The dependence of the Ln-N and the Ln-P bond distance on the ion radius of the center metal was investigated.  相似文献   

5.
《Inorganica chimica acta》1988,148(1):101-104
The compound In[(pz)2BH2]3 (pz = 1-pyrazolyl, C3H3N2) was prepared from In(NO3)3 and K[(pz)2-BH2] in water, and characterised by spectroscopic and X-ray methods. Crystals are orthorhombic,Pna21,a = 20.279(4),b = 8.884(2),c = 13.411(2)Å;R = 0.0285. Individual molecules contain a near-regular six-coordinate indium atom with In–N (av.) 2.241(5)Å. The pyrazolyl borate ligands are puckered, with dihedral angles between the two rings of each ligand in the range 133–144°.  相似文献   

6.
The reaction of AgX (X=ClO4, NO3 or SO3CH3) acceptors with excesses of tris(pyrazol-1-yl)methane ligands L (L=CH(pz)3, CH(4-Mepz)3, CH(3,5-Me2pz)3, CH(3,4,5-Me3pz)3 or CH(3-Mepz)2(5-Mepz)) yields 1:1 [AgX(L)], 2:1 [Ag(L)2]X or 3:2 [(AgX)2(L)3] complexes. The ligand to metal ratio in all complexes is dependent on the number and disposition of the Me substituents on the azole ring of the neutral ligand and on the nature of the Ag(I) acceptor. All complexes have been characterized in the solid state as well as in solution (medium- and far-IR, 1H and 13C NMR and conductivity determinations) and the solid-state structures of [Ag(NO3){(pz)3CH}](∞/∞) and [Ag{(3,5-Me2pz)3CH}2]NO3 determined by single crystal X-ray studies.  相似文献   

7.
The solution structures of the lanthanide complexes, [Ln(L)(NO3)3] and [Ln(L)2(NO3)3], where L = bis(diphenylphosphorylmethyl)mesitylene and Ln = La, Ce, Nd, Er, were investigated by 31P NMR and IR spectroscopy, conductivity and sedimentation analysis. Variable-temperature 31P{1H} NMR spectroscopy was used to identify species present in solution and to monitor their interconversions. The results indicate that equilibrium between molecular complexes [Ln(L)n(NO3)3]0 and cationic species (as ion pairs [Ln(L)n(NO3)2]+ · (NO3) and as free ions [Ln(L)n(NO3)2]+, throughout n = 1, 2) in solutions can be observed by 31P{1H} NMR spectroscopy due to separate detection of the molecular complexes and cationic species. The chelate coordination of the ligand and nitrate ions is retained in all complex species at ambient temperature except for [Er(L)2(NO3)3]. The crystal structure of [Nd(L)(NO3)3(MeCN)]MeCN was determined by X-ray diffraction.  相似文献   

8.
A pyridine‐diacylhydrazone Schiff base ligand, L = 2,6‐bis[(3‐methoxy benzylidene)hydrazinocarbonyl]pyridine was prepared and characterized by single crystal X‐ray diffraction. Lanthanide complexes, Ln–L, {[LnL(NO3)2]NO3.xH2O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er)} were prepared and characterized by elemental analysis, molar conductance, thermal analysis (TGA/DTGA), mass spectrometry (MS), Fourier transform infra‐red (FT‐IR) and nuclear magnetic resonance (NMR) spectroscopy. Ln–L complexes are isostructural with four binding sites provided by two nitro groups along with four coordination sites for L. Density functional theory (DFT) calculations on L and its cationic [LnL(NO3)2]+ complexes were carried out at the B3LYP/6–31G(d) level of theory. The FT‐IR vibrational wavenumbers were computed and compared with the experimentally values. The luminescence investigations of L and Ln–L indicated that Tb–L and Eu–L complexes showed the characteristic luminescence of Tb(III) and Eu(III) ions. Ln–L complexes show higher antioxidant activity than the parent L ligand.  相似文献   

9.
The preparation, structural characterization, and chemical behavior in aqueous solution of a series of new Ru[9]aneS3 half-sandwich complexes of the type [Ru([9]aneS3)Cl(NN)][CF3SO3] and [Ru([9]aneS3)(dmso-S)(NN)][CF3SO3]2 (515, NN = substituted bpy or 2 × 1-methylimidazole) are described. The X-ray structures of [Ru([9]aneS3)Cl(3,3′-H2dcbpy)][CF3SO3] (9) (3,3′-H2dcbpy = 3,3′-dicarboxy-2,2′-bipyridine), [Ru([9]aneS3)Cl(4,4′-dmobpy)][CF3SO3] (13) (4,4′-dmobpy = 4,4′-dimethoxy-2,2′-bipyridine), and [Ru([9]aneS3)Cl(1-MeIm)2][CF3SO3] (15) (1-MeIm = 1-methylimidazole) were also determined. The new compounds are structurally similar to anticancer-active organometallic half-sandwich complexes of formula [Ru(η6-arene)Cl(NN)][PF6]. Three chloro compounds (5, 9, 15) were tested in vitro for cytotoxic activity against two human cancer cell lines in comparison with the previously described [Ru([9]aneS3)Cl(en)][CF3SO3] (1, en = ethylenediamine), [Ru([9]aneS3)Cl(bpy)][CF3SO3] (2), and with their common dmso precursor [Ru([9]aneS3)Cl(dmso-S)2][CF3SO3] (3). Only the ethylenediamine complex 1 showed some antiproliferative activity, ca. one order of magnitude lower than the reference organometallic half-sandwich compound RM175 that contains biphenyl instead of [9]aneS3. This compound was further tested against a panel of human cancer cell lines (including one resistant to cisplatin).  相似文献   

10.
The 1:1 and 1:2 complexes of cis-(NH3)2PtII with 9-methyladeninium cations, 9-MeAH+, have been prepared and characterized by X-ray crystallography: cis-[(NH3)2Pt(9-MeAH-N7)Cl](NO3)2 (1) and cis-[(NH3)2Pt(9-MeAH-N7)2](NO3)4 · 2HNO3 · 2H2O (2). The pKa values for 9-MeAH+ in H2O are 1.7 in 1 as well as 0.4 (pKa1) and 1.3 (pKa2) for 2, as determined by pD dependent 1H NMR spectroscopy. Compound 2 is special in that it crystallizes with two equivalents of HNO3 per Pt entity. The HNO3 molecules are stacked in rectangular channels provided by cis-(NH3)2PtII units, 9-methyladeninium ligands and nitrate anions, which form a porous network of hydrogen bonds.  相似文献   

11.
Bis(diphosphanylamido) complexes of calcium and ytterbium, [{(Ph2P)2N}2M(THF)3] (M = Ca (1), Yb (2)), have been prepared by reaction of [K(THF)nN(PPh2)2] (n = 1.25, 1.5) and MI2. The single crystal X-ray structures of compounds 1 and 2 always show a η2-coordination of the ligand via the nitrogen and one phosphorus atom. In solution a dynamic behavior of the ligand is observed, which is caused by the rapid exchange of the two different phosphorus atoms.  相似文献   

12.
《Inorganica chimica acta》2006,359(5):1619-1626
The reaction of 1,4-dimethyl-1,4,7-triazacyclononane (L-Me2) with MnCl2 · 4H2O in acetonitrile gives, in the presence of sodium formate, hydrogen peroxide, triethylamine and KPF6, the dinuclear Mn(III)–Mn(IV) complex cation [(L-Me2)2Mn2(O)2(OOCH)]2+ (1) which crystallises as the hexafluorophosphate salt.The analogous reaction with sodium benzoate, however, yields the dinuclear Mn(III)–Mn(III) complex cation [(L-Me2)2Mn2(O)(OOCC6H5)2]2+ (2), isolated also as the hexafluorophosphate salt.In the case of sodium acetate, both cations, the Mn(III)–Mn(IV) complex [(L-Me2)2Mn2(O)2(OOCCH3)]2+ (3) and the known Mn(III)–Mn(III) complex [(L-Me2)2Mn2(O)(OOCCH3)2]2+ (4) are available, depending upon the molar ratio.The single-crystal X-ray structure analyses show for the green crystals of [1][PF6]1.5[Cl]0.5 · 1.5 H2O and [3][PF6]2 · (CH3)2CO, a Mn–Mn distance of 2.620(2) and 2.628(4) Å, respectively, while for the red-violet crystal of [4][PF6]2, a Mn–Mn distance of 3.1416(8) Å is observed.All four compounds show catalytic activity for the oxidation of isopropanol with hydrogen peroxide in water and in acetonitrile to give acetone in the presence of oxalic or ascorbic acid as co-catalysts.  相似文献   

13.
Preferential formation and X-ray structures of tris(4-hydroxypyridinium) nitrato complexes [M(4-O-C6H4NH)3(NO3)2(H2O)2][NO3] {M = La, Ce, Pr, Nd, Eu, Gd} in the simple reaction of 4-hydroxypyridine with the respective nitrates is described. All these compounds are isostructural and crystallize in the space group P212121. There are, however, minor differences in the hydrogen bonding features. The central metal ion in all these complexes has a coordination number of nine and the geometry may be described as tricapped trigonal prism. The neodinium complex has a chirality opposite to that of the rest of the structures. TGA data are also consistent with the solid state structures of these compounds.  相似文献   

14.
Two copper(II) terpyridine complexes, [Cu(atpy)(NO3)(H2O)](NO3) ? 3H2O ( 1 ) and [Cu(ttpy)(NO3)2] ( 2 ) (atpy = 4′‐p‐N9‐adeninylmethyl‐phenyl‐2,2′:6,2″‐terpyridine; ttpy = 4′‐p‐tolyl‐2,2′:6,2″‐terpyridine) exhibited high cytotoxicity, with average ten times more potency than cisplatin against the human cervix carcinoma cell line (HeLa), the human liver carcinoma cell line (HepG2), the human galactophore carcinoma cell line (MCF7), and the human prostate carcinoma cell line (PC‐3). The cytotoxicity of the complex 1 was lower than that of the complex 2 . Both complexes showed more efficient oxidative DNA cleavage activity under irradiation with UV light at 260 nm than in the presence of ascorbic acid. Especially, complex 1 exhibited evident photoinduced double‐stranded DNA cleavage activity. The preliminary mechanism experiments revealed that hydrogen peroxide was involved in the oxidative DNA damage induced by both complexes. From the absorption titration data, the DNA‐binding affinity of the complexes with surpersoiled plasmid pUC19 DNA, polydAdT, and polydGdC was calculated and complex 2 showed higher binding affinity than complex 1 with all these substrates. The DNA cleavage ability and DNA‐binding affinity of both complexes depended on the substituent group on the terpyrdine ligands. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:295–302, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20292  相似文献   

15.
Two bis(1-pyrazolyl)alkane ligands, bis(3,5-dimethyl-1-pyrazolyl)methane and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methane, and their copper(II) complexes, bis(3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL1(NO3)2] and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL2(NO3)2]·2H2O, were prepared. Physiochemical properties of the copper(II) complexes were studied by spectroscopic (UV–vis, IR, EPR) techniques and cyclic voltammetry. Spectroscopic analysis revealed a 1:1 stoichiometry of ligand:copper(II) ion and a bindentate coordination mode for the nitrate ions in both of the complexes. According to experimental and theoretical ab initio data, the copper(II) ion is located in an octahedral hexacoordinated environment. Both complexes were able to catalyze the dismutation of superoxide anion () (pH 7.5) and decomposition of H2O2 (pH 7.5) and peroxynitrite (pH 10.9). In addition, both complexes exhibited superoxide dismutase (SOD) like activity toward extracellular and intracellular reactive oxygen species produced by activated human neutrophils in whole blood. Thus, these complexes represent useful SOD mimetics with a broad range of antioxidant activity toward a variety of reactive oxidants.  相似文献   

16.
This study investigated a set of new potential antidiabetes agents. Derivatives of usnic acid were designed and synthesized. These analogs and nineteen benzylidene analogs from a previous study were evaluated for enzyme inhibition of α-glucosidase. Analogs synthesized using the Dakin oxidative method displayed stronger activity than the pristine usnic acid (IC50>200 μM). Methyl (2E,3R)-7-acetyl-4,6-dihydroxy-2-(2-methoxy-2-oxoethylidene)-3,5-dimethyl-2,3-dihydro-1-benzofuran-3-carboxylate ( 6b ) and 1,1′-(2,4,6-trihydroxy-5-methyl-1,3-phenylene)di(ethan-1-one) ( 6e ) were more potent than an acarbose positive control (IC50 93.6±0.49 μM), with IC50 values of 42.6±1.30 and 90.8±0.32 μM, respectively. Most of the compounds synthesized from the benzylidene series displayed promising activity. (9bR)-2,6-Bis[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 1c ), (9bR)-3,7,9-trihydroxy-8,9b-dimethyl-2,6-bis[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 1g ), (9bR)-2-acetyl-6-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2d ), (9bR)-2-acetyl-6-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2e ), (6bR)-8-acetyl-3-(4-chlorophenyl)-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3e ), (6bR)-8-acetyl-6,9-dihydroxy-5,6b-dimethyl-3-phenyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3h ), (6bR)-3-(2-chlorophenyl)-8-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 4b ), and (9bR)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 5c ) were the most potent α-glucosidase enzyme inhibitors, with IC50 values of 7.0±0.24, 15.5±0.49, 7.5±0.92, 10.9±0.56, 1.5±0.62, 15.3±0.54, 19.0±1.00, and 12.3±0.53 μM, respectively.  相似文献   

17.
The complexes [(Cy2PCH2PCy2H)CoCl3] (1) and [(Cy2PCH2PCy2O)Co(NO3)2] (2), Cy = cyclohexyl (C6H11), have been prepared and characterized by EPR, UV-Vis, microanalysis and X-ray crystallography. The reaction CoCl2 · 6H2O and dcpm, dcpm = bis(dicyclohexylphosphino)methane, was found to form the monomeric, four coordinate, thermochromic and paramagnetic complex [(Cy2PCH2PCy2H)CoCl3] (1). Of particular interest is the formation of a zwitterion, or inner salt, in which the dangling phosphine adds a hydrogen atom, giving the phosphorus a +1 formal charge. The molecule adopts a pseudo-tetrahedral geometry around the central cobalt atom to which the cyclohexyl groups bind in an equatorial fashion to the phosphine. The reaction of Co(NO3)2 · 6H2O and dcpm in a toluene/methanol/methylene chloride mixture yields the pseudo-octahedral complex [(Cy2PCH2PCy2O)Co(NO3)2] (2). The cobalt is in the +2 oxidation state with one of the phosphorus atoms again having a +1 formal charge. The complex adopts a pseudo-octahedral geometry around the central cobalt atom with the cyclohexyl groups binding in an equatorial fashion to the phosphine similar to [(Cy2PCH2PCy2H)CoCl3].  相似文献   

18.
Electronic absorption and emission spectra, along with lifetime measurements and vibrational spectra, are used to investigate the interaction between nitrate and trivalent europium ions in dilute solutions in anhydrous and aqueous acetonitrile. Upon addition of increasing quantities of nitrate, the complexes [Eu(NO3)n](3?n)+, with n = 1–5, form quantitatively in anhydrous acetonitrile. In solution, the pentanitrato species is not further solvated and its spectroscopic properties are similar to those of solid samples, indicating a similar structure with five bidentate nitrates bonded to the 10-coordinate Eu(III) ion. The lifetimes of the 5D0 level are 1.35(5) and 1.25(5) ms for Eu(NO3)3 and (Me4N)2Eu(NO3)5 0.05 M in CH3CN. The quantum yield of Eu(NO3)3 in CH3CN is 27.4%.The addition of small quantities of water to Eu(NO3)3 solutions does not result in the dissociation of the nitrate ions, provided Rw = [H2O]t/[Eu3+]t is smaller than 8; the apparent equilibrium rations for [Eu(NO3)3(H2O)n] are K3 = 40 ± 15 M?1 and K4 = 9 ± 3 M?1; K1 and K2 are too large to be determined. The formation of nitrato complexes is studied in mixtures containing increasing amounts of water and nitrate. Deconvolution of the different components of the 5D07F0 transition allows a semi-quantitative estimate of the relative concentration of the nitrato complexes. The total number of coordinated nitrate ions per europium ion can be determined on the basis of fluorescence lifetime measurements. The apparent equilibrium ratios for the formation of the mono- and dinitrato species amount to K1 = 23 ± 3, 15 ± 5 and 5 ± 1 for Rw = 44, 94 and 304, respectively, and to K2 = 17 ± 8 for Rw = 44 and 94.  相似文献   

19.
《Inorganica chimica acta》1988,144(2):269-273
Lanthanoid nitrates react with 1,7,10,16-tetraoxa- 4,13-diaza-N,N′-dimethylcyclooctadecane, Me2(2,2), to give complexes with two different metal:ligand ratios, 1:1 (Ln = La, Ce, Tb) and 4:3 (Ln = Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho). The complexes were isolated from anhydrous solutions in acetonitrile and characterized by elemental analysis, X-ray diffraction, magnetic susceptibility measurements and vibrational analysis.The La and Ce 1:1 complexes are non-ionic and probably 12-coordinated, with the metal ion bound to the six donor atoms of the ligand and to three bidentate nitrate ions. The 4:3 complexes are ionic; they contain three bis(nitrato) complex cations [Ln(NO3)2·Me2(2,2)]+ and one hexakis(nitrato) anion [Ln(NO3)6]3−. Spectroscopic data, including luminescence spectra, point to the 1:1 Tb-complex as being a 4:3 complex with an additional outer-sphere coordinated molecule of ligand.In solution, the 1:1 complexes remain essentially non-ionic, although some dissociation cannot be ruled out, whereas the 4:3 complexes behave as 2:1 (of even 3:1) electrolytes.  相似文献   

20.
The reactions of the dianionic [(pyrrole-2-CHN)2R]2? ligands [(N′2N2)2?] (R = (R)(S)-1,2-cyclohexane or 1,2-ethane) with Zn(II) yield neutral dimeric [Zn2(N′2N2)2] complexes. The dimeric nature of the complexes was established by field-desorption mass spectrometry. 1H NMR studies show that these complexes have dimeric structures in solution in which the (N′2N2)2? ligands act as di-bidentates.The metal centres have tetrahedral geometries and bot have Δ or Λ configurations. The complex with the (R)(S)-1,2-cyclohexanediyl bridges has a rigid structure in solution. Neither intermolecular nor intramolecular exchange processes are observed The 1H NMR spectrum of the complex with the 1,2-ethanediyl bridging groups shows that at 213 K in CDCl3 a fast conformational movement is already taking place between two identical structures of the complex. It is not possible to determine whether in this complex intermolecular exchange processes are also taking place.The reactions of the anionic [pyrrole-2-CHNR′]? ligands [(N′N)?] (R′ = t-Bu, i-Pr, (S)-CHMePh or 2,6-xylyl) with Zn(II) yield the neutral Zn(N′N)2 complexes. These complexes were synthesized to study the coordination properties of the [pyrrole-2-CHNR′]? moieties with Zn(II). A 1H NMR study established that the zinc centres in the complexes containing the prochiral i-Pr or chiral (S)-CHMePh substituents have tetrahedral geometries with Δ or Λ configurations in CDCl3 at 213 K. These complexes undergo an intramolecular exchange process at higher temperatures (above 260 K when R′ = i-Pr) which involves inversion of the configuration of the zinc centre. A mechanism for this exchange process is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号