首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adducts (1:1) of halides of cobalt(II), nickel(II), manganese(II), copper(II), iron(III) and chromium(III) with dibenzoyldisulphide have been isolated and characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility, infrared spectra, molecular weight and thermogravimetric analysis data.  相似文献   

2.
The reactions of d(+)-biotin with K2MX4, where M = Pd(II) or Pt(II) and X = Cl or Br have been studied in acidic, neutral or alkaline aqueous solutions. Complexes of the type trans-M(Bio)2X2 have been isolated for both metals and characterized with elemental analyses, conductivity measurments, ir spectra, 1Hnmr and 13Cnmr spectra. The complex of the type [Pd(Bio)Cl2]2 has also been isolated from DMF solutions. The results indicate that d(+)-biotin coordinates exclusively through its sulfur atom with these metals in all the complexes in the present study, in the solid state or in solution.  相似文献   

3.
Recent studies have shown 2-phenylazopyridine (Azpy) to be a useful departure from polypyridyl type ligands in coordination chemistry; frequently lower oxidation states are stabilized by this ligand. We have prepared and studied [Cr(Azpy)2Cl2] which is surprisingly inert for a chromium(II) complex. The compound crystallizes in the space group P21/c with a = 7.953(3), b = 21.189(11), c = 12.922(12) Å, β = 114.80(5)° and Z = 4. Based on 6777 reflections the structure has been refined to R = 0.030 and Rw = 0.038. The complex is six-coordinated with cis-chlorides, cis-azo and trans-pyridyl groups. The overall symmetry is close to C2. The azo NN distances are elongated to 1.282 and 1.314 Å, significantly longer than observed in free azo groups.The magnetic moment of 2.8 BM is independent of temperature indicating an orbitally non-degenerate low-spin ground state. In acetonitrile the spectrum shows a band in the red at 1470 nm which is assigned as ligand-metal charge transfer, consistent with earlier interpretations on similar compounds. The compound is stable to air oxidation in acetonitrile or methylene chloride; cyclic voltammetry in these solvents yields potentials of 0.508 and −0.185 V, both appearing to be one electron transfers.The complex is a non-electrolyte in acetonitrile, nearly unchanged over 24 h. However, chloride ions are slowly replaced at 50 °C in this solvent by 2,2′-bipyridyl; this reaction is pseudo-first order in complex with a rate constant of 4.0 ± 0.3 × 10−7 s−1. All data indicate the presence of a strong chromium-Azpy pi-interaction.  相似文献   

4.
Perturbations of the 1H NMR spectrum of the free base of Adriamycin in DMF solution were found when MCl2(DMF)2 (M = Pd or Pt) was added to the Adriamycin solutions. These perturbations were greatest for the 3' proton on the sugar ring and the effect decreased as the distance from this site increased. No changes were observed in the NMR spectrum of the rest of the molecule nor was there any color change when the metal solutions were added. This is interpreted as evidence that Adriamycin binds to these metals at the 3 ' amino group in DMF solution and that there is no reaction at the chromophore. The complexes were found to be in the fast exchange regime on the NMR time scale. As well, some products were isolated from reactions of Adriamycin with MCl2(DMF)2 in 20% MeOH/CH2Cl2 and MCl2 in DMF solution. They were characterized by their elemental analyses, as well as by 1H NMR and infrared spectroscopies.  相似文献   

5.
The preparation of well-defined adducts of the M(guH)(2Cl3 (M = Cr, Fe) and VO(guH)Cl2 types (guH = neutral guanine), by refluxing ligand and metal chloride mixtures in ethanol-triethyl orthoformate, is reported. Characterization studies suggest that the new complexes are probably linear chain-like polymeric species, involving single bridges of bidentate guH ligands between adjacent metal ions. Bidentate bridging guH is most probably coordinated through the N(7) and N(9) imidazole nitrogens. The chloro ligands present in the adducts are exclusively terminal. Infrared evidence rules out the possibility of coordination of guanine through either of its exocyclic potential binding sites (i.e., CO oxygen and NH2 nitrogen) [1].  相似文献   

6.
A series of nine polypyridyl-ruthenium (II) complexes (N-ligands = 2,2′-bipyridines; 2,2′-6′,2′-terpyridines, di-alkyloxy-2,2′-6,2-bipyridine-3,3′-di-carboxylates), were tested against Mycobacterium tuberculosis (MBT). The complex (11) showed remarkable activity against MBT as compared to other complexes, (1–10). The aquo ligand of complex (11), as opposed to other chloro and acetonitrile derivatives, appears to play a key role in the antitubercular potency of this new class of metal-based compounds.  相似文献   

7.
Upon refluxing 2:1 mixtures of guanine (guH) and MnCl2, FeCl2 or NiCl2 in a 7:3 (v/v) mixture of ethanol and triethyl orthoformate for 1–2 weeks, partial substitution of gu? for Cl? groups occurs, and solid complexes of the M(gu)Cl·2ROH (R = C2H5 for M = Mn; R = H for M = Fe, Ni) type are obtained. The new complexes are pentacoordinated and appear to be linear chainlike polymeric species, involving a single-bridged
n backbone. Coordination number five is attained by the presence of one terminal chloro and two terminal ROH ligands per metal ion. Most probable binding sites of bidentate bridging gu? are the N(7) and N(9) imidazole ring nitrogens. IR evidence rules out the possibility of coordination of gu? through any of the exocyclic potential ligand sites (O(6) oxygen or N(2) nitrogen) [1].  相似文献   

8.
Lithioamidines {R′N(Li)C(R)NR′, I; R = CH3, R′ = C6H5, p-CH3,C6H4} react with iron(III) chloride
in monoglyme to produce navy-blue, high spin Fe{R′NC(R)NR′}3 complexes which are extremely air and moisture sensitive. The corresponding reaction when R = R′ = C6H5 produces a soluble red complex and an air-stable green complex, whereas when R = H, R′ = C6H5 and R = R′ = C6H5 and the reaction is started at ca. ?20°, red and green complexes respectively are formed. Though all the complexes are formulated Fe{R′NC(R)NR′}3, their properties reflect association through bridging amidino-groups. Iron(II) chloride reacts with I(R = CH3, R′ = p-CH3C6H4) to form two complexes, one crimson and soluble in organic solvents, and one brown and insoluble, which are fomulated [Fe{R′NC(R)NR′}2]n. The iron(III) complexes failed to react with, or were decomposed by, a variety of reducing, electrophilic and nucleophilic reagents, though blue Fe{p-CH3C6H4NC(CH3)N-p-CH3C6H4}3 reacts readily with nitric oxide to form a purple addition complex from which the N-nitroso-compound p-CH3C6H4NC(CH3)N(NO)-p-CH3C6H4 was obtained in high yield. Treatment of the corresponding brown iron(II) complex with nitric oxide gave no reaction.  相似文献   

9.
The reactions of dilute solutions of octaethylporphyrin and its iron (II) and iron (III) complexes with methyl, 2-cyanopropyl, t-butoxy, and benzoyloxy radicals are described. The results are summarized: (i) The reactivity of the porphyrin and its high-spin iron (II) and iron (III) complexes toward alkyl and t-butoxy radicals stands in the order: FeII > FeIII ? free porphyrin. For benzoyloxy radicals the order is FeII > Porp > FeIII. (ii) The exclusive path of reaction of high-spin iron (II) porphyrin with radicals is the rapid reduction of the radical and generation of an iron (III) porphyrin. The dominant path of reaction of high-spin iron (III) porphyrin with alkyl and (presumably) t-butoxy radicals is a rapid axial inner sphere reduction of the porphyrin. An axial ligand of iron is transferred to the radical. (iv) The reaction of benzoyloxy radicals with high or low-spin iron (III) porphyrins occurs primarily at the meso position. With the low-spin dipyridyl complex in pyridine the attendant reduction to iron (II) can be observed spectrally. Methyl radicals also reduce this complex by adding to the meso position. (v) The reaction of a radical with either an iron (II) or an iron (III) porphyrin results in the generation of the other valence state of iron and consequently oxidation and reduction products emanating from both iron species are obtained. (vi) No evidence for an iron (IV) is intermediate is apparent. (vii) Iron (II) porphyrins in solvents that impart either spin state are easily oxidized by diacyl peroxides. The occurrence of both axial and peripheral redox reactions with the iron complexes supports an underlying premise of a recent theory of hemeprotein reactivity. The relevance of the work to bioelectron transfer and heme catabolism is noted.  相似文献   

10.
Reaction of the lithium salts of N,N′-dialkyl-2-amino-4-imino-pent-2-enes, nacnacRLi(THF) (R = CH2Ph, Cy, nPr, iBu or S-CH(Me)Ph), with half an equivalent of CrCl2(THF)x yielded the homoleptic complexes (nacnacR)2Cr. All complexes were characterized by X-ray diffraction studies and displayed a highly symmetric, square-planar coordination around the chromium center with strong boat-like distortions of the diketiminate ligands. Reaction of nacnacRLi(THF) (R = CH2Ph, Cy) with one equivalent of CrCl2(THF)x afforded the dimeric complexes {nacnacRCr(μ-Cl)}2.  相似文献   

11.
Several coordination compounds formed between Ni(II) or Cu(II) with ofloxacin have been synthesised and characterised. According to elemental chemical analysis and FT-IR spectroscopy data, direct reaction of Ni(II) and Cu(II) salts with ofloxacin leads to formation of precipitates for which mass spectrometry demonstrates their polymeric nature. However, crystalline [Cu(oflo)2(H2O)].2H2O is formed if the reaction is carried out in the presence of ammonia. This complex crystallises in the triclinic system, space group P-1 with a=9.2887(12), b=11.2376(14), c=17.874(2) A, alpha=92.12(3), beta=95.39(3), gamma=91.71(3) degrees and Z=2. The local geometry around the Cu(II) ion is a slightly distorted square base pyramid. Electronic spectra, magnetic susceptibility measurements and EPR spectra of the synthesised complexes indicate a tetragonal environment.  相似文献   

12.
《Inorganica chimica acta》2006,359(11):3549-3556
A series of cationic trispyrazolylmethane complexes of the general form [TmRM(CH3CN)3]2+ (Tm = tris(pyrazolyl)methane, 1, R = 3,5-Me2, M = Fe(II); 2, R = 3-Ph, M = Fe(II); 3, R = 3,5-Me2, M = Co(II); 4, R = 3-Ph, M = Co(II)) with ‘piano-stool’ structures was prepared by the reaction of the N3tripodal ligands (TmR)with [(CH3CN)6M](BF4)2 in a 1:1 stoichiometric ratio. Magnetic susceptibility measurements indicate that all four complexes with BF4 counter anions are paramagnetic, high-spin systems in the solid state with μeff at high temperatures of 5.2 (1, S = 2), 5.4 (2, S = 2), 4.9 (3, S = 3/2) and 4.6 (4, S = 3/2) BM, respectively. Comparisons of bond lengths from the metal centre to the TmR nitrogen donors, and from the metal centre to the acetonitrile nitrogen donors indicate that the neutral tripodal ligands appear to be more weakly coordinated to the metal centre than are the acetonitrile ligands. Reactions of these tripodal complexes with bidentate phosphine ligands, such as 1,2-diphosphinoethane or 1,2-bis(diallylphosphino)ethane leads to displacement of the tripodal ligand, or to the formation of more thermally stable bis-ligand complexes M(TmR)2 (R = 3,5-dimethyl).  相似文献   

13.
Vitamin D3 (LH) complexes with manganese(II), iron(II), iron(III) and zinc(II) were identified in water-ethanol medium (30/70). Their stability constants were determined at 298 K and at a constant ionic strength of 0.100 M using potentiometric methods. The computerisation of the experimental data showed the presence of ML (M = metal, L = deprotonated vitamin D3) and ML2 species in all cases; in addition, the ML3 iron(III) complex was detected. The calculated overall stability constants beta for MnIIL, FeIIL, FeIIIL and ZnIIL are, respectively, in logarithms, 12.4, 16.5, 28.5 and 16.5. Under the experimental conditions, the only protonated species MLH detected was with iron(III).  相似文献   

14.
Interaction between iron(II) and acetohydroxamic acid (Aha), alpha-alaninehydroxamic acid (alpha-Alaha), beta-alaninehydroxamic acid (beta-Alaha), hexanedioic acid bis(3-hydroxycarbamoyl-methyl)amide (Dha) or desferrioxamine B (DFB) under anaerobic conditions was studied by pH-metric and UV-Visible spectrophotometric methods. The stability constants of complexes formed with Aha, alpha-Alaha, beta-Alaha and Dha were calculated and turned out to be much lower than those of the corresponding iron(II) complexes. Stability constants of the iron(II)-hydroxamate complexes are compared with those of other divalent 3d-block metal ions and the Irving-Williams series of stabilities was found to be observed. Above pH 4, in the reactions between iron(II) and desferrioxamine B, the oxidation of the metal ion to iron(III) by the ligand was found. The overall reaction that resulted in the formation of the tris-hydroxamato complex [Fe(HDFB)]+ and monoamide derivative of DFB at pH 6 is: 2Fe2+ + 3H4DFB+ = 2[Fe(HDFB)]+ + H3DFB-monoamide+ + H2O + 4H+. Based on these results, the conclusion is that desferrioxamine B can uptake iron in iron(III) form under anaerobic conditions.  相似文献   

15.
16.
The heteroditopic ligand 4′-(4,7,10-trioxadec-1-yn-10-yl)-2,2′:6′,2″-terpyridine, 2, contains an N,N′,N″-donor metal-binding domain that recognizes iron(II), and a terminal alkyne site that selectively couples to platinum(II). This selectivity has been used to investigate routes to the formation of heterometallic systems. The single crystal structures of ligand 2 and the complex [Fe(2)2][PF6]2 are reported.  相似文献   

17.
18.
Four platinum(II) and palladium(II) complexes with sugar-conjugated bipyridine-type triazole ligands, [Pt(II) Cl(2) (AcGlc-pyta)] (3), [Pd(II) Cl(2) (AcGlc-pyta)] (4), [Pt(II) Cl(2) (Glc-pyta)] (5), and [Pd(II) Cl(2) (Glc-pyta)] (6), were prepared and characterized by mass spectrometry, elemental analysis, (1) H- and (13) C-NMR, IR as well as UV/VIS spectroscopy, where AcGlc-pyta and Glc-pyta denote 2-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]ethyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (1) and 2-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]ethyl β-D-glucopyranoside (2), respectively. The solid-state structure of complex 6 was determined by single-crystal X-ray-diffraction analysis. These complexes exhibited in vitro cytotoxicity against human cervix tumor cells (HeLa) though weaker than that of cisplatin.  相似文献   

19.
The reactions of NO2 with both oxidized and reduced cytochrome c at pH 7.2 and 7.4, respectively, and with N-acetyltyrosine amide and N-acetyltryptophan amide at pH 7.3 were studied by pulse radiolysis at 23 °C. NO2 oxidizes N-acetyltyrosine amide and N-acetyltryptophan amide with rate constants of (3.1±0.3)×105 and (1.1±0.1)×106 M−1 s−1, respectively. With iron(III)cytochrome c, the reaction involves only its amino acids, because no changes in the visible spectrum of cytochrome c are observed. The second-order rate constant is (5.8±0.7)×106 M−1 s−1 at pH 7.2. NO2 oxidizes iron(II)cytochrome c with a second-order rate constant of (6.6±0.5)×107 M−1 s−1 at pH 7.4; formation of iron(III)cytochrome c is quantitative. Based on these rate constants, we propose that the reaction with iron(II)cytochrome c proceeds via a mechanism in which 90% of NO2 oxidizes the iron center directly—most probably via reaction at the solvent-accessible heme edge—whereas 10% oxidizes the amino acid residues to the corresponding radicals, which, in turn, oxidize iron(II). Iron(II)cytochrome c is also oxidized by peroxynitrite in the presence of CO2 to iron(III)cytochrome c, with a yield of ~60% relative to peroxynitrite. Our results indicate that, in vivo, NO2 will attack preferentially the reduced form of cytochrome c; protein damage is expected to be marginal, the consequence of formation of amino acid radicals on iron(III)cytochrome c.  相似文献   

20.
《Free radical research》2013,47(1):173-177
Using the pulse radiolysis technique it was shown that copper(II) complexes of kinetin and 6-benzylaminopurine (6-BAP) catalyze O?2 dismutation very efficiently at physiological pH. The ‘turnover’ rate constants at pH 7 were determined to be (1.5 ± 0.3) × 109 and (2.2 ± 0.4) × 109 M?1 s?1for 6-BAP and kinetin, respectively. The system was studied at pH 3–10 in the case of 6-BAP, and the results show that this complex catalyzes also HO2 dismutation efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号