首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inorganica chimica acta》1986,115(2):147-151
In the presence of Fe3+, template condensation of the fluorinated keto-alcohol CH3C(O)CH2C- (CF3)2OH with the triamine CH3C(CH2NH2)3 leads to two products: a fully condensed, imino-alkoxy, iron(III) complex, Fe{CH3C[CH2NC(CH3)CH2C(CF3)2O]3}, and a partially condensed iron(III) complex, O{FeCH3C[CH2NC(CH3)CH2C(CF3)2O]2(CH2NH2)}2, in which two six-coordinate iron(III) centers are linked by an oxide ion. A complete crystal and molecular structure determination of the latter has been made.Crystals are monoclinic, space group C2/c, a= 13.886(4); b=23.206(5); c=15.241(4) Å; β= 106.55(2)°; V=4708 Å3; Z=4. Least-squares refinement on F of 322 variables using 2627 observations converged at a conventional agreement factor of 3.8%. The Fe to bridging oxide distance is 1.811(1) Å, the FeFe distance 3.468 Å, and the FeOFe angle 146.6(2)°. A comparison is made between this structure and those of natural hemerythrin systems.  相似文献   

2.
A 1:1 complex of mercuric chloride with D-peniccillamine has been isolated and characterised as 2[(μ3-Cl){HgSC(CH3)2CH(NH3)COO}3]·3(μ2-Cl)·2(H3O)·(H2O·Cl)3. The compound crystallises in cubic space group P4132, with a = 18.679(5) Å and Z = 4. The structure, refined to RF = 0.086 for 443 observed Mo-Kα diffractometer data, features a triply bridging chloride ion linking three equivalent [HgSC(CH3)2CH(NH3)COO]+ units [Hg-Cl = 2.37(1) Å, Hg-Cl-Hg′ = 98.5(9)°]. The carboxylate groups of a pair of adjacent penicillamine ligands are strongly linked via a symmetrical O?H?O hydrogen bond of length 2.24(8) Å, and neighboring pyramidal trinuclear [μ3-Cl){HgSC(CH3)2CH(NH3)-COO}3]2+ moieties are further connected by symmetrical chloride bridges [Hg-Cl = 3.06(2) Å; HgClHg′' = 79.6(7)°] to form a three-dimensional network. The voids in the lattice are filled by hydronium ions and novel planar cyclic hydrogen-bonded (H2O·Cl?)3 rings of edge O-H?Cl = 2.46(4) Å.  相似文献   

3.
《Inorganica chimica acta》1987,134(1):155-157
The crystal structure of erbiumdicyclopentadienidechloride [Er(C5H5)2Cl]2 has been determined from X-ray diffraction data. The compound crystallizes in space group P21/c with a=11.056(3), b= 8.015(1), c=12.154(3) Å, β=110.28(2)°, V= 1010.2(7) Å3, Dc=2.189 g cm−3 and Z=2 dimers. The structure has been refined by full-matrix least- squares techniques to a conventional R factor of 0.027 for 2042 reflections (with I > 2σ(I)). In the unit cell centrosymmetric dimers of orte type exist with bridging chlorine atoms and C5H5 groups bonded in η5-fashion to the metal (mean ErC 2.59 Å). The [Er(C5H5)2Cl]2-type is compared to the [Sc(C5H5)2Cl]2-type structure which is realized in several dicyclopentadienidebromides of the lanthanides.  相似文献   

4.
The crystal and molecular structures of the complexes MoO2((SCH2CH2)2NCH2CH2SCH3), I and MoO2((SCH2CH2)2NCH2CH2N(CH3)2), II, have been determined from X-ray intensity data collected by counter methods. Compound I crystallizes in two forms, Ia and Ib. In form Ia the space group is P21/n with cell parameters a = 7.235(2), b = 7.717(2), c = 24.527(6) Å, β = 119.86(2)°, V = 1188(1) Å3, Z = 4. In form Ib the space group is P21/c with cell parameters a = 14.945(5), b = 11.925(5), c = 14.878(4) Å, β = 114.51(2)°, V = 2413(3) Å3, Z = 8. The molecules of I in Ia and Ib are very similar having an octahedral structure with cis oxo groups, trans thiolates (cis to both oxo groups) and N and thioether sulfur atoms trans to oxo groups. Average ditances are MoO = 1.70, MoS (thiolate) = 2.40, MoN = 2.40 and MoS (thioether) = 2.79 Å. Molecule II crystallizes in space group P212121 with a = 7.188(1), b = 22.708(8), c = 7.746(2) Å, V = 1246(1) Å3 and Z = 4. The coordination about Mo is octahedral with cis oxo groups, trans thiolates and N atoms trans to oxo. Distances in the first coordination sphere are MoO = 1.705(2), 1.699(2), MoS = 2.420(1), 2.409(1) and MoN = 2.372(2), 2.510(2) Å. The conformational features of the complexes are discussed. Complex I displays MoO and MoS distances which are very similar to those found by EXAFS in sulfite oxidase. This similarity is discussed.  相似文献   

5.
The crystal structure of the dimeric Ag maleonitriledithiolate complex, Ag2[S2C2(CN)2] [P(C6- H5)3]4 (1), has been performed. Complex 1 crystallizes in the space group P21/c with a = 12.2898(77), b = 23.8325(91), c = 23.1790(118) Å, β = 101.315(43)° and Z = 4. Refinement using 3253 reflections with Fo2>3σ(Fo2) yielded R = 0.0662, Rw= 0.0669. The most interesting aspect of the structure is the strong bridging interaction of the chelating maleonitriledithiolate ligand with the second Ag center, where a Ag-S distance of 2.478 Å is observed. The residual bonding capability of the sulfur atoms in the chelating anion [Ag(S2C2(CN)2)(PPh3)2] for [Ag(PPh3)2]+ is demonstrated.  相似文献   

6.
The crystal structure of the title compound, SnCl(C6H5)(C4H9)[S2CN(C2H5)2], was determined and refined to an R factor of 3.2% for 4876 reflections. The molecule contains five-coordinate tin in a distorted trigonal bipyramidal arrangement with the tin atom lying 0.20 Å below the equatorial plane formed by one of the sulphur atoms, S(1), and the donor carbons of the butyl and phenyl groups. The chlorine and the other sulphur atom, S(2), occupy axial sites, making a S(2)SnCl angle of 156.85(1)°. The SnS(2) bond is markedly elongated (2.764(1) Å) compared to the SnCl bond (2.449(1) Å) and the SnS(1) bond (2.454(1) Å). The structure resembles those of analogues such as (C6H5)2Sn(glygly) in having both hydrocarbon ligands located in the equatorial plane. Crystal data: space group P1: a = 8.291(2) Å, b = 14.726(3) Å, c = 9.509(2) Å, α = 96.24(2)°, β = 107.02(3)°, γ = 116.70(2)°, Z = 2, R = 3.2% for 4876 independent reflections.  相似文献   

7.
《Inorganica chimica acta》1988,147(2):265-274
Trifunctional dialkyl [1,2-bis(diethylcarbamoyl)- ethyl] phosphonates, (RO)2P(O)CH[C(O)N(C2H5)2]- [CH2C(O)N(C2H5)2] R  CH3, C2H5, i-C3H7, n-C6H13 were prepared from the respective sodium salts, Na[(RO)2P(O)CHC(O)N(C2H5)2] and N,N- diethylchloroacetamide, and they were characterized by elemental analysis, mass, infrared and NMR spectroscopy. The molecular structure of (i-C3H7O)2- P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2] was determined by single crystal X-ray diffraction analysis and found to crystallize in the monoclinic space group P21/c with a=15.589(6), b=9.783(4), c= 16.283(7) Å, β = 110.90(3)°, Z = 4 and V= 2320(2) Å3. The structure was solved by direct methods and blocked least-squares refinement converged with Rf = 5.7% and RwF= 4.4% on 2266 unique data with F>4σ(F). Important bond distances include PO 1.459(3) Å, CHCO 1.228(3) Å and CHCH2CO 1.223(3) Å. The coordination chemistry of the ligand with several lanthanides was examined, and the structure of the complex Gd(NO3)3{[(i-C3H7O)2P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2]}2·H2O was determined. The complex crystallized in the monoclinic space group P21/n with a = 13.524(5), b = 22.033(4), c = 19.604(4) Å β = 106.22(2)°, Z = 4 and V= 5609(3) Å3. The structure was solved by heavy atom techniques and blocked least-squares refinement converged with RF = 5.9% and RwF = 4.1% on 5275 reflections with F > 4σ(F). Both trifunctional ligands were found to bond to Gd(III) through only the phosphoryl oxygen atoms. The remainder of the Gd coordination sphere was composed of three bidentate nitrate oxygen atoms and an oxygen bonded water molecule. Several important bond distances include GdO(phosphoryl)av = 2.343(5) Å, GdO(nitrate)av = 2.475(7) Å, GdO(water) = 2.354(5) Å, PO(phosphoryl)av = 1.467(6) Å, CHCOav = 1.242(10) Å and CHCH2COav = 1.209(11) Å.  相似文献   

8.
Nickel(II) complexes with the compartmental Schiff bases derived from 2,6-diformyl-4-chlorophenol and 1,5-diamino-3-thiapentane (H2L1) or 3,3′-diamino-N-methyl-dipropylamine (H2L2) were synthesized, and the crystal structures of [Ni(L1)- (py)2] and [Ni(L2)(dmf)]·H20 were determined by X-ray crystallography.Ni(L1)(py)2 is monoclinic, space group C2/c, with a= 18.457(6), b = 11.116(7), c= 16.098(6) Å, and β = 115.79(5)°; Dc = 1.49 g cm−3 for Z = 4. The structure was refined to the final R of 6.9%. The molecule has C2 symmetry. The nickel atom is six-coordinated octahedral. Selected bond lengths are: NiO 2.04(1) Å, NiN (L1) 2.08(1) Å, NiN(py) 2.17(1) Å.[Ni(L2)(dmf)]·H2O is monoclinic, space group P21/n, with a = 17.329(6), b = 13.322(7), c = 12.476(7) Å and β = 95.43(5)°; Dc = 1.45 g cm−3 for Z = 4. The structure was refined to the final R of 5.1%. The nickel atom is bonded in the octahedral geometry to the bianionic pentadentate ligand L2 and to one molecule of dimethylformamide. Selected bond lengths are: NiO (charged) 2.063(3) Å (mean value), NiO (neutral) 2.120(3) Å, NiN (planar) 2.050(3) Å (mean value), NiN (tetrahedral) 2.177(3) Å.  相似文献   

9.
The structures of MoO2[NH2C(CH3)2CH2S]2 and MoO2[SC(CH3)2CH2NHCH2CH2NHCH2C(CH3)2S] have been determined using X-ray diffraction intensity data collected by counter techniques. MoO2[NH2C(CH3)2CH2S]2 crystallizes in space group Pbca with a = 11.234(3), b = 11.822(3) and c = 20.179(5) Å, V = 2680(2) Å3 and Z = 8. Its structure is derived from octahedral coordination with cis oxo groups [MoO = 1.705(3) and 1.705(3)], trans thiolate donors cis to the oxo groups [MoS = 2.416(1) and 2.402(1) and N donors trans to oxo [MoN = 2.325(3) and 2.385(4) Å]. MoO2[SC(CH3)2CH2NHCH2CH2NHCH2C(CH3)2S] crystallizes in the space group P21/c with a = 10.798(5), b = 6.911(2), c = 20.333(9) Å, β = 95.20°, V = 1511(2) Å3 and Z = 4. Its structure is very similar to that of MoO2[NH2C(CH3)2CH2S]2 with MoO = 1.714(2) and 1.710(2), MoS = 2.415(1) and 2.404(1) and MoN = 2.316(3) and 2.362(3). The small differences in the geometries of the two compounds are attributed to the constraints of the extra chelate ring in the complex with the tetradentate ligand. The structures in this paper stand in contrast to those reported for complexes of similar ligands wherein steric hindrance produces complexes with a skew trapezoidal bipyramidal structure.  相似文献   

10.
《Inorganica chimica acta》1987,126(1):113-117
The title compound was prepared by slow crystallization from a hot aqueous solution of copper(II)- dichromate and pyridine. The structure determination was performed at room temperature on a single crystal in the triclinic space group P1, a = 5.378(1), b = 5.619(1), c = 13.569(2) Å, α = 93.32(1), β = 100.25(1), γ=98.45(1)°. Using 2026 reflections with Fo2 > (Fo2) obtained on a CAD-4 single crystal diffractometer the structure was solved by conventional Patterson and Fourier methods and full matrix least-squares refinement to R = 0.047. The structure consists of complex chains built up from two different (4 + 2) distorted copper(II) octahedra sharing common edges. These chains are linked via OCrO bonds thus forming a two-dimensional infinite network. The pyridine rings extending into the space between these layers are disordered due to rotation around the CuN bond. In the course of the refinement two favoured positions with occupation probabilities 50:50 percent were found. During thermal decomposition the compound loses pyridine and water followed by a release of oxygen to yield poly- crystalline CuCr2O4 and CuO. An intermediate phase with empirical formula Cu3O(CrO4)2 was detected by X-ray powder diffraction and its unit cell parameters were determined.  相似文献   

11.
《Inorganica chimica acta》1988,142(2):235-242
The structure and absolute configuration of (+)578- C5H5Fe(CO)[P(C6H5)3]COCH3 have been determined by single crystal X-ray diffraction methods. The substance crystallizes in the monoclinic space group P21 with cell constants of a = 8.084(14), b = 8.527(2), c32.706(21) Å and β = 104.32(10)°; V 2184.18 Å3 and D(calc: Z 4 mol/unit cell) = 1.381 g cm-3. There are two independent molecules in the asymmetric unit, which allowed us to gauge the effect of packing on the conformation of those groups able, in principle, to be twisted by crystalline forces. Only minor changes in conformations were observed, the largest being at the terminal CH3 of the acetyl ligand (0.065 Å). All other differences in conformation are less than 0.036 Å. The plane of the acetyl ligand is close to being aligned with the FeC(CO) bond, making the acetyl oxygen point in the direction of the phosphorus atom. It is suggested that in phosphine exchange reactions this conformation persists in solution while the acetyl oxygen, intra- molecularly, attacks the adjacent phosphorus atom to form a dihapto acetyl species as the first intermediate, in which there is retention of configuration at Fe.With the priority of the ligand sequence as C5H5 > P(C6H5)3 > CO > COCH3, the absolute configuration at Fe is (S). So, the formation of (−)578- C5H5Fe(CO)[P(C6H5)3]COCH3 by reaction of (+)578- C5 H5 Fe(CO)[P(C6H5)3] COOC10H19 and LICH3 requires an inversion to occur at the Fe center.  相似文献   

12.
《Inorganica chimica acta》1987,133(2):347-352
When crystals of [Dy(OH2)7(OHMe)] [DyCl(OH2)2(18- crown-6)]2Cl7·2H2O [1] are allowed to warm from 5 °C to ambient temperature (22 °C) under the original solvent mixture (1:3 CH3OH: CH3CN), they redissolve and the title complex can be isolated by slow evaporation of the resulting solution. The crystal structure of this complex, [Dy(OH2)8]Cl3·18-crown-6·4H2O, has been determined. It crystallizes in the monoclinic space group, P21/c, with a = 10.395(1), b = 18.684(1), c = 16.259- (3) Å, β= 102.56(1)°, and Dcalc = 1.61 g cm−3 for Z = 4. A final conventional R value of 0.041 was obtained by least-squares refinement using 3453 independent observed [Fo⩾5σ(Fo)] reflections. The [Dy(OH2)8]3+ cations and crown ether molecules are hydrogen bonded in a polymeric chain with the crown molecules separating the cations and a total of seven DyOH2···O(crown ether) hydrogen bonds. The chains are connected by a hydrogen bonding network consisting of the cations, chloride ions, and uncoordinated water molecules. The geometry of the cation is best described as a bicapped trigonal prism with distortions on the reaction pathway toward dodecahedral symmetry. The two capping atoms average 2.41(1) Å from Dy, the remaining DyO distances average 2.38(2) Å. The 18-crown-6 molecule has the D3d conformation normally observed except for a distortion of one OCCO unit containing the oxygen atom accepting two hydrogen bonds.  相似文献   

13.
《Inorganica chimica acta》1986,114(2):111-117
Some uranyl(VI) complexes with new acyclic and cyclic Schiff base compartmental ligands have been prepared and characterized. The ligands have been obtained by reaction of 4-chloro-2,6-diformylphenol and polyamines of the type NH2(CH2)2X (CH2)2NH2 (X= NH, S). The structure of the uranyl(VI) complex with the ligand 1,7,15,21-tetra- aza-4,18-dithia-11,25-dichloro 8,22-bis-metadiphenyl cyclophane-gb-7,14,21,28 has been determined by X-ray crystallography. The compound crystallizes in the orthorhombic space group Pbca with eight formula units in a cell of dimensions a = 26.654(3), b = 22.871(3), c = 8.875(5) Å. The structure was solved by standard methods and refined by full- matrix least squares to the conventional R index of 4.6% for 2678 independent observed reflexions. Five donor atoms (including sulphur) of the ligand are equatorially bonded to the uranyl group to form discrete monomeric molecules with the seven-coordinated metal in the usual distorted pentagonal bipyramidal coordination geometry. Selected bond distances are: UO (equatorial), 2.22(1) and 2.25(1) Å; UN, 2.60(1) and 2.59(1) Å; US, 3.018(4) Å.  相似文献   

14.
《Inorganica chimica acta》1988,146(2):181-185
The reactions between [TcOCl4] and the sterically bulky thiols ArSH (Ar = 2,4,6-Me3C6H2, 2,4,6- Pri3C6H2 and 2,6-Ph2C6H3) in methanol afford complexes of formula [TcO(SAr)4] which may be isolated as salts with bulky organic cations. The molecular structure of [Bun4N][TcO(2,4,6-Me3C6H2S)4] was determined by X-ray diffraction methods. The Tc(V) centre was found to adopt the expected square pyramidal geometry in which an oxo group occupies the apical site and the four thiolate sulphurs the basal sites. The TcO distance is 1.659(11) Å and the average TcS distance 2.38(2) Å. The average cis STcS, trans STcS and OTcS angles are respectively 82.7(6)°, 138.4(3)° and 110.8(4)°.  相似文献   

15.
The reaction of W2Cl4[P(n-Bu)3]4 with bis(diphenylphosphino)methane (dppm) affords the highly air-sensitive material, W2Cl4(dppm)2, which has been characterized by IR and visible spectroscopy, and by X-ray crystallography. The compound crystallizes in the centrosymmetric space group C2/c with the following parameters: a = 17.298(3); b = 17.011- (2); c = 18.413(2) Å; β = 98.93(2); V = 5352(2) Å3; Z = 4. The molecule is positioned about a C2 axis which allows for a net torsion angle of 17.25° down the WW vector. This does not seem to significantly effect the WW bond distance (2.269(1) Å) relative to other quadruply bonded ditungsten species.  相似文献   

16.
Bis-Methyl N,N-diethylcarbamylmethylenephosphonato dysprosium thiocyanate, Dy[O2P(OCH3)CH2C(O)N(C2H5)2]2(NCS) was prepared from the combination of ethanolic solutions of Dy(NCS)3·xH2O and (CH3O)2P(O)CH2C(O)N(C2H5)2. The complex was characterized by infrared and NMR spectroscopy, and single crystal X-ray diffraction methods. The crystal structure was determined at 25 °C from 3727 independent reflections by using a standard automated diffractometer. The complex was found to crystallize in the monoclinic space group P21/c with a = 13.282(4) Å, b = 19.168(5) Å, c = 9.648(2) Å, β = 90.09(2)°, Z = 4, V = 2456.4 Å3 and ?cald = 1.72 g cm?3. The structure was solved by standard heavy atom techniques, and blocked least-squares refinement converged with Rf = 4.7% and RwF = 4.9%. The Dy atom is seven coordinate and bonded in a bidentate fashion to two anionic phosphonate ligands [O2P(OCH3)CH2C(O)N(C2H5)2?] through the carbonyl oxygen atoms and one of two phosphonate oxygen atoms. In addition, each Dy atom is coordinated to two phosphonate oxygen atoms from two neighboring complexes and to the nitrogen atom of a thiocyanate ion. This coordination scheme gives rise to a two-dimensional polymeric structure. Some important bond distances include DyNCS 2.433(8) Å, DyO(carbonyl)avg 2.39(2) Å, DyO(equat. phosphoryl)avg 2.303(8) Å, DyO(axial phosphoryl)avg 2.25(2), PO(phosphoryl)avg 1.493(3) Å and CO(carbonyl)avg 1.25(1) Å.  相似文献   

17.
《Inorganica chimica acta》1986,117(2):103-109
The hybrid, bidentate, diarylphosphino-alkoxide ligand PPh2CH2C(CF3)2O, L1, gives the Pd2+ bis- complex Pd(L1)2, from which the chloride-bridged dinuclear complex [(L1)Pd(μ-Cl)2Pd(L1)] is made by reaction with PdCl2(PhCN)2. Cleavage of the dinuclear complex with monodentate ligands L2 then gives Pd(L1)Cl(L2) (L2 =PPh3, PPh2Me, PPhMe2, PMe3, SMe2, or pyridine); NMR data show that PR3 is cis to the phosphine site in L1 in these complexes, but SMe2 or pyridine are probably trans.A complete crystal and molecular structural determination has been made for cis-Pd(L1)Cl(PPh2Me). Crystals are monoclinic, space group P21/c, a = 10.821(1), b = 14.600(1), c = 18.674(2) Å, β = 101.25(1)°, V = 2893 Å3, Z = 4. Least-squares refinement on F of 361 variables using 3977 observations converged at a conventional agreement factor R = 0.025. The complex is square-planar, with the two phosphines cis; the 5-membered chelate ring is in a dissymmetric envelope conformation. The PdP bonds differ in length, with that to the unidentate phosphine, 2.259(1) Å, being significantly longer than that to the phosphine on the chelating ligand, 2.231(1) Å.  相似文献   

18.
The reaction of the ruthenium complexes RuCl2(PPh3)3, RuCl2(PPh3)4, RuCl2(PMe3)4, RuCl2(Me2SO)4, or RuBr2(PPh3)3 with the tripod tetrakis(tertiary) phosphine P(CH2CH2CH2PMe2)3 gave the compounds cis-RuCl2 [P(CH2CH2CH2PMe2)3] (1) and cis-RuBr2[P(CH2CH2CH2PMe2)3] (2). The coordination geometry of 1 and 2 was derived from the ABX2 type 31P NMR patterns of the complexes, as well as from an X-ray structure determination for the chloride 1. Crystals of 1 were found to be monoclinic, space group P21/n (Z = 4), with a = 942.0(3), b = 1446.2(4), c = 1680(1) pm, and β = 104.99(4)°. Anisotropic refinement of the structure converged at R = 0.040 and Rw = 0.034 (3318 data). Selected bond lengths are (in pm): RuP(CH2−)Me2 (trans-atom P), 235.8(1) and 239.3(1); RuP(CH2−)Me2 (trans-atom Cl), 227.9(1); RuP(CH2−)3, 225.3(1); RuCl (trans-group P(CH2−)3), 252.1(1); and RuCl (trans-group P(CH2)Me2), 250.5(1). Reaction of 1 with LiAlH4 yielded the hydro derivatives cis-Ru(H)Cl[P(CH2CH2CH2PMe2)3] (3) and cis-RuH2[P(CH2CH2CH2PMe2)3] (4), which were characterized by IR and 1H and 31p NMR spectroscopy.  相似文献   

19.
《Inorganica chimica acta》1986,122(1):111-118
The title complex, prepared in 1 M NaOH, was crystallized from hot N,N-dimethylformamide/ ethanol solutions to give Na12[Ce(C6H2O2(SO3)2)4]· 9H2O·6DMF. The purple—brown crystals were examined by X-ray diffraction while inside quartz capillaries filled with DMF, (λmax 425 nm, ϵ 3664; λsh 520 nm, ϵ 2240) and belong to space group Pbca, Z=8 with a=21.846(4), b=17.348(2), c=43.103- (6) Å, V=16.335(7) Å3, Dc=1.693 gcmt−3, Do=1.725 g cmt−3. Diffractometer data were collected using Mo Kα radiation to 2θ=43o. For 7331 independent data with Fo2>3σ(Fo2) full matrix least squares refinement converged to unweighted and weighted R factors of 0.072 and 0.110, respectively, with a mixture of anisotropic and isotropic thermal parameters. The disordered DMF atom parameters were not refined. The structure consists of discrete monomeric Ce(C6H2S2O8)412− units with 12 Na+ counter cations and 10 H2O molecules (two with half occupancy), and 6 DMF molecules of solvation filling up spaces between cations and anions. Cerium(IV) is in a general position with a coordination polyhedron close to the trigonal-faced dodecahedron, D2d, with the angles between the two BAAB trapezoids of 2.3o and 3.7o. The average CeO(A) distance, 2.363(9) Å is longer than the average CeO(B) distance, 2.326(15)Å, with the reverse being true for one of the four tironato ligands. The average ring OCeO angle is 67.9(1)o. The cerium (IV) complex is found by cyclic voltammetry to undergo a quasi-reversible one-electron reduction (in strongly basic solution with excess tiron) with Ef=−497 mV vs. SCE, hence the ratio of the formation constants for tetrakis(tironato)cerate(IV) to that for tetrakis(tironato)cerate(III), KIV/KIII, is 1033. Characterization of other tiron salts is reported.  相似文献   

20.
Two compounds of empirical formula MCl3- (THF)3, M = V and Cr, have been characterized by single crystal X-ray studies. The VCl3(THF)3 molecule, which has a mer octahedral stereochemistry, crystallizes in the monoclinic space group P21/c with a= 8.847(2),b= 12.861(5),c= 15.134(3) Å, β = 91.94(2)°, V = 1721(1) Å3 and Z = 4. The V-Ci(1) and V-CI(2) distances have a mean value of 2.330 [3] Å while V-CI(3) = 2.297(2) Å, The VO(1) and VO(2) distances have a mean value of 2.061[8] Å while V-O(3) = 2.102(3) Å cis ClVCl angles average 92.0[5]° and cis OVO angles average 86.2[2]° . The isostmctural complex, CrCl3(THF)3, has a crystal structure made up of discrete octahedral mer-CrCl3(THF)3 molecules with the following unit cell dimensions (space group P21/c): a = 8.715(1), b= 12.786(3), c = 15.122(3) Å, β = 92.15(1)°, V = 1684(1) Å3 and Z = 4. The CrCl(1) and CrCl(2) distances have a mean value of 2.310131 Å while CrCl(3) = 2.283(2) Å. The CrO(1) and CrO(2) distances have a mean value of 2.0101171 Å while CrO(3) = 2.077(4) Å. cis ClCrCl angles average 90.9[4]° and cis OCrO angles average 86.1 [2]°. The structures of these two octahedral complexes and those previously reported for ScCl3(THF)3 and TiCl3(THF)3 are compared and certain general trends are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号