首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of xanthine (xnH) with 3d metal perchlorates were prepared by refluxing mixtures of ligand and metal salt in ethyl acetate-triethyl orthoformate. In all cases, partial substitution of anionic xn for ClO4 groups occurs, and the solid complexes isolated also contain invariably two neutral xnH ligands per metal ion, viz. Cr(xn)2(xnH)2ClO4, Fe(xn)2(xnH)2ClO4·H2O, M(xn)(xnH)2ClO4·H2O (M = Fe, Co, Ni) and M(xn)(xnH)2ClO4· 2H2O (M = Mn, Zn). The new complexes are generally hexacoordinated and appear to be linear chainlike polymeric species characterized by a (-Mxn-)n single-bridged backbone. Four terminal ligands per metal ion, including two xnH groups in all cases, complete its inner coordination sphere; the remaining two terminal ligands differ from complex to complex as follows: M = Cr3+ xn, -OClO3; Fe3+ xn, H2O; Fe2+, Co2+, Ni2+OClO3, H2O; Mn2+, Zn2+ two aqua ligands. Probable binding sites of bidentate bridging xn and unidentate terminal xnH and xn are discussed.  相似文献   

2.
By refluxing mixtures of guanine (guH) and DyCl3, ThCl4 or UCl4 in ethanol-triethyl orthoformate, solid complexes of the Dy(guH)2(gu)Cl2 and M(gu)2Cl2 (M = Th, U) types were isolated. The insolubility of the new complexes in organic media, combined with the coordination number six suggested by the spectral evidence, favors polymeric configurations. Most likely structures involve a linear, chainlike, single-bridged polymeric backbone
The Dy3+ complex is probably a linear polymer, also containing terminal unidentate guanine ligands, whilst for M = Th4+, U4+ highly polymeric structures arising from cross-linking between linear polymeric
units seems most likely. IR evidence rules out participation of the O(6) oxygen of guanine in coordination, despite the hard acid character of the metal ions under study. Guanine apparently coordinates exclusively through ring nitrogens in the new metal complexes; N(9) and N(7). N(9) are, respectively, the most likely binding sites of terminal unidentate and bridging bidentate guanine. The chloro ligands present in the complexes seem to be exclusively terminal.  相似文献   

3.
《Inorganica chimica acta》1986,123(2):105-112
Adducts of adenosine (ado) with 3d metal perchlorates were synthesized by refluxing mixtures of ligand and salt in ethanol-triethyl orthoformate. Metal(III) perchlorates formed adducts involving 2:3 metal to ado molar ratio (MCr, Fe), i.e., M2(ado)3(ClO4)6·4H2O, whereas 1:1 adducts were produced by metal(II) perchlorates, as follows: M(ado)(ClO4)2·2H20 (MMn, Co, Ni, Cu); and M(ado)(Cl04)2 (MFe, Zn). All the new complexes seem to be polymeric, involving a linear chainlike backbone with single ado bridges between adjacent metal ions in most cases, i.e., −(-M-ado-)-n. The coordination sphere of each metal ion is completed by terminal aqua, ado and, with the exception of the Cu2+ complex, −OClO3 ligands, in the case of the hydrated new complexes. Ado would be binding through the N(1) and N(7) ring nitrogens, when functioning as bridging, bidentate. As regards the two water-free M(II) complexes (MFe, Zn), which are apparently distorted tetrahedral, the evidence available is interpreted in terms of the presence of tridentate bridging ado, binding through N(1), N(7) in the same fashion as above, and through one of the ribose hydroxyl oxygens, which form weaker bonds to M2+ ions located in a neighboring linear polymeric −(-M-ado-)-n unit; the coordination sphere in these complexes is completed by one −OClO3 ligand.  相似文献   

4.
FTIR spectroscopy was used in order to obtain information about metal-carboxylate interactions in metal-alginate complexes of alginic acid and sodium alginate from the brown algae Laminaria digitata after crosslinking with Ca2+, Cu2+, Cd2+, Zn2+, Ni2+ and Pb2+. From the frequencies of the characteristic peaks for asymmetric COO stretching vibration (νasym(COO) and symmetric COO stretching vibration (νsym(COO)) a ‘pseudo bridged’ unidentate coordination with intermolecular hydrogen bonds is proposed for the metal-carboxylate complexes in polyguluronic regions while for the polymannuronic regions the bidentate bridging coordination was proposed. The PIB factor introduced previously as a relationship between metal sorption and frequencies of the asymmetric vibrations was found not to correlate with sorption capacity or any other physical property of the metal-alginate complexes studied.  相似文献   

5.
Upon refluxing 2:1 mixtures of adenine (adH) and divalent 3d metal chloride hydrates in a 7:3 (v/v) mixture of ethanol-triethyl orthoformate for several days, partial substitution of ad? for Cl? ligands occurs, and solid complexes of the M(ad)Cl· 2H20 (M = Mn, Zn), Fe2(ad)(adH)2Cl3·2H2O, M(ad)- (adH)Cl·H2O (M = Co, Cu) and Ni2(ad)3Cl·6H2O types are eventually isolated [1]. It is probably of interest that during analogous previous synthetic work, involving interaction of ligand and salt in refluxing ethanol, no substitution reactions between Cl? and ad? took place, and MCl2 adducts with neutral adH were reportedly obtained. Characterization studies suggest that the new complexes reported are linear chainlike polymeric species, involving single adenine bridges between adjacent M2+ ions. Terminal chloro, adenine and aqua ligands complete the coordination around each metal ion. The new Ni2+ complex is hexacoordinated, whilst the rest of the complexes are pentacoordinated. Most likely binding sites are considered to be N(9) for terminal unidentate and N(7), N(9) for bridging bidentate adenine [1].  相似文献   

6.
The first coordination shell of an Mg(II) ion in a model protein environment is studied. Complexes containing a model carboxylate, an Mg(II) ion, various ligands (NH3, H2S, imidazole, and formaldehyde) and water of hydration about the divalent metal ion were geometry optimized. We find that for complexes with the same coordination number, the unidentate carboxylate–Mg(II) ion is greater than 10 kcal mol?1 more stable than the bidentate orientation. Imidazole was found to be the most stable ligand, followed in order by NH3 formaldehyde, H2O, and H2S. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Calcium complexes with bidentate carbonyl ligands are important in biological systems, medicine and industry, where the concentration of Ca2+ is controlled using chelating ligands. The exchange of two water molecules of [Ca(H2O)6]2+ for one bidentate monosubstituted and homo disubstituted dicarbonyl ligand was investigated using the B3LYP/6-311++G(d,p) method. The ligand substituents NH2, OCH3, OH, CH3, H, F, Cl, CN and NO2 are functional groups with distinct electron-donating and -withdrawing effects that bond directly to the sp2 C atom of the carbonyl group. The geometry, charge and energy characteristics of the complexes were analyzed to help understand the effects of substituents, spacer length and chelation. Coordination strength was quantified in terms of the enthalpy and free energy of the exchange reaction. The most negative enthalpies were calculated for the coordination of bidentate ligands containing three to five methylene group spacers between carbonyls. The chelate effect contribution was analyzed based on the thermochemistry. The electronic character of the substituent modulates the strength of binding to the metal cation, as ligands containing electron-donor substituents coordinate stronger than those with electron-acceptor substituents. This is reflected in the geometric (bond length and chelating angle), electronic (atomic charges) and energetic (components of the total interacting energy) characteristics of the complexes. Energy decomposition analysis (EDA)—an approach for partitioning of the energy into its chemical origins—shows that the electrostatic component of the coordination is predominant, and yields relevant contribution of the covalent term, especially for the electron-withdrawing substituted ligands. The chelate effect of the bidentate ligands was noticeable when compared with substitution by two monodentate ligands.
Graphical abstract The affinity of 18 bidentate carbonyl ligands toward the [Ca(H2O)4]2+ cation is evaluated in terms of energetic, geometric and electronic parameters of the isolated ligands and the substituted aqua complexes. The electronic effects—inductive and mesomeric—intrinsic to the molecular structure of each ligand are found to modulate the strength of the metal-ligand interaction. The effects of polysubstitution, chelation and the length of the alkyl spacers between the anchor points of the ligand are also analyzed.
  相似文献   

8.
Three new chiral ligands bearing an O,O′,N donor set (OmethoxyOhydroxyNpyridine) were synthesised and coordinated to FeIII, FeII, NiII, CuII and ZnII to yield complexes with the general formula [M(OON)Clx]y. While the pyridine N and the hydroxy O atoms coordinate strongly to all applied metal ions, the methoxy donor seems not to be involved in coordination, although some evidence for a weak interaction between OMe and the ZnII were found in NMR spectra. In the bidentate O′,N coordination mode the new ligands exhibit several coordination geometries as analysed in the solid compounds by XRD, EXAFS and EPR and in solution by UV-Vis absorption, cyclic voltammetry, EXAFS, EPR or NMR spectroscopy.  相似文献   

9.
DFT (B3LYP and M06L) as well as ab initio (MP2) methods with Dunning cc-pVnZ (n?=?2,3) basis sets are employed for the study of the binding ability of the new class of protease inhibitors, i.e., silanediols, in comparison to the well-known and well-studied class of inhibitors with hydroxamic functionality (HAM). Active sites of metalloproteases are modeled by [R3M-OH2]2+ complexes, where R stands for ammonia or imidazole molecules and M is a divalent cation, namely zinc, iron or nickel (in their different spin states). The inhibiting activity is estimated by calculating Gibbs free energies of the water displacement by metal binding groups (MBGs) according to: [R3M-OH2]2+ + MBG → [R3M-MBG]2+ + H2O. The binding energy of silanediol is only a few kcal mol?1 inferior to that of HAM for zinc and iron complexes and is even slightly higher for the triplet state of the (NH3)3Ni2+ complex. For both MBGs studied in the ammonia model the binding ability is nearly the same, i.e., Fe2+(t) > Ni2+(t) > Fe2+(q) > Ni2+(s) > Zn2+. However, for the imidazole model the order is slightly different, i.e., Ni2+(t) > Fe2+(t) > Fe2+(q) > Ni2+(s) ≥ Zn2+. Equilibrium structures of the R3Zn 2+ complexes with both HAM and silanediol are characterized by the monodentate binding, but the bidentate character of binding increases on going to iron and nickel complexes. Two types of intermediates of the water displacement reactions for [(NH3)3M-OH2]2+ complexes were found which differ by the direction of the attack of the MBG. Hexacoordinated complexes exhibit bidentate bonding of MBGs and are lower in energy for M=Ni and Fe. For Zn penta- and hexacoordinated complexes have nearly the same energy. Intermediate complexes with imidazole ligands have only octahedral structures with bidentate bonding of both HAM and dimethylsilanediol molecules.  相似文献   

10.
Two ligands have been prepared in which N,O-bidentate chelating pyrazolyl-phenolate units, based on 3-(2-hydroxyphenyl)pyrazole, are connected via methylene linkages to aromatic (1,4-phenylene or 3,3′-biphenylene) spacers. In each case the two N,O-donor units are too far apart to chelate to a single metal ion. Complexes of both ligands with Co(II), Cu(II) and Zn(II) were prepared and structurally characterised; in all cases the complexes are dinuclear double helicates M2L2, with each four-coordinate metal ion bound by a chelating unit from each of the two ligands in the complex. For Co(II) and Zn(II) the two M(NO) planes at each metal are close to perpendicular, indicative of a geometry which may be described as approximately distorted tetrahedral; for the Cu(II) complexes the angle between the two Cu(NO) planes is less, indicative of a distortion towards a more planar coordination geometry.  相似文献   

11.
A series of four mononuclear manganese (II) complexes with the N-tridentate neutral ligands 2,2:6,2′′-terpyridine (terpy) and N,N-bis(2-pyridylmethyl)ethylamine (bpea) have been synthesized and crystallographically characterized. The complexes have five- to seven-coordinate manganese(II) ions depending on the additional ligands used. The [Mn(bpea)(Br)2] complex (1) has a five-coordinated manganese atom with a bipyramidal trigonal geometry, while [Mn(terpy)2](I)2 (2) is hexa-coordinated with a distorted octahedral geometry. Otherwise, the reactions of Mn(NO3)2 · 4H2O with terpy or bpea afforded novel seven-coordinate complexes [Mn(terpy)(NO3)2(H2O)] (3) and [Mn(bpea)(NO3)2] (4), respectively. 3 has a coordination polyhedron best described as a distorted pentagonal bipyramid geometry with one nitrate acting as a bidentate chelating ligand and the other nitrate as a monodentate one. 4 possesses a highly distorted polyhedron geometry with two bidentate chelating nitrate ligands. These complexes represent unusual examples of structurally characterized complexes with a coordination number seven for the Mn(II) ion and join a small family of nitrate complexes.  相似文献   

12.
In this paper, we present the complete synthesis of the 3-Acetamido-5-methylpyrazole (3-Ac-AMP) from 3-amino-5-methylpyrazole and acetic acid anhydride, including its full spectroscopic characterization. The solid-state structure shows extensive H-bonding involving the acyl and pyrazole moieties. Upon coordination to Co2+, Zn2+, and Cd2+, the system adopts a geometry that allows it to bind to metal centres as a O,N-chelate. 3-Ac-AMP coordination to Zn and Cd was monitored by 1H NMR showing the formation of presumably tetrahedral 2:1 complexes. In the solid state, Co and Zn complexes are centrosymmetric and octahedral having two 3-Ac-AMP ligands in the equatorial plane and two methanol ligands occupying axial positions. The systems form a layered structure in which the ClO4 − counter ion links the layers via H-bonding.  相似文献   

13.
Two complexes of Tb3+, Gd3+/Tb3+ and one heteronuclear crystal Gd3+/Tb3+ with phenoxyacetic acid (HPOA) and 2,4,6‐tris‐(2‐pyridyl)‐s–triazine (TPTZ) have been synthesized. Elemental analysis, rare earth coordination titration, inductively coupled plasma atomic emission spectrometry (ICP‐AES) and thermogravimetric analysis‐differential scanning calorimetry (TG‐DSC) analysis show that the two complexes are Tb2(POA)6(TPTZ)2·6H2O and TbGd(POA)6(TPTZ)2·6H2O, respectively. The crystal structure of TbGd(POA)6(TPTZ)2·2CH3OH was determined using single‐crystal X‐ray diffraction. The monocrystal belongs to the triclinic system with the P‐1 space group. In particular, each metal ion is coordinately bonded to three nitrogen atoms of one TPTZ and seven oxygen atoms of three phenoxyacetic ions. Furthermore, there exist two coordinate forms between C6H5OCH2COO and the metal ions in the crystal. One is a chelating bidentate, the other is chelating and bridge coordinating. Fluorescence determination shows that the two complexes possess strong fluorescence emissions. Furthermore, the fluorescence intensity of the Gd3+/Tb3+ complex is much stronger than that of the undoped complex, which may result from a decrease in the concentration quench of Tb3+ ions, and intramolecular energy transfer from the ligands coordinated with Gd3+ ions to Tb3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We report the synthesis of the Schiff base ligands, 4-[(4-bromo-phenylimino)-methyl]-benzene-1,2,3-triol (A1), 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,2,3-triol (A2), 3-(p-tolylimino-methyl)-benzene-1,2-diol (A3), 3-[(4-bromo-phenylimino)-methyl]-benzene-1,2-diol (A4), and 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,3-diol (A5), and their Cd(II) and Cu(II) metal complexes, stability constants and potentiometric studies. The structure of the ligands and their complexes was investigated using elemental analysis, FT-IR, UV-Vis, 1H and 13C NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands behave as bidentate ligands, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff base ligands A1-A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the strains Bacillus megaterium and Candida tropicalis.Protonation constants of the triol and diol Schiff bases and stability constants of their Cu2+ and Cd2+ complexes were determined by potentiometric titration method in 50% DMSO-water media at 25.00 ± 0.02 °C under nitrogen atmosphere and ionic strength of 0.1 M sodium perchlorate. It has been observed that all the Schiff base ligands titrated here have two protonation constants. The variation of protonation constant of these compounds was interpreted on the basis of structural effects associated with the substituents. The divalent metal ions of Cu2+ and Cd2+ form stable 1:2 complexes with Schiff bases.The Schiff base complexes of cadmium inhibit the intense chemiluminescence reaction in dimethylsulfoxide (DMSO) solution between luminol and dioxygen in the presence of a strong base. This effect is significantly correlated with the stability constants KCdL of the complexes and the protonation constants KOH of the ligands; it also has a nonsignificant association with antibacterial activity.  相似文献   

15.
O,O′-dipropyldithiophosphate and O,O′-di-iso-butyldithiophosphate (Dtph) tetraphenylantimony(V) complexes of the general formula [Sb(C6H5)4{S2P(OR)2}] (R = C3H7, i-C4H9) were prepared and studied by means of 13C, 31P CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. Distorted octahedral and trigonal bipyramidal molecular structures have been established for prepared complexes. These unexpected structural distinctions between chemically related compounds are defined by the principally different coordination modes of O,O′-dipropyldithiophosphate and O,O′-di-iso-butyldithiophosphate ligands in their molecular structures (i.e., S,S′-bidentate chelating and S-unidentately coordinated, respectively). To characterise quantitatively phosphorus sites in both species of dithiophosphate ligands, 31P chemical shift anisotropy parameters (δaniso and η) were calculated from spinning sideband manifolds in MAS NMR spectra. The 31P chemical shift tensors for the bidentate chelating and unidentately coordinated dithiophosphate ligands display a profoundly rhombic and nearly axially symmetric characters, respectively.  相似文献   

16.
The synthesis and structural characterization of NiII, CuII and ZnII complexes of two chelating 1,2,4-oxadiazole ligands, namely 3,5-bis(2′-pyridyl)-1,2,4-oxadiazole (bipyOXA) and 3-(2′-pyridyl)5-(phenyl)-1,2,4-oxadiazole (pyOXA), is here reported. The formed hexacoordinated metal complexes are [M(bipyOXA)2(H2O)2](ClO4)2 and [M(pyOXA)2(ClO4)2], respectively (M = Ni, Cu, Zn). X-ray crystallography, 1H and 13C NMR spectroscopy and C, N, H elemental analysis data concord in attributing them an octahedral coordination geometry. The two coordinated pyOXA ligands assume a trans coplanar disposition, while the two bipyOXA ligands are not. The latter result is a possible consequence of the formation of H-bonds between the coordinated water molecules and the nitrogen atom of the pyridine in position 5 of the oxadiazole ring. The expected splitting of the d metal orbitals in an octahedral ligand field explains the observed paramagnetism of the d8 and d9 electron configuration of the nickel(II) and copper(II) complexes, respectively, as determined by the broadening of their NMR spectra.  相似文献   

17.
Upon refluxing 2:1 mixtures of guanine (guH) and MnCl2, FeCl2 or NiCl2 in a 7:3 (v/v) mixture of ethanol and triethyl orthoformate for 1–2 weeks, partial substitution of gu? for Cl? groups occurs, and solid complexes of the M(gu)Cl·2ROH (R = C2H5 for M = Mn; R = H for M = Fe, Ni) type are obtained. The new complexes are pentacoordinated and appear to be linear chainlike polymeric species, involving a single-bridged
n backbone. Coordination number five is attained by the presence of one terminal chloro and two terminal ROH ligands per metal ion. Most probable binding sites of bidentate bridging gu? are the N(7) and N(9) imidazole ring nitrogens. IR evidence rules out the possibility of coordination of gu? through any of the exocyclic potential ligand sites (O(6) oxygen or N(2) nitrogen) [1].  相似文献   

18.
The preparation of well-defined adducts of the M(guH)(2Cl3 (M = Cr, Fe) and VO(guH)Cl2 types (guH = neutral guanine), by refluxing ligand and metal chloride mixtures in ethanol-triethyl orthoformate, is reported. Characterization studies suggest that the new complexes are probably linear chain-like polymeric species, involving single bridges of bidentate guH ligands between adjacent metal ions. Bidentate bridging guH is most probably coordinated through the N(7) and N(9) imidazole nitrogens. The chloro ligands present in the adducts are exclusively terminal. Infrared evidence rules out the possibility of coordination of guanine through either of its exocyclic potential binding sites (i.e., CO oxygen and NH2 nitrogen) [1].  相似文献   

19.
New complexes have been synthesized of scorpionate ligands with cyano substituents in the 4-positions of the pyrazoles and tert-butyl substituents in the 3-positions of the pyrazoles. Reaction of Co2+, Mn2+, and Ni(cyclam)2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) with Tpt-Bu,4CN in a 1:2 ratio produced new octahedral metal complexes of the form (Tpt-Bu,4CN)2ML4 (L= (H2O)4, (H2O)2(MeOH)2, or cyclam). Unlike the sandwich complexes previously isolated with TpPh,4CN, the crystal structures showed none of the pyrazole nitrogen atoms coordinated to the metal. Rather, the metal is coordinated to one CN nitrogen atom from each ligand, with two Tp anions coordinated trans to each other around the metal center. This leaves the Tp pyrazole nitrogen atoms open for another metal to coordinate, which could to lead to heterometallic complexes, new coordination polymers, as well as the framework for supramolecular complexes.  相似文献   

20.
[1+1] macrocyclic and [1+2] macroacyclic compartmental ligands (H2L), containing one N2O2, N3O2, N2O3, N4O2 or O2N2O2 Schiff base site and one O2On (n=3, 4) crown-ether like site, have been prepared by self-condensation of the appropriate formyl- and amine precursors. The template procedure in the presence of sodium ion afforded Na2(L) or Na(HL) · nH2O. When reacted with the appropriate transition metal acetate hydrate, H2L form M(L) · nH2O, M(HL)(CH3COO) · nH2O, M(H2L)(X)2 · nH2O (M=Cu2+, Co2+, Ni2+; X=CH3COO, Cl) or Mn(L)(CH3COO) · nH2O according to the experimental conditions used. The same complexes have been prepared by condensation of the appropriate precursors in the presence of the desired metal ion. The Schiff bases H2L have been reduced by NaBH4 to the related polyamine derivatives H2R, which form, when reacted with the appropriate metal ions, M(H2R)(X)2 (M= Co2+, Ni2+; X=CH3COO, Cl), Cu(R) · nH2O and Mn(R)(CH3COO) · nH2O. The prepared ligands and related complexes have been characterized by IR, NMR and mass spectrometry. The [1+1] cyclic nature of the macrocyclic polyamine systems and the site occupancy of sodium ion have been ascertained, at least for the sodium (I) complex with the macrocyclic ligand containing one N3O2 Schiff base and one O2O3 crown-ether like coordination chamber, by an X-ray structural determination. In this complex the asymmetric unit consists of one cyclic molecule of the ligand coordinated to a sodium ion by the five oxygen atoms of the ligand. The coordination geometry of the sodium ion can be described as a pentagonal pyramid with the metal ion occupying the vertex. In the mononuclear complexes with H2L or H2R the transition metal ion invariantly occupies the Schiff base site; the sodium ion, on the contrary, prefers the crown-ether like site. Accordingly, the heterodinuclear complexes [MNa(L)(CH3COO)x] (M=Cu2+, Co2+, Ni2, x=1; M=Mn3+, x=2) have been synthesised by reacting the appropriate formyl and amine precursors in the presence of M(CH3COO)n · nH2O and NaOH in a 1:1:1:2 molar ratio. The reaction of the mononuclear transition metal complexes with Na(CH3COO) · nH2O gives rise to the same heterodinuclear complexes. Similarly [MNa(R)(CH3COO)x] have been prepared by reaction of the appropriate polyamine ligand H2R with the desired metal acetate hydrate and NaOH in 1:1:2 molar ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号