首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation of ligand binding to native cytochrome c, carboxymethyl-Met 80-cytochrome c, myoglobin and haemhexapeptide revealed that the binding of exogenous ligands is modulated by the following factors:
  • 1.Hydrophobicity of the haem environment.
  • 2.Haem accessibility to exogenous ligands, termed the haem crevice ‘open-closed’ parameter.
  • 3.Steric interactions between the protein and the bound ligand.
  相似文献   

2.
A pathway for cytochrome c maturation (Ccm) in bacteria, archaea and eukaryotes (mitochondria) requires the genes encoding eight membrane proteins (CcmABCDEFGH). The CcmABCDE proteins are proposed to traffic haem to the cytochrome c synthetase (CcmF/H) for covalent attachment to cytochrome c by unknown mechanisms. For the first time, we purify pathway complexes with trapped haem to elucidate the molecular mechanisms of haem binding, trafficking and redox control. We discovered an early step in trafficking that involves oxidation of haem (to Fe3+), yet the final attachment requires reduced haem (Fe2+). Surprisingly, CcmF is a cytochrome b with a haem never before realized, and in vitro, CcmF functions as a quinol:haem oxidoreductase. Thus, this ancient pathway has conserved and orchestrated mechanisms for trafficking, storing and reducing haem, which assure its use for cytochrome c synthesis even in limiting haem (iron) environments and reducing haem in oxidizing environments.  相似文献   

3.
A monomeric nine-haem cytochrome c (9Hcc) with 292 amino acid residues was isolated from cells of the sulfate- and nitrate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 grown under both nitrate- and sulfate-respiring conditions. The nucleotide sequence encoding the 292 residues was determined, allowing the correction of about 10% of the previous primary structure, determined from 1.8?Å electron density maps. The refinement at 1.8?Å resolution of the structural model was completed, giving an R-value of 16.5%. The nine haem groups are arranged into two tetrahaem clusters, located at both ends of the molecule, with Fe-Fe distances and local protein fold very similar to tetrahaem cytochromes c 3, and the extra haem is located asymmetrically between the two regions. The new primary sequence determination confirmed the 39% sequence homology found between this cytochrome and the C-terminal region (residues 229–514) of the high-molecular-weight cytochrome c (Hmc) from D. vulgaris Hildenborough, providing strong evidence of structural similarity between 9Hcc and the C-terminal region of Hmc. The interaction between 9Hcc and the tetrahaem cytochrome c 3 from the same organism was studied by modelling methods, and the results suggest that a specific interaction is possible between haem 4 of tetrahaem cytochrome c 3 and haem 1 or haem 2 of 9Hcc, in agreement with previous kinetic experiments which showed the catalytic effect of the tetrahaem cytochrome c 3 upon the reduction of 9Hcc by the [NiFe] hydrogenase from D. desulfuricans ATCC 27774. These studies suggest a role for 9Hcc as part of the assembly of redox proteins involved in recycling the molecular hydrogen released by the cell as a result of substrate oxidation.  相似文献   

4.
Oxidized cytochrome c is known to undergo a restricted conformational refolding of its haem area at around pH 9. Methionine 80, the sixth ligand of the ferric haem iron in the biologically active neutral conformational state, is replaced by a new strong-field ligand in the biologically inactive alkaline state of the molecule. It had been proposed that a lysine residue, possibly lysine 79. is the new haem ligand.We have tested this proposition by a more direct approach than hitherto employed, namely by measuring the relative chemical reactivity of lysines in the oxidized eytochrome c and in fragment 66–80 cut out of the native molecule. The relative rates of acetylation of lysine 79, measured between pH 7 and pH 11, are virtually identical in the intact molecule and in the haem-free fragment 66–80. Similarly, the rates are also the same for the amidination reaction with isethionylacetimidate. When the relative rates of acetylation and amidination of lysines 72 + 73 were compared there was again no significant difference between the intact molecule and fragment 66–80. These results contradict the involvement of any of the three lysines in the alkaline isomerization, as a haem-bound ?-amino group would be much less reactive than its freely accessible counterpart in fragment 66–80.To corroborate the above finding, the pK value and absolute rate constant of acetylation of lysine 79 were determined and compared with the respective values for lysines 39 and 60. The latter two residues are on the side opposite to the haem pocket and hence unable to bind to the haem iron.The three pK values and rate constants k obey the Brønsted relationship: log κ = α + βpK with β = 0.48, a value characteristic of the acetylation of freely accessible primary amino groups.Taken together, these results oppose an ?-amino: haem iron co-ordination in the alkaline state of oxidized eytochrome c.  相似文献   

5.
The kinetics of the reaction between cytochrome c peroxidase and fluoride was investigated as a function of ionic strength over the pH range 4 to 8. The ionic strength was varied between 0.01 and 0.10 m. At 0.01 m ionic strength, the reaction rates were determined between pH 2.7 and 9.2. A consideration of the ionic strength and pH dependence of the association rate constant for the fluoride-cytochrome c peroxidase reaction leads to the conclusion that hydrofluoric acid is the only significant reactive form of the ligand between pH 2.5 and 8. Above pH 8, binding of fluoride anion contributes to the apparent association rate even though the pH-independent rate constant for fluoride anion binding is more than 3 × 105 times smaller than the rate constant for hydrofluoric acid binding.  相似文献   

6.
7.
The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge–charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process.  相似文献   

8.
Quenching of 12-(9-anthroyl) stearic acid (AS) fluorescence by cytochrome c occurs through an energy-transfer mechanism and can be used to measure the binding of the cytochrome to artificial and mitochondrial membranes. The quenching of AS3 fluorescence is biphasic (t12 below 25 msec and above 500 msec) and its extent diminishes at high salt concentration or at high pH and increases in the presence of negatively charged lipids.Addition of cytochrome c to cytochrome c-depleted mitochondria results in binding of the cytochrome to the membrane and quenching of AS fluorescence. The affinity of oxidized cytochrome c for cytochrome c-depleted mitochondria is 1.8 × 106m, while the affinity constant for reduced cytochrome c is 0.5 × 106m. The lower affinity of the reduced cytochrome c for mitochondrial membranes is in accordance with midpoint potential differences between the bound and free forms.  相似文献   

9.
Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The "split-Soret" cytochrome (SSC) was isolated from the sulfate- and nitrate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 and has no significant nitrate or nitrite reductase activity. The protein received its name due its unusual spectral properties. It is a dimer containing two identical subunits of 26.3 kDa, each with two haem-c groups. A preliminary model for the three-dimensional structure of this cytochrome was derived using the Multiple Wavelength Anomalous Dispersion (MAD) phasing method. This model shows that SSC is indeed a dimer containing four haems at one end of the molecule. In each monomer the two haems have their edges overlapped within van der Waals contacts with an iron-to-iron distance of 9?Å. The polypeptide chain of each monomer supplies the sixth axial ligand to the haems of the other monomer. This work shows that SSC constitutes a new class of cytochrome. The stacking of the two haems in the monomer within van der Waals distances of each other, and also the short (van der Waals) distances between the two monomers in the dimeric molecule are unprecedented in hemoproteins. This particular haem arrangement is an excellent model for the spectral study (undertaken several years ago) of haem-haem interaction using the aggregated haem undecapeptide derived from mammalian cytochrome c.  相似文献   

10.
Dimitri A. Svistunenko 《BBA》2005,1707(1):127-155
The reaction between hydroperoxides and the haem group of proteins and enzymes is important for the function of many enzymes but has also been implicated in a number of pathological conditions where oxygen binding proteins interact with hydrogen peroxide or other peroxides. The haem group in the oxidized Fe3+ (ferric) state reacts with hydroperoxides with a formation of the Fe4+=O (oxoferryl) haem state and a free radical primarily located on the π-system of the haem. The radical is then transferred to an amino acid residue of the protein and undergoes further transfer and transformation processes. The free radicals formed in this reaction are reviewed for a number of proteins and enzymes. Their previously published EPR spectra are analysed in a comparative way. The radicals directly detected in most systems are tyrosyl radicals and the peroxyl radicals formed on tryptophan and possibly cysteine. The locations of the radicals in the proteins have been reported as follows: Tyr133 in soybean leghaemoglobin; αTyr42, αTrp14, βTrp15, βCys93, (αTyr24−αHis20), all in the α- and β-subunits of human haemoglobin; Tyr103, Tyr151 and Trp14 in sperm whale myoglobin; Tyr103, Tyr146 and Trp14 in horse myoglobin; Trp14, Tyr103 and Cys110 in human Mb. The sequence of events leading to radical formation, transformation and transfer, both intra- and intermolecularly, is considered. The free radicals induced by peroxides in the enzymes are reviewed. Those include: lignin peroxidase, cytochrome c peroxidase, cytochrome c oxidase, turnip isoperoxidase 7, bovine catalase, two isoforms of prostaglandin H synthase, Mycobacterium tuberculosis and Synechocystis PCC6803 catalase-peroxidases.  相似文献   

11.
《Inorganica chimica acta》1988,153(2):99-104
The kinetics of ligand binding to native cytochrome c and myoglobin seem to suggest that both proteins bind exogenous ligands by an SN2 mechanism, while the form of cytochrome c which lacks the 695 nm absorption band binds ligands by a limiting SN1 mechanism. It is suggested that the rate-limiting step in the SN2 mechanism is different from that in the SN1 mechanism.  相似文献   

12.
Cell-free extracts of Thiobacillus acidophilus prepared at neutral pH showed oxidation of sulfite to sulfate with ferricyanide as electron acceptor. Horse heart cytochrome c could be used as alternative electron acceptor; however, the observed activity was only 0.1% of that found for ferricyanide. The enzyme responsible for the oxidation of sulfite was purified to homogeneity. The purified enzyme was a monomer of 42 kDa and contained one haem c per monomer. Electron paramagnetic resonance (EPR) spectroscopical analysis of the sulfite:cytochrome c oxidoreductase showed the presence of molybdenum (V), only after reduction of the enzyme with sulfite. The pH optimum for the enzymatic reaction was 7.5 and the temperature optimum 40°C. Enzymatic activity was strongly reduced in the presence of the anions: chloride, phosphate and nitrate. In contrast to other enzymes involved in sulfur metabolism and previously isolated from T. acidophilus, sulfite:cytochrome c oxidoreductase activity is not stimulated by the presence of sulfate ions.  相似文献   

13.
14.
Several cytochromes c2 from the Rhodospirillaceae show a pH dependence of redox potential in the physiological pH range which can be described by equations involving an ionisation in the oxidised form (pKo) and one in the reduced form (pKr). These cytochromes fall into one of two groups according to the degree of separation of pKo and pKr. In group A, represented here by the Rhodomicrobium vannielii cytochrome c2, the separation is approx. one pH unit and the ionisation is that of a haem propionic acid. Members of this group are unique among both cytochromes c2 and mitochondrial cytochromes c in lacking the conserved residue Arg-38. We propose that the role of Arg-38 is to lower the pK of the nearby propionic acid, so that it lies out of the physiological pH range. Substitution of this residue by an uncharged amino acid leads to a raised pK for the propionic acid. In group B, represented here by Rhodopseudomonas viridis cytochrome c2, the separation between pKo and pKr is approx. 0.4 pH unit and the ionisable group is a histidine at position 39. This was established by NMR spectroscopy and confirmed by chemical modification. Only a few other members of the cytochrome c2/mitochondrial cytochrome c family have a histidine at this position and of these, both Crithidia cytochrome c-557 and yeast cytochrome c were found to have a pH-dependent redox potential similar to that of Rps. viridis cytochrome c2. Using Coulomb's law, it was found that the energy required to separate pKo and pKr could be accounted for by simple electrostatic interactions between the haem iron and the ionisable group.  相似文献   

15.
16.
Type I cytochrome c3 is a key protein in the bioenergetic metabolism of Desulfovibrio spp., mediating electron transfer between periplasmic hydrogenase and multihaem cytochromes associated with membrane bound complexes, such as type II cytochrome c3. This work presents the NMR assignment of the haem substituents in type I cytochrome c3 isolated from Desulfovibrio africanus and the thermodynamic and kinetic characterisation of type I and type II cytochromes c3 belonging to the same organism. It is shown that the redox properties of the two proteins allow electrons to be transferred between them in the physiologically relevant direction with the release of energised protons close to the membrane where they can be used by the ATP synthase.  相似文献   

17.
A single species of tryptophan-59 formylated cytochrome c with a half-reduction potential of 0.085 ± 0.01 V at pH 7.0 was used to study its catalytic and functional properties. The spectral properties of the modified cytochrome show that the 6th ligand position is open to reaction with azide, cyanide, and carbon monoxide. Formylated cytochrome c binds to cytochrome c depleted rat liver and pigeon heart mitochondria with the precise stoichiometry of two modified cytochrome c molecules per molecule of cytochrome a (KD of approx 0.1 μm). Formylated cytochrome c was reducible by ascorbate and was readily oxidized by cytochrome c oxidase. The apparent Km value of the oxidase for the formylated cytochrome c was six times higher than for the native cytochrome and the apparent V was smaller. Formylated cytochrome c does not restore the oxygen uptake in C-depleted mitochondria but inhibits, in a competitive manner, the oxygen uptake induced by the addition of native cytochrome c. Formylated cytochrome c was inactive in the reaction with mitochondrial NADH-cytochrome c reductase but was able to accept electrons through the microsomal NADPH-cytochrome c reductase.  相似文献   

18.
Mammalian cytochrome c can effectively replace bacterial cytochrome c2 as the electron donor to the bacterial photosynthetic reaction center in either the natural chromatophore or a reconstituted reaction center/phospholipid membrane. In this paper, the reconstituted membrane was used to describe the nature of cytochrome c binding to the reaction center, the location of bound cytochrome c in the membrane profile and the perturbation of the reaction center and phospholipid profile structures induced by cytochrome c binding. These structural studies utilized the combined techniques of X-ray and neutron diffraction.  相似文献   

19.
Studies of cytochrome synthesis in rat liver   总被引:3,自引:1,他引:2       下载免费PDF全文
The incorporation of radioactive amino acids and of δ-amino[2,3-3H2]laevulinate into rat liver cytochromes b5 and c and cytochrome oxidase has been examined with and without protein-synthesis inhibitors. Cycloheximide promptly inhibits labelling of both haem and protein for cytochrome c in parallel fashion. Although incorporation of 14C-labelled amino acid into microsomal cytochrome b5 is also rapidly inhibited, cycloheximide incompletely inhibits haem labelling of cytochrome b5 and cytochrome a+a3, and inhibition occurs only after repeated antibiotic injections. The possibility of apo-protein pools, or of haem exchange, with a rapidly renewed `free' haem pool, is considered. Consistent with this model is the observation of non-enzymic haem exchange in vitro between cytochrome b5 and methaemoglobin. Chloramphenicol, injected intravenously over 5h, results in a 20–40% decrease in incorporation of δ-amino[2,3-3H2]laevulinate into haem a+a3 and haem of cytochromes b5 and c. With the dosage schedule of chloramphenicol studied, amino acid labelling of total liver protein and of cytochrome c was not inhibited. Similarly, ferrochelatase activity was not decreased.  相似文献   

20.
In this work it is demonstrated that the characterization of c-type haem containing proteins by electrochemical techniques needs to be cautiously performed when using pyrolytic graphite electrodes. An altered form of the cytochromes, which has a redox potential 300 mV lower than that of the native state and displays peroxidatic activity, can be induced by interaction with the pyrolytic graphite electrode. Proper control experiments need to be performed, as altered conformations of the enzymes containing c-type haems can show activity towards the enzyme substrate. The work was focused on the study of the activation mechanism and catalytic activity of cytochrome c peroxidase from Paracoccus pantotrophus. The results could only be interpreted with the assignment of the observed non-turnover and catalytic signals to a non-native conformation state of the electron-transferring haem. The same phenomenon was detected for Met–His monohaem cytochromes (mitochondrial cytochrome c and Desulfovibrio vulgaris cytochrome c-553), as well as for the bis-His multihaem cytochrome c 3 from Desulfovibrio gigas, showing that this effect is independent of the axial coordination of the c-type haem protein. Thus, the interpretation of electrochemical signals of c-type (multi)haem proteins at pyrolytic graphite electrodes must be carefully performed, to avoid misassignment of the signals and incorrect interpretation of catalytic intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号