首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
In the present study, two adjuvants, SGP and Quil A, were assessed for their ability to induce experimental autoimmune thyroiditis (EAT) in mice. SGP (a synthetic copolymer of starch, acrylamide, and sodium acrylate) and Quil A (a plant saponin) were compared with lipopolysaccharide (LPS) and complete Freund's adjuvant (CFA) given together with mouse thyroglobulin (MTg) for their ability to induce EAT in CBA/J mice. Immunization with MTg and LPS, MTg and CFA, or MTg with SGP was effective in inducing anti-MTg antibodies and histologic EAT, while MTg with Quil A was ineffective in inducing either anti-MTg antibodies or EAT. MTg with LPS was able to prime mice for the development of an in vitro spleen cell proliferative response to MTg while MTg with SGP or with Quil A was unable to prime spleen cells to proliferate detectably in response to MTg. MTg with LPS given in vivo primes CBA/J spleen cells for further activation by in vitro culture with MTg to transfer EAT to naive CBA/J recipients. MTg with SGP was also effective in priming CBA/J spleen cells for in vitro activation and transfer of EAT while MTg with Quil A was ineffective. The effective adjuvant activity of SGP and its lack of toxicity relative to LPS should make it a useful agent for further studies in murine models of EAT.  相似文献   

2.
Experimental autoimmune thyroiditis (EAT), a model for Hashimoto's thyroiditis, is a T cell-mediated disease inducible with mouse thyroglobulin (mTg). Pretreatment with mTg, however, can induce CD4+ T cell-mediated tolerance to EAT. We demonstrate that CD4+CD25+ regulatory cells are critical for the tolerance induction, as in vivo depletion of CD25+ cells abrogated established tolerance, and CD4+CD25+ cells from tolerized mice suppressed mTg-responsive cells in vitro. Importantly, administration of an agonistic CD137 monoclonal antibody (mAb) inhibited tolerance development, and the mediation of established tolerance. CD137 mAb also inhibited the suppression of mTg-responsive cells by CD4+CD25+ cells in vitro. Signaling through CD137 likely resulted in enhancement of the responding inflammatory T cells, as anti-CD137 did not enable CD4+CD25+ T cells to proliferate in response to mTg in vitro.  相似文献   

3.
Susceptibility to experimental autoimmune thyroiditis (EAT) in the mouse is linked to the I-A subregion of the major histocompatibility complex. EAT can be induced in susceptible strains of mice by immunization with mouse thyroglobulin (MTg) and adjuvant. We have described a cell transfer system wherein spleen cells from EAT-susceptible CBA/J mice primed in vivo with MTg and lipopolysaccharide (LPS) can be activated in vitro with MTg to transfer EAT to naive syngeneic recipients. This cell transfer system was used to elucidate the cellular basis for the I-A restriction in EAT. While the cell active in transferring EAT was Thy 1+ I-A-, depletion of I-A+ cells from the in vitro culture prevented the activation of EAT effector T cells. MTg-pulsed mitomycin C-treated naive syngeneic spleen cells as antigen-presenting cells (APCs) could replace the I-A+ cells in vitro. Allogeneic (Balb/c) APCs were ineffective. Using APCs from several recombinant inbred strains of mice, it was shown that C3H/HEN and B10.A(4R) APCs were effective in activating MTg/LPS-primed CBA/J spleen cells to transfer EAT while B10.A(5R) APCs were ineffective. This maps the H-2 restriction to the K or I-A subregions. Addition of polyclonal anti-Iak or monoclonal anti-I-Ak or anti-L3T4 during in vitro activation inhibited both the generation of EAT effector cells and the proliferative response to MTg. Irrelevant anti-Ia reagents, monoclonal anti-I-Ek, and monoclonal anti-I-Jk were ineffective. Thus the I-A restriction in murine EAT appears to result from an I-A restricted interaction between Ia+ APCs and Ia- EAT effector T cells.  相似文献   

4.
Previous studies have shown that genetically susceptible mice can be rendered resistant to the induction of experimental autoimmune thyroiditis (EAT) by pretreatment with deaggregated mouse thyroglobulin (dMTg). This resistance is mediated by CD4+ suppressor T cells (Ts) which suppress the afferent/inductive phase of EAT. Recent work has also shown that resistance to EAT can be achieved by vaccination with irradiated spleen cells previously primed in vivo with MTg and cultured in vitro with MTg (gamma SC). The gamma SC-induced resistance also inhibits the afferent phase of EAT but is mediated by both CD4+ and CD8+ Ts. To determine if dMTg- and gamma SC-induced suppression can cooperate to prevent EAT, we pretreated mice with suboptimal doses of dMTg and gamma SC before challenge with MTg and adjuvant. Mice receiving dMTg or gamma SC only showed suppressed in vitro response to MTg, but the development of thyroid lesions was unaltered. However, mice given one or two subtolerogenic doses of dMTg followed by gamma SC not only showed suppressed in vitro response to MTg, but also little or no thyroiditis, indicating cooperation between these two mechanisms. The cooperation was not reciprocal since reversing the order, giving gamma SC first followed by dMTg, was not effective in suppressing EAT. Thus, suppressor mechanisms activated by pretreatment with dMTg and gamma SC can act synergistically to suppress EAT induction; the two mechanisms may cooperate in vivo to maintain self-tolerance provided that MTg-specific CD4+ Ts are initially activated.  相似文献   

5.
We recently described a novel H2E class II-transgenic model (A(-)E(+)) of experimental autoimmune thyroiditis (EAT) that permits disease induction with heterologous thyroglobulin (Tg), but unlike conventional susceptible strains, precludes self-reactivity to autologous mouse Tg. In transgenic E(+)B10 (A(+)E(+)) mice, the presence of endogenous H2A genes is protective against H2E-mediated thyroiditis, inhibiting EAT development. The suppressive effect of H2A genes on H2E-mediated thyroiditis mirrors previous reports of H2E suppression on H2A-mediated autoimmune diseases, including EAT. The mechanism of the reciprocal-suppressive effect between class II genes is unclear, although the involvement of regulatory T cells has been proposed. We have recently reported that CD4(+)CD25(+) regulatory T cells mediate peripheral tolerance induced with mouse Tg in CBA mice. To determine whether these cells play a role in our E(+)-transgenic model, we first confirmed the existence of CD4(+)CD25(+) T cells regulating thyroiditis in E(+)B10.Ab(0) (A(-)E(+)) and B10 (A(+)E(-)) mice by i.v. administration of CD25 mAb before EAT induction. The depletion of CD4(+)CD25(+) T cells enhanced thyroiditis induction in the context of either H2E or H2A. Moreover, reconstitution of CD4(+)CD25(+) T cells from naive B10 mice restored resistance to EAT. E(+)B10 (A(+)E(+)) mice were also depleted of CD4(+)CD25(+) T cells before the challenge to determine their role in thyroiditis in the presence of both H2A and H2E genes. Depletion of CD4(+)CD25(+) regulatory T cells offset the suppression of H2E-mediated thyroiditis by H2A. Thus, these regulatory T cells may be involved in the reciprocal-suppressive effect between class II genes.  相似文献   

6.
Experimental autoimmune thyroiditis (EAT) can be induced in mice after the transfer of mouse thyroglobulin (MTg)-sensitized donor spleen cells that have been activated in vitro with MTg. CD4+ T cells are required for the transfer of EAT in this model. Because CD4+ T cells produce various lymphokines, such as IFN-gamma, that may be involved in the activation or regulation of the immune response to MTg and the development of EAT, the present study was undertaken to determine whether a neutralizing mAb to IFN-gamma could modulate the induction or expression of EAT. The anti-IFN-gamma mAb XMG-1.2 had no effect on sensitization of donor cells. However, addition of XMG-1.2 mAb during in vitro activation of MTg-primed spleen cells resulted in more severe EAT in recipient mice. The thyroid lesions in recipients of cells cultured with MTg and XMG-1.2 mAb also exhibited granulomatous changes, which differed qualitatively from the predominantly lymphocytic cell infiltrates in recipients of cells cultured with MTg alone. Recipients of MTg-activated spleen cells also developed severe granulomatous EAT when they were given injections of XMG-1.2 mAb. The effects of XMG-1.2 could be neutralized by IFN-gamma. Recipients of cells cultured in the presence of XMG-1.2 mAb had augmented autoantibody responses, although there were no apparent differences in the IgG subclass distribution of the anti-MTg autoantibody responses. These studies suggest that neutralization of endogenous IFN-gamma results in increased activity of cells capable of inducing granulomatous EAT in mice.  相似文献   

7.
TLR ligands are potent activators of dendritic cells and therefore function as adjuvants for the induction of immune responses. We analyzed the capacity of TLR ligands to enhance CD8+ T cell responses toward soluble protein Ag. Immunization with OVA together with LPS or poly(I:C) elicited weak CD8+ T cell responses in wild-type C57BL/6 mice. Surprisingly, these responses were greatly increased in mice lacking CD4+ T cells indicating the induction of regulatory CD4+ T cells. In vivo, neutralization of IL-10 completely restored CD8+ T cell responses in wild-type mice and OVA-specific IL-10 producing CD4+ T cells were detected after immunization with OVA plus LPS. Our study shows that TLR ligands not only activate the immune system but simultaneously induce Ag specific, IL-10-producing regulatory Tr1 cells that strongly suppress CD8+ T cell responses. In this way, excessive activation of the immune system may be prevented.  相似文献   

8.
Ex vivo treatment of bone marrow-derived dendritic cells (DCs) with TNF-alpha has been previously shown to induce partial maturation of DCs that are able to suppress autoimmunity. In this study, we demonstrate that i.v. administration of TNF-alpha-treated, semimature DCs pulsed with thyrogloblin (Tg), but not with OVA Ag, inhibits the subsequent development of Tg-induced experimental autoimmune thyroiditis (EAT) in CBA/J mice. This protocol activates CD4(+)CD25(+) T cells in vivo, which secrete IL-10 upon specific recognition of Tg in vitro and express regulatory T cell (Treg)-associated markers such as glucocorticoid-induced TNFR, CTLA-4, and Foxp3. These CD4(+)CD25(+) Treg cells suppressed the proliferation and cytokine release of Tg-specific, CD4(+)CD25(-) effector cells in vitro, in an IL-10-independent, cell contact-dependent manner. Prior adoptive transfer of the same CD4(+)CD25(+) Treg cells into CBA/J hosts suppressed Tg-induced EAT. These results demonstrate that the tolerogenic potential of Tg-pulsed, semimature DCs in EAT is likely to be mediated through the selective activation of Tg-specific CD4(+)CD25(+) Treg cells and provide new insights for the study of Ag-specific immunoregulation of autoimmune diseases.  相似文献   

9.
Recently we reported on a novel H2E transgenic, IA-negative model of experimental autoimmune thyroiditis (EAT) that excludes reactivity to self in its susceptibility pattern to heterologous thyroglobulin (Tg). In conventional, susceptible mouse strains, EAT is inducible with both homologous and heterologous Tg; e.g., human (h)Tg shares conserved thyroiditogenic epitopes with mouse (m)Tg. However, when an H2Ea(k) transgene is introduced into class II-negative B10.Ab(0) mice, which express neither surface IA (mutant Abeta-chain) nor surface IE (nonfunctional Ea gene), the resultant H2E(b) molecules are permissive for EAT induction by hTg, but not self mTg. Also, the hTg-primed cells do not cross-react with mTg. To explore this unique capacity of E+B10.Ab(0) mice to distinguish self from nonself Tg, we have developed T cell lines to examine the T cell receptor repertoire and observed a consistent Vbeta8+ component after repeated hTg stimulation. Enrichment and activation of Vbeta8+ T cells by either superantigen staphylococcal entertoxin B or anti-Vbeta8 in vitro enabled thyroiditis transfer to untreated A-E+ recipients, similar to hTg activation. Vbeta8+ T cells isolated by FACS from hTg-immunized mice also proliferated to hTg in vitro. These studies support the contribution of Vbeta8 genes to the pathogenicity of hTg in this H2A-E+ transgenic model.  相似文献   

10.
To delineate the contribution of L3T4+ and Lyt-2+ cells in the pathogenesis of experimental autoimmune thyroiditis (EAT), synergistic pairs of monoclonal antibodies (mAb) to the T cell subsets were used in conjunction with the adoptive transfer of mouse thyroglobulin (MTg)-activated cells from immunized mice. Initial experiments verified the important role of L3T4+ cells in the transfer of EAT. Subsequent experiments pointed to the relative contribution of both L3T4+ and Lyt-2+ cells, depending on the stage and extent of disease development. Treatment during disease with L3T4, but not Lyt-2, mAb alone significantly reduced thyroiditis. However, in situ analysis of the cellular infiltrate in thyroid sections revealed that, after treatment with mAb, the appropriate subset was eliminated without altering the amount of the other subset in the remaining lesion. In addition, treatment during severe thyroiditis following the transfer of MTg-activated lymph node cells showed that Lyt-2 mAb alone also reduced thyroid infiltration. When the recipients were pretreated with either pair of mAb before transfer, disease development was only moderately affected. We conclude that (i) donor L3T4+ cells are the primary cells responsible for the initial transfer and development of thyroiditis; and (ii) previous in vitro cytotoxicity data, plus current monoclonal antibody treatment of disease and in situ analysis, further implicate a role for Lyt-2+ cells in EAT pathogenesis.  相似文献   

11.
Experimental autoimmune thyroiditis (EAT) can be induced in CBA/J mice following the transfer of spleen cells from mouse thyroglobulin (MTg)-sensitized donors that have been activated in vitro with MTg. Since L3T4+ T cells are required to transfer EAT in this model, the present study was undertaken to assess the effectiveness of the anti-L3T4 monoclonal antibody (mAb) GK1.5 in preventing or arresting the development of EAT. Spleen cells from mice given mAb GK1.5 prior to sensitization with MTg and adjuvant could not transfer EAT to normal recipients and cells from these mice did not proliferate in vitro to MTg. Donor mice given GK1.5 before immunization did not develop anti-MTg autoantibody and recipients of cells from such mice also produced little anti-MTg. GK1.5 could also prevent the proliferation and activation of sensitized effector cell precursors when added to in vitro cultures. When a single injection of mAb GK1.5 was given to recipients of in vitro-activated spleen cells, EAT was reduced whether the mAb was given prior to cell transfer or as late as 19 days after cell transfer. Whereas the incidence and severity of EAT was consistently reduced by injecting recipient mice with GK1.5, the same mice generally had no reduction in anti-MTg autoantibody. Since EAT is consistently induced in control recipients by 14-19 days after cell transfer, the ability of mAb GK1.5 to inhibit EAT when injected 14 or 19 days after cell transfer indicates that a single injection of the mAb GK1.5 can cause reversal of the histopathologic lesions of EAT in mice. These studies further establish the important role of L3T4+ T cells in the pathogenesis of EAT in mice and also suggest that therapy with an appropriate mAb may be an effective treatment for certain autoimmune diseases even when the therapy is initiated late in the course of the disease.  相似文献   

12.
Genetically susceptible mice become resistant to experimental autoimmune thyroiditis (EAT) induction with mouse thyroglobulin (MTg) and lipopolysaccharide after pretreatment with deaggregated MTg (dMTg). Recent work showed this suppression to be mediated by CD4+ suppressor T cells (Ts). To study Ts action in vivo, we used a rat IgG2a monoclonal antibody (mAb), YTS 177.9, which modulates CD4 antigen in vivo without depleting CD4+ cells. Initial studies showed that after two 1-mg doses of mAb 7 days apart, extensive CD4 antigen modulation of peripheral blood leukocytes occurred within 4 days. Mice given CD4 mAb 24 hr before dMTg (2 doses, 7 days apart) were resistant to EAT induction when immunized with MTg and LPS 20 days later. Also, anti-rat IgG2a titers were reduced following challenge with heat-aggregated rat IgG2a compared to controls. Subsequent analysis of serum in CD4 mAb-treated animals revealed that mAb was present in the circulation for 14 days. Moreover, mice given CD4 mAb and dMTg, then challenged after only 10 days, when CD4 mAb was still circulating, developed a significantly higher incidence of thyroid damage than controls. These findings suggest that modulation of CD4 antigen does not interfere with Ts activation, but the presence of CD4 mAb, at the time of autoantigenic challenge, can interfere with tolerance to EAT induction. Thus, the direct relationship between the presence of CD4 mAb and inhibition of EAT suppression implicates a role for CD4 molecules in the mediation of suppression.  相似文献   

13.
The effects of Ta-1, a peptide constituent of thymosin fraction 5, were studied on murine autoimmune thyroiditis using two congenic strains of mice, B10.Br (Br) and B10.D2 (D2), which are sensitive and resistant to experimental autoimmune thyroiditis (EAT) induction, respectively. EAT was induced by either 2 weekly iv injections of mouse thyroglobulin with adjuvant lipopolysaccharide (LPS) or intradermal injection of thyroglobulin mixed with complete Freund's adjuvant (CFA). The criteria for induction and intensity of thyroiditis were the level of lymphoid infiltration in the thyroid gland and the titer of anti-thyroglobulin antibodies. Ta-1 was given in 5 or 10 daily sc injections in doses ranging from 0.0001 to 0.1 microgram/injection. The injections were commenced at varying intervals from the 1st to the 4th week after immunization. T-Cell subsets in the spleens were determined 2 weeks after the first antigen injection and thyroid infiltration was determined 3 weeks later. Treatment with Ta-1 between the two antigen injections increased the level of thyroiditis in resistant mice, but had no effect in sensitive mice. Treatment for the first 2 weeks had similar effects in resistant mice, but also suppressed thyroiditis in the sensitive strain. Later treatments, during the 3rd and 4th weeks after immunization also revealed immunomodulating properties of Ta-1, with a suppressing effect on thyroiditis in sensitive mice and an enhancing effect in the resistant strain. Both effects of Ta-1 were dose dependent. The effects of Ta-1 on the individual phenotypes were also dose dependent. The dose of 0.01 microgram greatly lowered the percentages of Lyt-2+3+ cells in D2 mice and mildly increased the percentages in Br mice, but did not change the Lyt-1+ cell level in either strain. On the other hand, the dose of 0.001 microgram greatly increased the percentage of Lyt-1+ cells in D2 mice and mildly decreased it in the Br strain, but did not alter the Lyt-2+3+ cell subset in either strain. Thus, both doses of Ta-1 modulated Lyt-1+/2+3+ ratios, with each dose affecting a different T-cell subset. The changes in the response to thyroglobulin are apparently exerted through the regulation of the functional T-cell subset balance.  相似文献   

14.
We have examined whether the peptide (368-381) from the murine adenovirus type 1 E1B sequence, exhibiting a high degree of homology with the known pathogenic thyroglobulin (Tg) T cell epitope (2695-2706), can induce experimental autoimmune thyroiditis (EAT) in SJL/J mice. The viral peptide was a poor immunogen at the T or B cell level and did not elicit EAT either directly or by adoptive transfer assays. Surprisingly, however, the viral peptide was highly antigenic in vitro, activating a Tg2695-2706-specific T cell clone and reacting with serum IgG from mice primed with the Tg homologue. The viral peptide also induced strong recall responses in Tg2695-2706-primed lymph node cells, and subsequent adoptive transfer of these cells into naive mice led to development of highly significant EAT. These data demonstrate that nonimmunogenic viral peptides can act as agonists for preactivated autoreactive T cells and suggest that epitope mimicry may at times play a potentiating rather than a precipitating role in the pathogenesis of autoimmune disease.  相似文献   

15.
The changes in levels of peripheral major lymphocyte subsets were monitored with 10 adult cynomolgus monkeys (5 females and 5 males) during the 9 weeks after immunization with chick type-II collagen in Freund's complete adjuvant. Three females and 3 males developed overt arthritis determined by swelling of small joints and increase of plasma alkaline phosphatase as well as C-reactive protein. An increase of CD16+ NK cells was observed in four non-arthritis-developed monkeys (two females and two males). There was no significant difference in the fluctuation pattern of CD4+ T cell, CD8+ T cell and CD20+ B cell levels between arthritis-developed monkeys and non-developed ones. In addition, the percentages of CD45RA+ CD4+ T cells to total CD4+ T cells, CD28- CD8+ T cells to total CD8+ T cells, and IgD- B cells to total B cells did not significantly differ between them. On the other hand, a significant increase was demonstrated in CD14-positive cells at 3 weeks after immunization in only arthritis-developed monkeys regardless of sex. The expression of CD14 antigen on the surface of increased cells was low in comparison with those appearing in blood obtained before immunization. In addition, increased CD14low cells showed no response to LPS stimulation. However, there was no significant difference in antibody titer to both chick type-II and monkey type-II collagen between arthritis-developed monkeys and non-developed ones. These results suggest that an increase in number of CD14low monocytes with immature function might be a part of the autoimmune response, and that the appearance of these cells is of pathogenic importance in the arthritic process in cynomolgus monkeys regardless of the production of autoantibody.  相似文献   

16.
Our earlier study showed that GM-CSF has the potential not only to prevent, but also to suppress, experimental autoimmune thyroiditis (EAT). GM-CSF-induced EAT suppression in mice was accompanied by an increase in the frequency of CD4(+)CD25(+) regulatory T cells that could suppress mouse thyroglobulin (mTg)-specific T cell responses in vitro, but the underlying mechanism of this suppression was not elucidated. In this study we show that GM-CSF can induce dendritic cells (DCs) with a semimature phenotype, an important characteristic of DCs, which are known to play a critical role in the induction and maintenance of regulatory T cells. Adoptive transfer of CD4(+)CD25(+) T cells from GM-CSF-treated and mTg-primed donors into untreated, but mTg-primed, recipients resulted in decreased mTg-specific T cell responses. Furthermore, lymphocytes obtained from these donors and recipients after adoptive transfer produced significantly higher levels of IL-10 compared with mTg-primed, untreated, control mice. Administration of anti-IL-10R Ab into GM-CSF-treated mice abrogated GM-CSF-induced suppression of EAT, as indicated by increased mTg-specific T cell responses, thyroid lymphocyte infiltration, and follicular destruction. Interestingly, in vivo blockade of IL-10R did not affect GM-CSF-induced expansion of CD4(+)CD25(+) T cells. However, IL-10-induced immunosuppression was due to its direct effects on mTg-specific effector T cells. Taken together, these results indicated that IL-10, produced by CD4(+)CD25(+) T cells that were probably induced by semimature DCs, is essential for disease suppression in GM-CSF-treated mice.  相似文献   

17.
Spleen cells from CBA/J or SJL mice sensitized with mouse thyroglobulin (MTg) and lipopolysaccharide (LPS) could be activated in vitro with MTg to transfer experimental autoimmune thyroiditis (EAT) to normal syngeneic recipients. EAT induced by these transferred cells was similar in incidence and severity to EAT induced by active immunization of mice with MTg and adjuvant and cells from EAT-resistant Balb/c mice could not be activated to induce EAT. The specific antigen MTg was required both for initial sensitization of the mice and for activation of spleen cells in vitro. The cells that were active in transferring EAT to mice were shown to be T cells. Removal of B cells from the cultured spleen cells had no effect on the ability of the cells to induce EAT.  相似文献   

18.
Thyroglobulin (Tg) represents one of the largest known self-antigens involved in autoimmunity. Numerous studies have implicated it in triggering and perpetuating the autoimmune response in autoimmune thyroid diseases (AITD). Indeed, traditional models of autoimmune thyroid disease, experimental autoimmune thyroiditis (EAT), are generated by immunizing mice with thyroglobulin protein in conjunction with an adjuvant, or by high repeated doses of Tg alone, without adjuvant. These extant models are limited in their experimental flexibility, i.e. the ability to make modifications to the Tg used in immunizations. In this study, we have immunized mice with a plasmid cDNA encoding the full-length human Tg (hTG) protein, in order to generate a model of Hashimoto's thyroiditis which is closer to the human disease and does not require adjuvants to breakdown tolerance. Human thyroglobulin cDNA was injected and subsequently electroporated into skeletal muscle using a square wave generator. Following hTg cDNA immunizations, the mice developed both B and T cell responses to Tg, albeit with no evidence of lymphocytic infiltration of the thyroid. This novel model will afford investigators the means to test various hypotheses which were unavailable with the previous EAT models, specifically the effects of hTg sequence variations on the induction of thyroiditis.  相似文献   

19.
Ag delivery via the nasal route typically induces tolerance or fails to polarize CD4+ T cell responses unless an adjuvant is provided. To better understand this process, we assessed the effects of two mucosal adjuvants, Escherichia coli LPS and cholera toxin (CT), on Ag passage and T cell activation in the draining lymph nodes (DLN) of BALB/c mice following per nasal administration of the model protein allergen, OVA. We found a range of cell types acquired small amounts of fluorescent OVA in the DLN 4 h after per nasal administration. However, this early uptake was eclipsed by a wave of OVA+CD8alpha(low) dendritic cells that accumulated in the DLN over the next 20 h to become the dominant OVA-processing and -presenting population. Both LPS and CT stimulated increases in CD80 and CD86 expression on OVA+CD8alpha(low) DC. LPS also increased the number of OVA+CD8alpha(low) dendritic cells accumulating in the DLN. When the primary T cell response was examined after adoptive transfer of CD4+ T cells from DO11.10 mice, CT and LPS stimulated surprisingly similar effects on T cell activation and proliferation, IL-4 and IFN-gamma priming, and memory T cell production. Despite these similarities, T cell recipients immunized with CT, but not LPS, developed lung eosinophilia upon secondary OVA challenge. Thus, we found no bias within the DLN in Ag handling or the primary T cell response associated with the eventual Th2 polarization induced by CT, and suggest that additional tissue-specific factors influence the development of allergic disease in the airways.  相似文献   

20.
It is critical to identify the developmental stage of dendritic cells (DCs) that is most efficient at inducing CD8+ T cell responses. Immature DCs can be generated from monocytes with GM-CSF and IL-4, while maturation is accomplished by the addition of stimuli such as monocyte-conditioned medium, CD40 ligand, and LPS. We evaluated the ability of human monocytes and immature and mature DCs to induce CD8+ effector responses to influenza virus Ags from resting memory cells. We studied replicating virus, nonreplicating virus, and the HLA-A*0201-restricted influenza matrix protein peptide. Sensitive and quantitative assays were used to measure influenza A-specific immune responses, including MHC class I tetramer binding assays, enzyme-linked immunospot assays for IFN-gamma production, and generation of cytotoxic T cells. Mature DCs were demonstrated to be superior to immature DC in eliciting IFN-gamma production from CD8+ effector cells. Furthermore, only mature DCs, not immature DCs, could expand and differentiate CTL precursors into cytotoxic effector cells over 7 days. An exception to this was immature DCs infected with live influenza virus, because of the virus's known maturation effect. Finally, mature DCs pulsed with matrix peptide induced CTLs from highly purified CD8+ T cells without requiring CD4+ T cell help. These differences between DC stages were independent of Ag concentrations or the number of immature DCs. In contrast to DCs, monocytes were markedly inferior or completely ineffective stimulators of T cell immunity. Our data with several qualitatively different assays of the memory CD8+ T cell response suggest that mature cells should be considered as immunotherapeutic adjuvants for Ag delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号