首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonin (or 5-hydroxytryptamine; 5-HT) and monoamine oxidase (MAO) are involved in several physiological functions and pathological conditions. We show that the serotonergic system and its development in zebrafish are similar to those of other vertebrates rendering zebrafish a good model to study them. Development of MAO expression followed a similar time course as the 5-HT system. MAO expression and activity were located in or adjacent to serotonergic nuclei and their targets, especially in the ventral hypothalamus. MAO mRNA was detected in the brain from 24 h post-fertilization and histochemical enzyme activity from 42 h post-fertilization. Deprenyl (100 μM) decreased MAO activity 34–74% depending on the age. Inhibition of MAO by deprenyl strongly increased 5-HT but not dopamine and noradrenaline levels. Deprenyl decreased 5-HT-immunoreactivity in serotonergic neurons and induced novel ectopic 5-HT-immunoreactivity neurons in the diencephalon in a manner dependent on 5-HT uptake. Deprenyl administration decreased locomotion, altered vertical positioning and increased heart rate. Treatment with p -chlorophenylalanine normalized 5-HT levels and rescued the behavioral alteration, indicating that the symptoms were 5-HT dependent. These findings suggest that zebrafish MAO resembles mammalian MAO A more than MAO B, metabolizing mainly 5-HT. Applications of this model of hyperserotonergism include pharmacological and genetic screenings.  相似文献   

2.
Monoamine oxidase (MAO) is a key enzyme responsible for the degradation of serotonin, norepinephrine, dopamine, and phenylethylamine. It is an outer membrane mitochondrial enzyme existing in two isoforms, A and B. We have recently generated 14 site-directed mutants of human MAO A and B, and we found that four key amino acids, Lys-305, Trp-397, Tyr-407, and Tyr-444, in MAO A and their corresponding amino acids in MAO B, Lys-296, Trp-388, Tyr-398, and Tyr-435, play important roles in MAO catalytic activity. Based on the polyamine oxidase three-dimensional crystal structure, it is suggested that Lys-305, Trp-397, and Tyr-407 in MAO A and Lys-296, Trp-388, and Tyr-398 in MAO B may be involved in the non-covalent binding to FAD. Tyr-407 and Tyr-444 in MAO A (Tyr-398 and Tyr-435 in MAO B) may form an aromatic sandwich that stabilizes the substrate binding. Asp-132 in MAO A (Asp-123 in MAO B) located at the entrance of the U-shaped substrate-binding site has no effect on MAO A nor MAO B catalytic activity. The similar impact of analogous mutants in MAO A and MAO B suggests that these amino acids have the same function in both isoenzymes. Three-dimensional modeling of MAO A and B using polyamine oxidase as template suggests that the overall tertiary structure and the active sites of MAO A and B may be similar.  相似文献   

3.
Metabolism of vitamin A, all-trans-retinol, leads to the formation of 11-cis-retinaldehyde, the visual chromophore, and all-trans-retinoic acid, which is involved in the regulation of gene expression through the retinoic acid receptor. Enzymes and binding proteins involved in retinoid metabolism are highly conserved across species. We previously described a novel mammalian enzyme that saturates the 13-14 double bond of all-trans-retinol to produce all-trans-13,14-dihydroretinol, which then follows the same metabolic fate as that of all-trans-retinol. Specifically, all-trans-13,14-dihydroretinol is transiently oxidized to all-trans-13,14-dihydroretinoic acid before being oxidized further by Cyp26 enzymes. Here, we report the identification of two putative RetSat homologues in zebrafish, one of which, zebrafish RetSat A (zRetSat A), also had retinol saturase activity, whereas zebrafish RetSat B (zRetSat B) was inactive under similar conditions. Unlike mouse RetSat (mRetSat), zRetSat A had an altered bond specificity saturating either the 13-14 or 7-8 double bonds of all-trans-retinol to produce either all-trans-13,14-dihydroretinol or all-trans-7,8-dihydroretinol, respectively. zRetSat A also saturated the 13-14 or 7-8 double bonds of all-trans-3,4-didehydroretinol (vitamin A2), a second endogenous form of vitamin A in zebrafish. The dual enzymatic activity of zRetSat A displays a newly acquired specificity for the 13-14 double bond retained in higher vertebrates and also the evolutionarily preserved activity of bacterial phytoene desaturases and plant carotenoid isomerases. Expression of zRetSat A was restricted to the liver and intestine of hatchlings and adult zebrafish, whereas zRetSat B was expressed in the same tissues but at earlier developmental stages. Exogenous all-trans-retinol, all-trans-13,14-dihydroretinol, or all-trans-7,8-dihydroretinol led to the strong induction of the expression of the retinoic acid-metabolizing enzyme, Cyp26A1, arguing for an active signaling function of dihydroretinoid metabolites in zebrafish. These findings point to a conserved function but altered specificity of RetSat in vertebrates, leading to the generation of various dihydroretinoid compounds, some of which could have signaling functions.  相似文献   

4.
Myogenin is one of the basic helix-loop-helix proteins that regulate muscle-specific gene expression. Using reverse transciption-polymerase chain reaction (RT-PCR), 5'- and 3'-rapid amplification of cDNA ends (RACE), zebrafish myogenin cDNA was cloned from mRNA of embryos at 10-96 h post-fertilization. The cDNA, at 1384 base pairs (bp), contained a 771-bp open reading frame with 113- and 500-bp flanking regions at the 5'- and 3'-ends, respectively. The deduced amino acid sequences of zebrafish myogenin encoded a 256-amino-acid polypeptide. In a comparison with myogenin of carp, trout, Xenopus, chicken and human, zebrafish myogenin shared 90.9, 77.6, 70.3, 62.9 and 51.5% amino acid identity, respectively. The basic helix-loop-helix domains in myogenin are all conserved. The molecular phylogenic tree demonstrated that myogenin of zebrafish is more closely related to that of fish than to the myogenin of other vertebrates.  相似文献   

5.
Monoamine oxidases (MAO) A and B are approximately 60-kDa outer mitochondrial membrane flavoenzymes catalyzing the degradation of neurotransmitters and xenobiotic arylalkyl amines. Despite 70% identity of their amino acid sequences, both enzymes exhibit strikingly different properties when exposed to thiol-modifying reagents. Human MAO A and MAO B each contain 9 cysteine residues (7 in conserved sequence locations). MAO A is inactivated by N-ethylmaleimide (NEM) much faster (tau(1/2) = approximately 3 min) than MAO B (tau(1/2) = approximately 8 h). These differences in thiol reactivities are also demonstrated by monitoring the NEM modification stoichiometries by electrospray mass spectrometry. Inactivation of either enzyme with acetylenic inhibitors results in alterations of their thiol reactivities. Cys5 and Cys266 were identified as the only residues modified by biotin-derivatized NEM in clorgyline-inactivated MAO A and pargyline-inactivated MAO B, respectively. The x-ray structure of MAO B (Binda, C., Newton-Vinson, P., Hubalek, F., Edmondson, D. E., and Mattevi, A. (2002) Nat. Struct. Biol. 9, 22-26) shows that Cys5 is located on the surface of the molecule opposite to the membrane-binding region. Cys266 in MAO A is predicted to be located in the same region of the molecule. These thiol residues are also modified by biotin-derivatized NEM in the mitochondrial membrane-bound MAO A and MAO B. This study shows that the MAO A structure is "more flexible" than that of MAO B and that clorgyline and pargyline inactivation of MAO A and B, respectively, increases the structural stability of both enzymes. No evidence is found for the presence of disulfide bonds in either enzyme, contrary to a previous suggestion.  相似文献   

6.
1. Monoamine oxidase (MAO) activity towards tryptamine, 5-hydroxytryptamine (5-HT) and phenylethylamine (PEA) has been measured in mitochondria isolated from carp and trout eggs. 2. In carp eggs all the tested substrates are metabolized and the highest affinity is found with tryptamine. In trout eggs a consistent level of MAO activity is obtained using tryptamine. 3. The inhibition dose-response curves of clorgyline and deprenyl indicate that both in carp and trout eggs there is only one form of mitochondrial MAO, distinct from MAO A and B which have been described in vertebrate tissues. 4. Both in carp and trout egg mitochondria a semicarbazide-sensitive amine oxidase is not involved in the deamination of the used substrates. 5. MAO found in carp and trout eggs might be involved in metabolism of some neurotransmitter monoamines during early developmental stages.  相似文献   

7.
8.
9.
Peripheral O2 chemoreceptors initiate adaptive cardiorespiratory responses to hypoxia in vertebrates. Morphological and physiological evidence suggests that, in fish, neuroepithelial cells (NECs) of the gill perform this role. We conducted a comparative examination in three species of teleosts (zebrafish, goldfish and trout) and larvae of the amphibian Xenopus laevis, using whole-mount gill preparations and confocal immunofluorescence, to elucidate the distribution, morphology and innervation of gill NECs. Nerve fibres were immunolabelled with the neuronal marker zn-12 and were associated with serotonin-immunoreactive NECs in the gills of all species tested. With the exception of trout, innervated NECs were present on all gill arches in the filaments and respiratory lamellae in fish and on homologous structures in Xenopus (i.e. gill “tufts”, including respiratory terminal branches). Thus, the distribution and innervation of NECs of the internal gills of amphibians and teleosts are relatively well conserved, suggesting an important role for gill NECs as O2 chemoreceptors in aquatic vertebrates. Furthermore, the size and density of gill NECs is variable among teleosts and developmental stages of Xenopus larvae and may be dependent on general gill dimensions or environmental conditions. This report constitutes the first comparative study of gill NECs in fish and amphibians and highlights the significance of gill NECs as an evolutionary model for studying O2 sensing in vertebrates. We acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding through an operating grant to C.A.N., and the NSERC and the Ontario Graduate Scholarship (OGS) program for postgraduate scholarships to M.G.J.  相似文献   

10.
A comparative investigation of substrate specificity and inhibitor binding properties of recombinant zebrafish (Danio rerio) monoamine oxidase (zMAO) with those of recombinant human monoamine oxidases A and B (hMAO A and hMAO B) is presented. zMAO oxidizes the neurotransmitter amines (serotonin, dopamine and tyramine) with k(cat) values that exceed those of hMAO A or of hMAO B. The enzyme is competitively inhibited by hMAO A selective reversible inhibitors with the exception of d-amphetamine where uncompetitive inhibition is exhibited. The enzyme is unreactive with most MAO B-specific reversible inhibitors with the exception of chlorostyrylcaffeine. zMAO catalyzes the oxidation of para-substituted benzylamine analogs exhibiting (D)k(cat) and (D)(k(cat)/K(m)) values ranging from 2 to 8. Structure-activity correlations show a dependence of log k(cat) with the electronic factor σ(p) with a ρ value of +1.55±0.34; a value close to that for hMAO A but not with MAO B. zMAO differs from hMAO A or hMAO B in benzylamine analog binding correlations where an electronic effect (ρ=+1.29±0.31) is observed. These data demonstrate zMAO exhibits functional properties similar to hMAO A as well as exhibits its own unique behavior. These results should be useful for studies of MAO function in zebrafish models of human disease states.  相似文献   

11.
12.
We have identified a number of type I and type II keratins in the zebrafish Danio rerio by two-dimensional polyacrylamide gel electrophoresis, complementary keratin blot-binding assay and immunoblotting. These keratins range from 56 kDa to 46 kDa in molecular mass and from pH 6.6 to pH 5.2 in isoelectric point. Type II zebrafish keratins exhibit significantly higher molecular masses (56–52 kDa) compared with the type I keratins (50–48 kDa), but the isoelectric points show no significant difference between the two keratin subclasses (type II: pH 6.0–5.5; type I: pH 6.1–5.2). According to their occurrence in various zebrafish tissues, the identified keratins can be classified into “E” (epidermal) and “S” (simple epithelial) proteins. A panel of monoclonal anti-keratin antibodies has been used for immunoblotting of zebrafish cytoskeletal preparations and immunofluorescence microscopy of frozen tissue sections. These antibodies have revealed differential cytoplasmic expression of keratins; this not only includes epithelia, but also a variety of mesenchymally derived cells and tissues. Thus, previously detected fundamental differences in keratin expression patterns between higher vertebrates and a salmonid, the rainbow trout Oncorhynchus mykiss, also apply between vertebrates and the zebrafish, a cyprinid. However, in spite of notable similarities, trout and zebrafish keratins differ from each other in many details. The present data provide a firm basis from which the application of keratins as cell differentiation markers in the well-established genetic model organism, the zebrafish, can be developed.  相似文献   

13.
14.
To examine the mode of action of debrisoquin (DEB), we studied the effect of this drug in vitro on MAO A and MAO B enzyme activities. DEB was shown to be a competitive inhibitor of highly purified human MAO A and MAO B enzyme activities. DEB inhibited placental MAO A with a Ki value of 0.5 microM and liver MAO B with a Ki value of 8.8 microM, 18-fold greater effect on the A form. Kynuramine was used as substrate for both enzymes. Additional studies using a dilution technique showed that DEB was a reversible inhibitor of both forms of the enzyme. The results of this study show that DEB is a potent competitive and reversible inhibitor of both MAO A and MAO B enzymes.  相似文献   

15.
The complete nucleotide sequence of the mitochondrial DNA of the rainbow trout, Onchorynchus mykiss, has been determined. The total length of the molecule is 16,660 bp. The rainbow trout mitochondrial DNA has the same organization described in eutherian mammals, the clawed frog (Xenopus laevis), and the two fish species, Oriental stream loach (Crossotoma lacustre) and carp (Cyprinus carpio). Alignment and comparison of the deduced amino acid sequences of the 13 proteins encoded by rainbow trout and other vertebrate mitochondrial genomes allowed us to estimate that COI is the most conserved mitochondrial subunit (amino acid identity ranging from 85.6% to 94.8%) whereas ATPase 8 is the most variable one (amino acid identity ranging from 30.8% to 70.4%). Putative secondary structures for the 22 tRNAs found in the molecule are given along with an extensive comparison of tRNA sequences among representative species of each major group of vertebrates. In this sense, an unusual cloverleaf structure for the tRNASer(AGY) is proposed. A stem-loop structure inferred for the origin of the L-strand replication (OL) and the presence of a large polycytidine tract in the OL loop is described. The existence of this stretch instead of the usual T-rich sequence reported so far in mammal mtDNAs is explained in terms of a less-strict template dependence of the RNA primase involved in the initiation of L-strand replication. Correspondence to: J.M. Bautista  相似文献   

16.
Monoamine oxidase (MAO) activity was determined fluorometrically in brain, intestine, kidney and liver tissues of the rainbow trout, Salmo gairdneri. MAO activity was inhibited by various drugs in a concentration-related manner, with single sigmoid inhibition curves, the inhibitors of type A MAO, harmaline and clorgyline being more effective than deprenyl, an inhibitor of type B MAO. Intestine exhibited greatest MAO activity followed by liver and brain with kidney showing least activity. The Michaelis constants (Km) also showed variability between tissues. Inhibition of MAO by harmaline was non-competitive and dependent on the concentration of substrate present.  相似文献   

17.
The pore-forming protein, perforin is one of the effectors of cell-mediated killing. A perforin cDNA clone was isolated from rainbow trout (Oncorhynchus mykiss) after screening of a spleen cDNA library. The full-length cDNA is 2070 bp in size, encoding for a polypeptide of 589 amino acids. The predicted amino acid sequence of the trout perforin is 64, 58 and 40% identical to those of Japanese flounder, zebrafish and human perforins, respectively. Although its membrane attack complex/perforin (MACPF) domain is conserved, trout perforin shows low homology to human and trout terminal complement components (C6, C7, C8 and C9), ranging from 19 to 26% identity. Expression analysis reveals that the trout perforin gene is expressed in the blood, brain, heart, kidney, intestine and spleen. Phylogenetic analysis of proteins which belong to the MACPF superfamily clusters the trout perforin in the same group with other known perforins.  相似文献   

18.
Monoamine oxidase (MAO) activity is high in brain, where it regulates neurotransmitter levels, and in the 'detoxifying' organs. Two MAO isoenzymes (A and B) apparently exist in terrestrial tetrapods, but only one form (type A-like) can be detected in teleosts and in aquatic amphibia. MAO activity is regulated by both endogenous (hormones, substrates) and exogenous (daylength, temperature) factors.  相似文献   

19.
Vitronectin is a major cell adhesion glycoprotein that is found in plasma and the extracellular matrix. Vitronectin consists of an N-terminal somatomedin B domain and two hemopexin-like domains and controls functions including cell adhesion, migration, haemostasis and immune defence. In order to study the molecular evolution of the complement lytic pathway regulation, we have cloned and characterized the vitronectin gene from rainbow trout (Oncorhynchus mykiss). The deduced amino acid sequence of trout vitronectin exhibits 45%, 46%, 47% and 63% identity with human, chicken, Xenopus and zebrafish orthologs, respectively. The domain architecture of the trout vitronectin, consisting of a somatomedin B domain and two hemopexin-like domains, resembles that of mammalian vitronectins. Analysis of partial genomic clones shows that trout vitronectin gene exhibits the same exon-intron organization profile as the human ortholog gene. The trout vitronectin gene is probably present as a single copy in the trout genome, showing a differential expression pattern among tissues investigated.  相似文献   

20.
High-level expression of human liver monoamine oxidase B in Pichia pastoris   总被引:1,自引:0,他引:1  
The high-level heterologous expression, purification, and characterization of the mitochondrial outer membrane enzyme human liver monoamine oxidase B (MAO B) using the methylotrophic yeast Pichia pastoris expression system are described. A 2-L culture of P. pastoris expresses approximately 1700 U of MAO B activity, with the recombinant enzyme associated tightly with the membrane fraction of the cell lysate. By a modification of the published procedure for purification of bovine liver MAO B [Salach, J. I. (1979) Arch. Biochem. Biophys. 192, 128-137], recombinant human liver MAO B is purified in a 34% yield ( approximately 200 mg from 2 L of cell culture). The isolated enzyme exhibits an M(r) of approximately 60, 000 on SDS-PAGE and 59,474 from electrospray mass spectrometry measurements, which is in good agreement with the mass predicted from the gene sequence and inclusion of the covalent FAD. One mole of covalent FAD per mole of MAO B is present in the purified enzyme and is bound by an 8alpha-S-cysteinyl(397) linkage, as identified by electrospray mass spectrometry of the isolated tryptic/chymotryptic flavin peptide. Recombinant human liver MAO B and bovine liver MAO B are shown to be acetylated at the seryl residues at their respective amino termini. The benzylamine oxidase activity of recombinant MAO B ranges from 3.0 to 3.4 U/mg and steady-state kinetic parameters for this enzyme preparation compare well with those published for the bovine liver enzyme: k(cat) = 600 min(-1), K(m)(benzylamine) = 0.50 mM, and K(m)(O(2)) = 0.33 mM. Kinetic isotope effect parameters using [alpha,alpha-(2)H(2)]benzylamine are also similar to those found for the bovine enzyme. Recombinant MAO B exhibits a (D)k(cat) = 4.7, a (D)[k(cat)/K(m)(benzylamine)] = 4.5, and a (D)[k(cat)/K(m)(O(2))] = 1.0. In contrast to bovine liver MAO B, no evidence was found for the presence of any anionic flavin radical either by UV-vis or by EPR spectroscopy in the resting form of the enzyme. These data demonstrate the successful heterologous expression of a functional, membrane-bound MAO B, which will permit a number of mutagenesis studies as structural and mechanistic probes not previously possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号