共查询到20条相似文献,搜索用时 15 毫秒
1.
Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling 总被引:9,自引:0,他引:9 下载免费PDF全文
Taniguchi K Kohno R Ayada T Kato R Ichiyama K Morisada T Oike Y Yonemitsu Y Maehara Y Yoshimura A 《Molecular and cellular biology》2007,27(12):4541-4550
Spred/Sprouty family proteins negatively regulate growth factor-induced ERK activation. Although the individual physiological roles of Spred-1 and Spred-2 have been investigated using gene-disrupted mice, the overlapping functions of Spred-1 and Spred-2 have not been clarified. Here, we demonstrate that the deletion of both Spred-1 and Spred-2 resulted in embryonic lethality at embryonic days 12.5 to 15.5 with marked subcutaneous hemorrhage, edema, and dilated lymphatic vessels filled with erythrocytes. This phenotype resembled that of Syk−/− and SLP-76−/− mice with defects in the separation of lymphatic vessels from blood vessels. The number of LYVE-1-positive lymphatic vessels and lymphatic endothelial cells increased markedly in Spred-1/2-deficient embryos compared with WT embryos, while the number of blood vessels was not different. Ex vivo colony assay revealed that Spred-1/2 suppressed lymphatic endothelial cell proliferation and/or differentiation. In cultured cells, the overexpression of Spred-1 or Spred-2 strongly suppressed vascular endothelial growth factor-C (VEGF-C)/VEGF receptor (VEGFR)-3-mediated ERK activation, while Spred-1/2-deficient cells were extremely sensitive to VEGFR-3 signaling. These data suggest that Spreds play an important role in lymphatic vessel development by negatively regulating VEGF-C/VEGFR-3 signaling. 相似文献
2.
3.
Embryonic lymphangiogenesis 总被引:6,自引:0,他引:6
4.
5.
François M Short K Secker GA Combes A Schwarz Q Davidson TL Smyth I Hong YK Harvey NL Koopman P 《Developmental biology》2012,364(2):89-98
During lymphangiogenesis in the mammalian embryo, a subset of vascular endothelial cells in the cardinal veins is reprogrammed to adopt a lymphatic endothelial fate. The prevailing model of lymphangiogenesis contends that these lymphatic precursor cells migrate away from the cardinal veins and reassemble peripherally as lymph sacs from which a lymphatic vasculature is generated. However, this model fails to account for a number of observations that, as a result, have remained anecdotal. Here, we use optical projection tomography, confocal microscopy and in vivo live imaging to uncover three key stages of lymphatic vascular morphogenesis in the mouse embryo at high resolution. First, we define territories or "pre-lymphatic clusters" of Prox1-positive lymphatic endothelial progenitor cells along the antero-posterior axis of the cardinal veins. Second, these pre-lymphatic clusters undergo progressive extrusion ("ballooning") to generate primitive lymph sacs. Third, lymphatic vessels emerge by a combination of mechanisms including sprouting from the lymph sacs and direct delamination of streams of cells from the cardinal veins. Our data support a new model for lymphatic vascular patterning and morphogenesis, as a basis for identifying the molecular cues governing these processes. 相似文献
6.
Despite the importance of blood vessels and lymphatic vessels during development and disease, the signalling pathways underpinning vessel construction remain poorly characterised. Primary mouse endothelial cells have traditionally proven difficult to culture and as a consequence, few assays have been developed to dissect gene function and signal transduction pathways in these cells ex vivo. Having established methodology for the purification, short-term culture and transfection of primary blood (BEC) and lymphatic (LEC) vascular endothelial cells isolated from embryonic mouse skin, we sought to optimise robust assays able to measure embryonic LEC proliferation, migration and three-dimensional tube forming ability in vitro. In the course of developing these assays using the pro-lymphangiogenic growth factors FGF2 and VEGF-C, we identified previously unrecognised roles for FGFR1 signalling in lymphangiogenesis. The small molecule FGF receptor tyrosine kinase inhibitor SU5402, but not inhibitors of VEGFR-2 (SU5416) or VEGFR-3 (MAZ51), inhibited FGF2 mediated LEC proliferation, demonstrating that FGF2 promotes proliferation directly via FGF receptors and independently of VEGF receptors in primary embryonic LEC. Further investigation revealed that FGFR1 was by far the predominant FGF receptor expressed by primary embryonic LEC and correspondingly, siRNA-mediated FGFR1 knockdown abrogated FGF2 mediated LEC proliferation. While FGF2 potently promoted LEC proliferation and migration, three dimensional tube formation assays revealed that VEGF-C primarily promoted LEC sprouting and elongation, illustrating that FGF2 and VEGF-C play distinct, cooperative roles in lymphatic vascular morphogenesis. These assays therefore provide useful tools able to dissect gene function in cellular events important for lymphangiogenesis and implicate FGFR1 as a key player in developmental lymphangiogenesis in vivo. 相似文献
7.
This protocol describes a powerful in vivo method to quantitatively study the formation of new lymphatic vessels in the avascular cornea without interference of pre-existing lymphatics. Implantation of 100 ng of lymphangiogenic factors such as vascular endothelial growth factor (VEGF)-A, VEGF-C or fibroblast growth factor-2, together with slow-release polymers, into a surgically created micropocket in the mouse cornea elicits a robust lymphangiogenic response. Newly formed lymphatic vessels are detected by immunohistochemical staining of the flattened corneal tissue with lymphatic endothelial-specific markers such as lymphatic vessel endothelial hyaluronan receptor-1; less-specific markers such as vascular endothelial growth factor receptor 3 may also be used. Lymphatic vessel growth in relation to hemangiogenesis can be readily detected starting at day 5 or 6 after pellet implantation and persists for ~14 d. This protocol offers a unique opportunity to study the mechanisms underlying lymphatic vessel formation, remodeling and function. 相似文献
8.
Molecular control of lymphangiogenesis 总被引:8,自引:0,他引:8
Baldwin ME Stacker SA Achen MG 《BioEssays : news and reviews in molecular, cellular and developmental biology》2002,24(11):1030-1040
The lymphatic vasculature plays a critical role in the regulation of body fluid volume and immune function. Extensive research into the molecular mechanisms that control blood vessel growth has led to identification of molecules that also regulate development and growth of the lymphatic vessels. This is generating a great deal of interest in the molecular control of the lymphatics in the context of embryogenesis, lymphatic disorders and tumor metastasis. Studies in animal models carried out over the past three years have shown that the soluble protein growth factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, and their cognate receptor tyrosine kinase, VEGF receptor-3 (VEGFR-3), are critical regulators of lymphangiogenesis. Furthermore, disfunction of VEGFR-3 has recently been shown to cause lymphedema. The capacity to induce lymphangiogenesis by manipulation of the VEGF-C/VEGF-D/VEGFR-3 signaling pathway offers new opportunities to understand the function of the lymphatic system and to develop novel treatments for lymphatic disorders. 相似文献
9.
10.
Inflammation is the common denominator to the postnatal events that overlap with lymphatic vessel growth, or lymphangiogenesis. Undoubtedly, inflammation and accompanying fluid overload are cardinal factors in wound healing, lymphedema, the pathogenesis of some forms of lymphangiomatosis, and solid tumor lymphangiogenesis. The assertion that inflammation actually triggers lymphangiogenesis lies in the evidence set forth below that inflammation is the usual precursor to tissue repair and regeneration. Moreover, the panel of pro-inflammatory and anti-inflammatory molecules that orchestrates the inflammatory response abounds with cytokines and chemokines that foster survival, migration, and proliferation of lymphatic endothelial cells. Finally, both interstitial fluid overload and increased demand for removal of leukocytes can benefit from lymphangiogenesis, although the mechanisms controlling the exit of leukocytes from tissues via the lymphatics are practically unknown. The pertinent question actually is how and why inflammation presents with formation of new lymph vessels in liver fibrosis but not in rheumatoid arthritis. One possible explanation is that organ-specific histological and functional properties of the lymphatic endothelium gauge their response to death, survival, and proliferative factors. Alternatively, the decision to remain quiescent, proliferate or regress resides within the stroma microenvironment. 相似文献
11.
Tong Lin Xiaozhao Zhang Yang Lu Lan Gong 《Journal of cellular and molecular medicine》2019,23(11):7602-7616
Corneal lymphangiogenesis plays a key role in diverse pathological conditions of the eye. Here, we demonstrate that a versatile extracellular matrix protein, transforming growth factor‐β induced protein (TGFBIp), promotes lymphatic sprouting in corneal lymphangiogenesis. TGFBIp is highly up‐regulated in inflamed mouse corneas. Immunolocalization of TGFBIp is detected in infiltrating macrophages in inflamed mouse corneas. Subconjunctival injection of liposomal clodronate can significantly reduce macrophage infiltration in inflamed mouse cornea, and decrease the expression of TGFBIp and areas of corneal lymphangiogenesis and angiogenesis after corneal suture placement. In brief, these results indicate that the up‐regulation of TGFBIp in sutured cornea correlates with macrophage infiltration. Although TGFBIp alone cannot significantly stimulate corneal lymph vessel ingrowth in vivo, it can enhance the effect of vascular endothelial growth factor‐C in promoting corneal lymphangiogenesis. The in vitro results show that TGFBIp promotes migration, tube formation and adhesion of human lymphatic endothelial cells (HLECs), but it has no effect on HLECs' proliferation. We also find that the in vitro effect of TGFBIp is mediated by the integrin α5β1‐FAK pathway. Additionally, integrin α5β1 blockade can significantly inhibit lymphatic sprouting induced by TGFBIp. Taken together, these findings reveal a new molecular mechanism of lymphangiogenesis in which the TGFBIp‐integrin pathways plays a pivotal role in lymphatic sprouting. 相似文献
12.
恶性肿瘤除了浸润性生长侵及周围组织外,还可发生远处转移,这是影响疗效,致患者死亡的主要因素。血道转移和淋巴转移是实体肿瘤最重要的两条转移途径。然而,直到淋巴内皮细胞特异性标志物的相继发现后,对淋巴管生成的相关研究才得以蓬勃开展起来。本文就主要的淋巴管内皮标记物和淋巴管生成调节因子及相关治疗的新进展做一相关综述。 相似文献
13.
14.
15.
Bruyère F Melen-Lamalle L Blacher S Roland G Thiry M Moons L Frankenne F Carmeliet P Alitalo K Libert C Sleeman JP Foidart JM Noël A 《Nature methods》2008,5(5):431-437
A lack of appropriate in vitro models of three-dimensional lymph vessel growth hampers the study of lymphangiogenesis. We developed a lymphatic ring assay--a potent, reproducible and quantifiable three-dimensional culture system for lymphatic endothelial cells that reproduces spreading of endothelial cells from a pre-existing vessel, cell proliferation, migration and differentiation into capillaries. In the assay, mouse thoracic duct fragments are embedded in a collagen gel, leading to the formation of lumen-containing lymphatic capillaries, which we assessed by electron microscopy and immunostaining. We developed a computerized method to quantify the lymphatic network. By applying this model to gene-deficient mice, we found evidence for involvement of the matrix metalloproteinase, MMP-2, in lymphangiogenesis. The lymphatic ring assay bridges the gap between two-dimensional in vitro models and in vivo models of lymphangiogenesis, can be used to exploit the potential of existing transgenic mouse models, and rapidly identify regulators of lymphangiogenesis. 相似文献
16.
Malignant melanomas of the skin primarily metastasize to lymph nodes, and the detection of sentinel lymph node metastases serves as an important prognostic parameter. There is now compelling evidence that melanomas can induce lymphangiogenesis (growth of lymphatic vessels), mainly at the tumor-stroma interface, and that the level of tumor lymphangiogenesis is correlated with the incidence of sentinel lymph node metastases and with disease-free survival. Thus, tumor lymphangiogenesis can serve as a novel prognostic predictor in melanoma. Vascular endothelial growth factor (VEGF)-C, released by melanoma cells and by tumor-associated macrophages, likely represents the major lymphangiogenic factor in melanoma, although other members of the VEGF family might also be involved. The recent discovery that tumors can induce a premetastatic niche, by inducing lymphatic vessel growth in sentinel lymph nodes even before metastasis, and that lymph node lymphangiogenesis enhances metastatic spread, indicates that activated lymphatic vessels represent novel targets for the detection and/or therapy of melanoma metastases. 相似文献
17.
The lymphatic system, also named the second vascular system, plays a critical role in tissue homeostasis and immunosurveillance. The past two decades of intensive research have led to the identification and detailed understanding of many molecular players and mechanisms regulating the formation of the lymphatic vasculature during embryonic development. Furthermore, clinical and experimental data clearly demonstrate that the formation of new lymphatic vessels by sprouting lymphangiogenesis from pre-existing lymphatic vessels, or by the de novo formation of lymphatic capillaries also occurs in various pathological conditions, such as cancer and organ transplant rejection, while lymphangiogenesis is non-functional in primary edema. In cancer, lymphatic vessels are one major gateway for invasive tumor cells to leave the primary tumor site and to establish distant organ metastasis. Therefore, the specific targeting of the lymphatic vasculature at the tumor site could be a promising approach to prevent metastasis formation. 相似文献
18.
19.
20.
Molecular regulation of angiogenesis and lymphangiogenesis 总被引:13,自引:0,他引:13
Blood vessels and lymphatic vessels form extensive networks that are essential for the transport of fluids, gases, macromolecules and cells within the large and complex bodies of vertebrates. Both of these vascular structures are lined with endothelial cells that integrate functionally into different organs, acquire tissue-specific specialization and retain plasticity; thereby, they permit growth during tissue repair or in disease settings. The angiogenic growth of blood vessels and lymphatic vessels coordinates several biological processes such as cell proliferation, guided migration, differentiation and cell-cell communication. 相似文献