首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eukaryotic and viral messenger RNAs contain a CAP structure that plays an important role in the initiation of translation and several other cellular processes that involve mRNAs. In this paper, we report a convenient chemical approach to the preparation of milligram quantities of short, capped RNA oligonucleotides, which overcomes some of the limitations of previous approaches. The method is based on the use of a reactive precursor, m7GppQ [P1‐7‐methylguanosine‐5′‐O‐yl, P2‐O‐8‐(5‐chloroquinolyl) pyrophosphate]. The precursor reacts smoothly with 5′‐phosphorylated unprotected short RNA in the presence of CuCl2 in organic media. The feasibility of this approach was demonstrated by the synthesis of the capped pentaribonucleotide m7GpppGpApCpU. The synthesized capped oligonucleotide was isolated and purified by reverse phase and ion exchange HPLC with a final yield of 37%. The structure of the m7GpppGpApCpU was confirmed by 31P NMR, mass‐spectrometry and enzymatic hydrolysis.  相似文献   

2.
3.
4.
A designed mRNA consisting of 42 ribonucleotides having the cap structure was synthesized. The capped leader sequence of the brome mosaic virus (BMV) mRNA 4, m7G5'pppGUAUUAAUA (F-1), was synthesized by the phosphotriester method and followed by the capping reaction. A 32-mer consisting of an initiation codon (AUG), the coding region corresponding to a bacterial pheromone cAD1 and two stop codons, was constructed by the 18-mer (F-2) and 14-mer (F-3), which were synthesized by the phosphoramidite method. 2'-,3'-O-Methoxymethylene-guanosine 5'-phosphate was condensed with F-3 using P1-2',3'-O-methoxymethyleneguanosine-5'-yl P2-adenosine-5'-yl pyrophosphate (9) with T4 RNA ligase. The chemically synthesized RNA fragments were ligated successively with T4 RNa ligase to afford the whole RNA molecule.  相似文献   

5.
6.
R E Smith  J M Clark 《Biochemistry》1979,18(7):1366-1371
The mRNA guanyltransferase-mRNA methyltransferases of vaccinia virions can be used to introduce a 5'-terminal m7g(5')pp(5')Apm... capping group onto the RNA of satellite tobacco necrosis virus (STNV RNA) to yield intact capped STNV RNA. Studies with an in vitro system from wheat germ and limiting quantities of capped and uncapped STNV RNA show that the rates and extents of formation of initiation complexes of protein synthesis by intact capped and uncapped STNV RNA are identical, suggesting that 5'-terminal cap groups cannot function in the translation of STNV RNA. Also, the cap analogue pm7G equally inhibits the initiation and the translation of limiting quantities of both capped and uncapped STNV RNA. These contrasting observations suggest that the wheat germ system contains a pm7G sensitive protein and that STNV RNA has a tertiary structure that restricts the function of an added 5'-terminal capping group. This theory is supported by observations that fragmented capped STNV RNA is better at forming initiation complexes than is equally fragmented uncapped STNV RNA.  相似文献   

7.
An enzyme that hydrolyzes one PPi bond of the cap structure of mRNA, yielding m7GDP and 5'-p RNA was purified from Saccharomyces cerevisiae to a stage suitable for characterization. The specificity of the enzyme was studied, using both yeast mRNA and synthetic RNAs labeled in the cap structure. A synthetic capped RNA (540 nucleotides) was not reduced in size, while as much as 80% was decapped. Yeast mRNA treated with high concentrations of RNase A, nuclease P1, or micrococcal nuclease was inactive as a substrate. The use of synthetic capped RNAs of different sizes (50 to 540 nucleotides) as substrates showed that the larger RNA can be a better substrate by as much as 10-fold. GpppG-RNA was hydrolyzed at a rate similar to that at which 5'-triphosphate end group were not hydrolyzed.  相似文献   

8.
The 5' ends of U1, U2, U3, U4, and U5 small nuclear RNAs (snRNA) are capped by a structure which contains N2,N2-7-trimethylguanosine (m2,2,7 G). m2,2,7 G was used as hapten to raise antibodies in rabbits, and these antibodies were linked to Sepharose. When deproteinized RNA was passed through this antibody column, these snRNA species were retained by the column. Conversely, 4 S, 5 S, 5.8 S, U6, and 7 S RNA, whose 5' termini do not contain m2,2,7 G, were not recognized. After a nuclear extract was loaded on the column, U1 RNA and some U2 RNA were retained. Therefore, the 5' ends of at least U1 RNA are accessible when this RNA species is in small nuclear ribonucleoprotein particle (snRNP) form. This is of interest, since it has been proposed that the 5' terminus sequence of U1 RNA may hybridize with splice junctions in heterogeneous nuclear ribonucleoprotein particles (hnRNP) during mRNA splicing. The retention of m2,2,7 G-containing RNA species by these antibodies is not due to association of snRNAs or snRNPs with heterogeneous nuclear RNA (hnRNA) or hnRNP (and antibody recognition of 7-monomethylguanosine residues in hnRNA), since the reaction still occurs after removal of hnRNA or hnRNP by sucrose gradient centrifugation.  相似文献   

9.
Viral methyltransferases are involved in the mRNA capping process, resulting in the transfer of a methyl group from S-adenosyl-L-methionine to capped RNA. Two groups of methyltransferases (MTases) are known: (guanine-N7)-methyltransferases (N7MTases), adding a methyl group onto the N7 atom of guanine, and (nucleoside-2'-O-)-methyltransferases (2'OMTases), adding a methyl group to a ribose hydroxyl. We have expressed and purified two constructs of Meaban virus (MV; genus Flavivirus) NS5 protein MTase domain (residues 1-265 and 1-293, respectively). We report here the three-dimensional structure of the shorter MTase construct in complex with the cofactor S-adenosyl-L-methionine, at 2.9 angstroms resolution. Inspection of the refined crystal structure, which highlights structural conservation of specific active site residues, together with sequence analysis and structural comparison with Dengue virus 2'OMTase, suggests that the crystallized enzyme belongs to the 2'OMTase subgroup. Enzymatic assays show that the short MV MTase construct is inactive, but the longer construct expressed can transfer a methyl group to the ribose 2'O atom of a short GpppAC(5) substrate. West Nile virus MTase domain has been recently shown to display both N7 and 2'O MTase activity on a capped RNA substrate comprising the 5'-terminal 190 nt of the West Nile virus genome. The lack of N7 MTase activity here reported for MV MTase may be related either to the small size of the capped RNA substrate, to its sequence, or to different structural properties of the C-terminal regions of West Nile virus and MV MTase-domains.  相似文献   

10.
We studied the role of the methylphosphate cap structure in the stability and nucleocytoplasmic transport by microinjecting U6, 7SK and B2 RNAs into the Xenopus oocytes. In every case, the methylphosphate capped RNAs were 3 to 9 times more stable than the uncapped RNAs. When a methylphosphate cap structure was placed on human H1 RNA which is normally not capped, its stability was improved 2-7 fold. These data show that the methylphosphate cap enhances the stability of 7SK, B2, H1 and U6 RNAs. The methylphosphate-capped 7SK RNA was transported into the nucleus from cytoplasm, but remained in the nucleus when injected into the nucleus; in this respect, 7SK RNA exhibited properties previously shown for U6 RNA. Both U6 and 7SK RNAs with ppp on their 5' ends were transported from cytoplasm to the nucleus suggesting that the methylphosphate cap structure is not required for transport of these RNAs across the nuclear membrane.  相似文献   

11.
12.
13.
14.
A unique set of diguanosine cap analogues containing a 5'-5' tetraphosphate linkage instead of the normal triphosphate was synthesized by chemical methylation of G5'pppp5'G. Both 7-methylguanosine products, m7G5'pppp5'G and m7G5'pppp5'm7G, acted as potent inhibitors of capped brome mosaic virus (BMV) RNA translation in the homologous wheat germ protein synthesis system. Inhibition of in vitro protein synthesis required the presence of the 7-methyl group on guanosine and was specific for capped mRNA. In comparison with the partial cap analogue, m7GTP, the methylated diguanosine tetraphosphate structures were 25-50 fold more potent inhibitors of in vitro protein synthesis. Analysis of the in vitro translation products of the four species of BMV RNA showed a differential sensitivity to inhibition by m7G5'pppp5'm7G.  相似文献   

15.
Multiple 5' terminal cap structures in late polyoma virus RNA.   总被引:31,自引:0,他引:31  
A J Flavell  A Cowie  S Legon  R Kamen 《Cell》1979,16(2):357-371
Nuclear and cytoplasmic polyoma virus-specific RNA extracted from 32P-labeled mouse embryo cells late during productive viral infection was analyzed for the presence of 5' terminal capped structures by complete digestion with RNAases T1, T2 and A, followed by two-dimensional electrophoretic fractionation. Seven major cap I structures (m7 GpppNm1pN2p) were observed in both cases. These termini were further characterized by digestion with penicillium nuclease P1, followed by product analysis in a variety of alternative separate systems. Each structure had an individual combination of N1 and N2 nucleotides, where N1 was always a purine nucleotide but N2 was any nucleotide subject to the single exception that m7GpppGmpCp is found only in low yield. Four different cap II derivatives (m7GpppNm1pNm2pN3p) of four of the cap I structures were also detected in cytoplasmic RNA. None of the termini described derived from contaminating host cell RNA. All of these cap structures mapped on the polyoma viral DNA genome between 66 and 71 map units, a region distant from the 5' end of the bodies of two of the three late polyoma mRNAs. All the polyoma virus-specific cap structures, however, were present in each of the purified 16S, 18S and 19s late mRNAs. These data suggested that families of capped leader sequences of varying sizes are attached to the main body of each late polyoma mRNA species by a splicing mechanism.  相似文献   

16.
The 5' end of eukaryotic mRNA carries a N(7)-methylguanosine residue linked by a 5'-5' triphosphate bond. This cap moiety ((7m)GpppN) is an essential RNA structural modification allowing its efficient translation, limiting its degradation by cellular 5' exonucleases and avoiding its recognition as "nonself" by the innate immunity machinery. In vitro synthesis of capped RNA is an important bottleneck for many biological studies. Moreover, the lack of methods allowing the synthesis of large amounts of RNA starting with a specific 5'-end sequence have hampered biological and structural studies of proteins recognizing the cap structure or involved in the capping pathway. Due to the chemical nature of N(7)-methylguanosine, the synthesis of RNAs possessing a cap structure at the 5' end is still a significant challenge. In the present work, we combined a chemical synthesis method and an enzymatic methylation assay in order to produce large amounts of RNA oligonucleotides carrying a cap-0 or cap-1. Short RNAs were synthesized on solid support by the phosphoramidite 2'-O-pivaloyloxymethyl chemistry. The cap structure was then coupled by the addition of GDP after phosphorylation of the terminal 5'-OH and activation by imidazole. After deprotection and release from the support, GpppN-RNAs or GpppN(2'-Om)-RNAs were purified before the N(7)-methyl group was added by enzymatic means using the human (guanine-N(7))-methyl transferase to yield (7m)GpppN-RNAs (cap-0) or (7m)GpppN(2'-Om)-RNAs (cap-1). The RNAs carrying different cap structures (cap, cap-0 or, cap-1) act as bona fide substrates mimicking cellular capped RNAs and can be used for biochemical and structural studies.  相似文献   

17.
Most eukaryotic mRNAs are characterized by the presence of a 5'-terminal cap structure (m7GpppN), and removal of the cap or translation of capped mRNAs in the presence of cap analogues (m7G) results in most cases in a significant decrease in the translational efficiency of the mRNAs. One way of explaining the importance of the 5'-cap is that cap-binding proteins recognize the cap structure, destabilize the mRNA secondary structure, and thus allow the 40S ribosomal subunit to bind to the mRNA [Sonenberg, N., Guertin, D., Cleveland, D., & Trachsel, H. (1981) Cell (Cambridge, Mass.) 27, 563-572]. Our data and those of others indicate that the translational efficiency of alfalfa mosaic virus RNA 4 (AMV-4 RNA), a naturally capped RNA, is not affected significantly by cap analogues or by removal of the cap. In order to examine the potential relationship between the function of the cap structure and secondary structure at the 5'-mRNA terminus, partial enzymatic digestion of capped AMV-4 RNA with single strand specific and double strand specific nucleases has been performed, and the experimental data have been compared with computer-generated models of AMV-4 secondary structure. In addition, the in vitro translatability of AMV-4 has been examined as a function of increasing potassium concentration, conditions that are likely to increase mRNA secondary structure. The nuclease-digestion results demonstrate that under native ionic conditions, the 5'-terminus of AMV-4 RNA is predominantly single stranded, although computer modeling and double-strand nuclease digestions indicate that the 5'-terminus can form weak base pairs with internal regions of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
The 5'-terminal sequence of hen ovalbumin mRNA was investigated using a novel labeling method. Ovalbumin mRNA was purified by hybridization to complementary DNA coupled to cellulose. The mRNA thus purified was shown to be 97.9% pure by hybridization with plasmid DNA containing sequences to the messengers coding for conalbumin and ovomucoid, the next two most abundant messengers of oviduct. After digestion with RNase T1 and alkaline phosphatase, 5'-terminal capped oligonucleotides were selected by binding to anti-m7G-Sepharose. These were then labeled using RNA ligase and [5'-32P]pCp, separated by two-dimensional gel electrophoresis, and sequenced by partial digestion with base-specific ribonucleases. A nested set of three capped oligonucleotides was identified. Their structures and relative abundances were m7GpppAUACAG, 3% m7GpppACAUACAG, 61+; and m7GpppGUACAUACAG, 36%.  相似文献   

20.
Nucleotide cap analogues of 7-methylguanosine 5'-monophosphate (m7GMP) were synthesized in which the 7-methyl moiety was replaced with 7-ethyl (e7), 7-propyl (p7), 7-isopropyl (ip7), 7-butyl (b7), 7-isobutyl (ib7), 7-cyclopentyl (cp7), 7-(carboxymethyl) (cm7), 7-benzyl (bn7), 7-(2-phenylethyl) [7-(2-PhEt)], and 7-(1-phenylethyl) [7-(1-PhEt)]. These derivatives were assayed as competitive inhibitors of capped mRNA translation in reticulocyte lysate. We observed that N7 alkyl and alicyclic substituents larger than ethyl significantly decreased the inhibitory activity of these cap analogues presumably by decreasing their affinity for cap binding proteins, which participate in the initiation of translation. This result defined a maximum size for this class of N7 substituents in the nucleotide binding domain of cap binding proteins. Like m7GMP, the N7-substituted GMP derivatives synthesized in this study were found to be predominantly in the anti conformation as determined by proton NMR analyses. However, bn7GMP and 7-(2-PhEt)GMP, which have aromatic N7 substituents, were more effective than m7GMP as competitive inhibitors of translation. The increased affinity of bn7GMP for cap binding proteins was further examined by synthesis of beta-globin mRNA containing 5'-bn7G, 5'-m7G, or 5'-e7G cap structures. These modified mRNAs were tested as translation templates. Messenger RNA capped with bn7G was observed to increase the translation activity of the template 1.8-fold relative to that of its m7G-capped mRNA counterpart. By contrast, e7G-capped mRNA was 25% less active than m7G-capped mRNA.2+V photo-cross-linking of m7G-capped mRNA to cap binding proteins  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号