首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic stellate cells (HSCs) and transdifferentiated myofibroblasts are the principal producers of excessive extracellular matrix in liver fibrosis and cirrhosis. Activation of HSC is regulated by several cytokines and growth factors, including platelet-derived growth factor B-chain (PDGF-B), a potent mitogen for HSC, and overexpressed during hepatic fibrogenesis. Previous studies showed that MAPK and phosphatidylinositol 3' kinase are key signaling pathways involved in PDGF-induced stimulation of HSC. Based on the involvement of PDGF-B in fibrogenesis, reducing ligand stimulation of proliferative cytokine- or growth factor receptors interfering with receptor signaling therefore presents an interesting strategy for hepatic fibrosis prevention or interruption. We therefore generated an adenoviral vector serotype 5 (Ad5) expressing an antisense mRNA of the PDGF B-chain (Ad5-CMV-asPDGF) for application in an experimentally induced liver fibrogenesis model. The transgene clearly showed the ability to down-regulate endogenous PDGF B-chain and PDGFRbeta mRNA in culture-activated HSC and rat livers. The asPDGF mRNA also attenuates experimental liver fibrogenesis indicated by reduced levels of alpha-SMA and collagen type I expression.  相似文献   

2.
The activated hepatic stellate cell (HSC) is central to liver fibrosis as the major source of collagens I and III and the tissue inhibitors of metalloproteinase-1 (TIMP-1). During spontaneous recovery from liver fibrosis, there is a decrease of TIMP expression, an increase in collagenase activity, and increased apoptosis of HSC, highlighting a potential role for TIMP-1 in HSC survival. In this report, we use tissue culture and in vivo models to demonstrate that TIMP-1 directly inhibits HSC apoptosis. TIMP-1 demonstrated a consistent, significant, and dose-dependent antiapoptotic effect for HSC activated in tissue culture and stimulated to undergo apoptosis by serum deprivation, cycloheximide exposure, and nerve growth factor stimulation. A nonfunctional mutated TIMP-1 (T2G mutant) in which all other domains are conserved did not inhibit apoptosis, indicating that inhibition of apoptosis was mediated through MMP inhibition. Synthetic MMP inhibitors also inhibited HSC apoptosis. Studies of experimental liver cirrhosis demonstrated that persistent expression of TIMP-1 mRNA determined by PCR correlated with persistence of activated HSC quantified by alpha smooth muscle actin staining, while in fibrosis, loss of activated HSC correlated with a reduction in TIMP-1 mRNA. We conclude that TIMP-1 inhibits apoptosis of activated HSC via MMP inhibition.  相似文献   

3.
Catecholamines participate in the pathogenesis of portal hypertension and liver fibrosis through alpha1-adrenoceptors. However, the underlying cellular and molecular mechanisms are largely unknown. Here, we investigated the effects of norepinephrine (NE) on human hepatic stellate cells (HSC), which exert vasoactive, inflammatory, and fibrogenic actions in the injured liver. Adrenoceptor expression was assessed in human HSC by RT-PCR and immunocytochemistry. Intracellular Ca2+ concentration ([Ca2+]i) was studied in fura-2-loaded cells. Cell contraction was studied by assessing wrinkle formation and myosin light chain II (MLC II) phosphorylation. Cell proliferation and collagen-alpha1(I) expression were assessed by [3H]thymidine incorporation and quantitative PCR, respectively. NF-kappaB activation was assessed by luciferase reporter gene and p65 nuclear translocation. Chemokine secretion was assessed by ELISA. Normal human livers expressed alpha(1A)-adrenoceptors, which were markedly upregulated in livers with advanced fibrosis. Activated human HSC expressed alpha(1A)-adrenoceptors. NE induced multiple rapid [Ca2+]i oscillations (Ca2+ spikes). Prazosin (alpha1-blocker) completely prevented NE-induced Ca2+ spikes, whereas propranolol (nonspecific beta-blocker) partially attenuated this effect. NE caused phosphorylation of MLC II and cell contraction. In contrast, NE did not affect cell proliferation or collagen-alpha1(I) expression. Importantly, NE stimulated the secretion of inflammatory chemokines (RANTES and interleukin-8) in a dose-dependent manner. Prazosin blocked NE-induced chemokine secretion. NE stimulated NF-kappaB activation. BAY 11-7082, a specific NF-kappaB inhibitor, blocked NE-induced chemokine secretion. We conclude that NE stimulates NF-kappaB and induces cell contraction and proinflammatory effects in human HSC. Catecholamines may participate in the pathogenesis of portal hypertension and liver fibrosis by targeting HSC.  相似文献   

4.
Pigment epithelium-derived factor (PEDF) has been shown previously to prevent liver fibrosis and hepatic stellate cell (HSC) activation. By investigating the functional domains in PEDF, we identified a 34-mer peptide (residues Asp44-Asn77) that harbors the same function as the full-length PEDF protein. Not only did the 34-mer suppress the development of fibrosis in carbon tetrachloride (CCl4)-treated mouse liver but it also upregulated peroxisome proliferator-activated receptor-gamma (PPARγ) expression in HSCs in vivo. Platelet-derived growth factor (PDGF) plays a crucial role on the process of HSC activation in response to liver damage. The 34-mer suppressed PDGF-induced cell proliferation and expression of myofibroblastic marker proteins in primary rat HSC culture, increased the levels of PPARγ mRNA and protein in a dose-dependent manner and markedly reduced the level of active β-catenin protein, an HSC activating factor, in HSC-T6 cells. Similarly, IWR-1, an inhibitor of the Wnt response, displayed the same effect as the 34-mer in preventing HSC-T6 activation. The Wnt signaling-mediated PPARγ suppression was abolished by both the IWR-1 inhibitor and a small interfering RNA (siRNA) targeting β-catenin and the Wnt coreceptor, LRP6. Both PEDF and the 34-mer down-regulated PDGF receptor-α/β expression and blocked the PDGF-induced phosphorylation of Akt and ERK. Moreover, the inhibitory effect on PDGF receptor expression was abolished by PPARγ antagonists and PPARγ siRNA. Our observations indicate that the PEDF-derived 34-mer peptide can mimic PEDF in attenuating HSC activation. Investigation of this 34-mer peptide led to the identification of a signaling mechanism involving PPARγ induction, suppression of Wnt/β-catenin signaling and down-regulation of the PDGF receptor-α/β.  相似文献   

5.
During fibrosis the hepatic stellate cell (HSC) undergoes a complex activation process characterized by increased proliferation and extracellular matrix deposition. The 70-kDa ribosomal S6 kinase (p70S6K) is activated by mitogens, growth factors, and hormones in a phosphatidylinositol 3-kinase-dependent manner. p70S6K regulates protein synthesis, proliferation, and cell cycle control. Because these processes are involved in HSC activation, we investigated the role of p70S6K in HSC proliferation, cell cycle control, and type I collagen expression. Platelet-derived growth factor (PDGF) stimulated p70S6K phosphorylation, which was blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase. Rapamycin blocked phosphorylation of p70S6K but had no affect on PDGF-induced Akt phosphorylation, positioning p70S6K downstream of Akt. Transforming growth factor-beta, which inhibits HSC proliferation, did not affect PDGF-induced p70S6K phosphorylation. Rapamycin treatment did not affect alpha1(I) collagen mRNA but reduced type I collagen protein secretion. Expression of smooth muscle alpha-actin was not affected by rapamycin treatment, indicating that HSC activation was not altered. Rapamycin inhibited serum-induced DNA synthesis approximately 2-fold. Moreover, rapamycin decreased expression of cyclins D1, D3, and E but not cyclin D2, Rb-Ser780, and Rb-Ser795. Together, p70S6K plays a crucial role in HSC proliferation, collagen expression, and cell cycle control, thus representing a potential therapeutic target for liver fibrosis.  相似文献   

6.
Hepatic stellate cells (HSC) are central to liver fibrosis. The eicosanoid pathway and cyclooxygenase-2 (COX-2) may be an important signaling mechanism in HSC. We investigated the role of COX-2, prostaglandin E(2) (PGE(2)) and prostaglandin I(2) (PGI(2)) in proliferation of LI90, an immortalized cell line of HSC. Our results showed that COX-2 was upregulated by platelet-derived growth factor (PDGF), a mitogen in HSC. COX-2 was responsible for the production of PGE(2) and PGI(2) in PDGF-stimulated LI90 cells. Furthermore, we demonstrated that COX-2 and PGE(2) mediated the proliferative response of LI90 to PDGF while synthetic analogue of PGI(2) exhibited anti-proliferative effect. Our findings suggest complex interactions of prostaglandins in liver fibrogenesis. In vivo studies using animal models are needed to elucidate the effect of COX-2 inhibition by non-steroidal anti-inflammatory drugs or COX-2 inhibitor in hepatic fibrosis.  相似文献   

7.
The tyrosine kinase inhibitor STI-571 potently blocks BCR-Abl, platelet-derived growth factor (PDGF) alpha- and beta-receptors, and c-Kit kinase activity. Flt3, a receptor tyrosine kinase closely related to PDGF receptors and c-Kit is, however, not inhibited by STI-571. Sequence alignments of different kinases and indications from the crystal structure of the STI-571 Abl kinase complex revealed amino acid residues that are probably crucial for this activity profile. It was predicted that Flt3 Phe-691 in the beta5 strand may sterically prevent interaction with STI-571. The point mutants Flt3 F691T and PDGFbeta-receptor T681F were constructed, and kinase assays showed that the Flt3 mutant but not the PDGFbeta-receptor mutant is inhibited by STI-571. Docking of STI-571 into computer models of the PDGFbeta-receptor and Flt3 kinase domains and comparison with the crystal structure of the STI-571 Abl kinase complex indicated very similar binding sites among the three nonphosphorylated kinases, suggesting corresponding courses of their Asp-Phe-Gly motifs and activation loops. Accordingly, we observed reduced sensitivity of preactivated compared with nonactivated PDGFR-beta for the inhibition by STI-571. Courses of the activation loop that collide with STI-571 binding explain its inactivity at other kinases as the insulin receptor. The binding site models of PDGFR-beta and Flt3 were applied to predict structural approaches for more selective PDGFbeta-receptor inhibitors.  相似文献   

8.
Located within the perisinusoidal space and surrounded by extracellular matrix, hepatic stellate cells (HSC) undergo phenotypic trans-differentiation called "myofibroblastic activation" in liver fibrogenesis. This study investigated the regulation of interleukin-1 (IL-1alpha) on expression of matrix metalloproteinases (MMPs) by HSC grown in three-dimensional extracellular matrix and the role of MMPs in HSC activation. To recapitulate the in vivo "quiescent" state of HSC, the isolated rat HSC were grown in three-dimensional Matrigel or type I collagen. Stimulation with IL-1alpha caused robust induction of pro-MMP-9 (the precursor of matrix metalloproteinase-9) when HSC were cultured in these matrices. IL-1alpha induced a conversion of the pro-MMP-9 to the active form only when the cells were in type I collagen. In collagen lattices, IL-1alpha provoked activation of HSC with induction of MMP-13, MMP-3, and breakdown of the matrix. The HSC activation was completely prevented by a treatment of the cells with tissue inhibitor of metalloproteinase-1 or deprivation of MMP-9. Once fully activated, HSC failed to express MMP-9 and showed attenuated induction of MMP-13 and MMP-3. Further, we demonstrated colocalization of alpha-smooth muscle actin and MMP-9 in a subpopulation of HSC in human fibrotic liver tissues. Thus, this study provides a novel model to enlighten the role of MMPs, particularly that of MMP-9, in HSC activation regulated by a specific cytokine in liver fibrogenesis.  相似文献   

9.
3,4-Methylenedioxymethamphetamine, MDMA ("Ecstasy"), has been previously shown to produce cell necrosis and fibrosis in the liver. Our aim was to study the effect of MDMA on the type I collagen production by a cell line of hepatic stellate cells (HSC), the cell type mainly responsible for collagen synthesis in the liver. We demonstrated that MDMA increases alpha1(I) procollagen mRNA levels and that this increase correlates with glutathione depletion and enhanced hydrogen peroxide production by HSC. Pre-treatment with either glutathione monoethyl ester or deferoxamine prevents the MDMA-induced alpha1(I) procollagen mRNA expression, indicating oxidative stress to be a mediator of this effect. Lipid peroxidation was not detected in MDMA-treated cells and therefore does not seem to be involved in the pro-fibrogenic action of MDMA on HSC.  相似文献   

10.
11.
Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)‐β1‐induced HSC activation remains unclear. We used RT‐PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α‐smooth muscle actin (α‐SMA), collagen I, TGF‐β1, p‐Smad2 and p‐Smad3 were determined by western blot. Our study found that periostin was up‐regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA‐periostin suppressed TGF‐β1‐induced HSC proliferation. The HSC transfected with siRNA‐periostin significantly inhibited TGF‐β1‐induced expression levels of α‐SMA and collagen I. Furthermore, TGF‐β1 stimulated the expression of periostin, and siRNA‐periostin attenuated TGF‐β1‐induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF‐β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis.  相似文献   

12.
Following a fibrogenic stimulus, the hepatic stellate cell (HSC) undergoes a complex activation process associated with increased cell proliferation and excess deposition of type I collagen. The focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is activated by platelet-derived growth factor (PDGF) in several cell types. We investigated the role of the FAK-PI3K-Akt pathway in HSC activation. Inhibition of FAK activity blocked HSC migration, cell attachment, and PDGF-induced PI3K and Akt activation. Both serum- and PDGF-induced Akt phosphorylation was inhibited by LY294002, an inhibitor of PI3K. A constitutively active form of Akt stimulated HSC proliferation in serum-starved HSCs, whereas LY294002 and dominant-negative forms of Akt and FAK inhibited PDGF-induced proliferation. Transforming growth factor-beta, an inhibitor of HSC proliferation, did not block PDGF-induced Akt phosphorylation, suggesting that transforming growth factor-beta mediates its antiproliferative effect downstream of Akt. Expression of type I collagen protein and alpha1(I) collagen mRNA was increased by Akt activation and inhibited when PI3K activity was blocked. Therefore, FAK is important for HSC migration, cell attachment, and PDGF-induced cell proliferation. PI3K is positioned downstream of FAK. Signals for HSC proliferation are transduced through FAK, PI3K, and Akt. Finally, expression of type I collagen is regulated by the PI3K-Akt signaling pathway.  相似文献   

13.
14.
The aim of the study was to examine the effects of epigallocatechin-3-gallate (EGCG) on hepatic fibrogenesis and on cultured hepatic stellate cells (HSCs). The rat model of carbon tetrachloride (CCl4)-induced hepatic fibrosis was used to assess the effect of daily intraperitoneal injections of EGCG on the indexes of fibrosis. Histological and hepatic hydroxyproline examination revealed that EGCG significantly arrested progression of hepatic fibrosis. EGCG caused significant amelioration of liver injury (reduced activities of serum alanine aminotransferase and aspartate aminotransferase). The development of CCl4-induced hepatic fibrosis altered the redox state with a decreased hepatic glutathione and increased the formation of lipid peroxidative products, which were partially normalized by treatment with EGCG, respectively. Moreover, EGCG markedly attenuated HSC activation as well as matrix metalloproteinase (MMP)-2 activity. In cultured stellate cell, the expression of MMP-2 mRNA and protein were substantially reduced by EGCG treatment. Concanavalin A-induced activation of secreted MMP-2 was inhibited by EGCG through the influence of membrane type 1-MMP activity. These results demonstrate that administration of EGCG may be useful in the treatment and prevention of hepatic fibrosis.  相似文献   

15.
Angiotensin II type I receptor blocker and iron chelator reportedly exert suppressive effects on nonalcoholic steatohepatitis (NASH) progression, including liver fibrosis and hepatocarcinogenesis. The aim of this study was to elucidate the combined effect of losartan (LOS), an angiotensin II type I receptor blocker, and deferasirox (DSX), a newly developed oral iron chelator, on the progression of NASH in rats. To induce NASH, F344 rats were fed a choline-deficient l-amino acid-defined diet for 12 wk, and the effects of LOS and DSX at clinically comparable low doses were elucidated in conjunction with oxidative stress, neovascularization, and hepatic stellate cells (HSC) activation, all known to play important roles in the progression of NASH. Treatment with both LOS and DSX suppressed choline-deficient L-amino acid-defined diet-induced liver fibrosis development and hepatocarcinogenesis. This combination treatment exerted a stronger inhibitory effect compared with treatment with a single agent. These inhibitory effects occurred almost concurrently with the suppression of oxidative stress, neovascularization, and HSC activation. Our in vitro study demonstrated that LOS and DSX inhibited angiotensin II-induced proliferation, transforming growth factor-β(1) expression of activated HSC, and in vitro angiogenesis. These results indicated that dual inhibition by combined treatment of LOS and DSX attenuated the progression of NASH. Since both agents are widely used in clinical practice, this combination therapy may represent a potential new strategy against NASH in the near future.  相似文献   

16.
Nonalcoholic steatohepatitis with fibrosis is a more severe form of nonalcoholic fatty liver disease, one of the most common liver diseases. We have previously shown that peroxisome proliferator-activated receptors gamma (PPARγ) ligand, rosiglitazone, prevented the development of the methionine choline deficient (MCD) diet-induced fibrosing steatohepatitis. We have now tested whether overexpression of PPARγ ameliorates established steatohepatitis and fibrosis. Male C57BL6 mice fed with MCD diet for 8 weeks developed hepatic fibrosis with increased hepatic expression of collagen1α(I), inhibitors of fibrosis reversal-1, regulator involved in matrix degradation-9 and connective tissue growth factor. After 2 weeks of transduction of PPARγ through an adenovirus-expressing PPARγ (Ad-PPARγ), expression of these genes was reduced in a manner that paralleled the reduction in activated hepatic stellate cells (HSCs) and resolution of liver fibrosis. On the in vitro study, PPARγ is expressed in primary quiescent HSC, but depleted in culture activated HSC. Conversely, ectopic expression of PPARγ in activated HSC achieved the phenotypic reversal to the quiescent cell. Such induction markedly suppressed cell viability and cell proliferation, downregulated proliferating cell nuclear antigen, and caused cell cycle arrest at G0/G1 phase. Further, introduction of PPARγ in HSC increased cell apoptosis, this was confirmed by enhanced expression of FasL, cleaved caspase-3, cleaved caspase-7 and poly ADP-ribose polymerase, indicating an extrinsic apoptosis pathway. In conclusion, the present study shows that MCD diet-induced fibrosing steatohepatitis can be reversed by overexpression of PPARγ. It is likely that PPARγ reverses fibrosis by reducing HSCs proliferation, inducing cell cycle arrest and apoptosis.  相似文献   

17.
The platelet-derived growth factor (PDGF) family, which regulates many physiological and pathophysiological processes has recently been enlarged by two new members, the isoforms PDGF-C and -D. Little is known about the expression levels of these new members in hepatic fibrosis. We therefore investigated by quantitative real time PCR (Taqman) the mRNA expression profiles of all four PDGF isoforms in transdifferentiating primary cultured hepatic stellate cells (HSC), an in vitro model system of hepatic fibrogenesis, either with or without stimulation of the cells with PDGF-BB or TGF-beta1. All four isoforms were expressed in HSC transdifferentiating to myofibroblast-like cells (MFB) albeit with different profiles: while PDGF-A mRNA exhibited minor fluctuations only, PDGF-B was rapidly down-regulated. In contrast, both PDGF-C and -D mRNA were strongly induced: PDGF-C up to 5 fold from day 2 to day 8 and PDGF-D up to 8 fold from day 2 to day 5 of culture. Presence of PDGF-DD in activated HSC was confirmed at the protein level by immunocytochemistry. Stimulation of HSC and MFB with PDGF-BB led to down-regulation of the new isoforms, whereas TGF-beta1 upregulated PDGF-A only. We further show that PDGF receptor-beta (PDGFR-beta) mRNA was rapidly upregulated within the first day of culture and was constantly expressed from day 2 on while the expression profile of PDGFR-alpha mRNA was very similar to that of PDGF-A during transdifferentiation. Given the dramatic changes in PDGF-C and -D expression, which may compensate for down-regulation of PDGF-B, we hypothesize that the new PDGF isoforms may fulfil specific functions in hepatic fibrogenesis.  相似文献   

18.
4',5,7-Trihydroxy-3',5'-dimethoxyflavone (Tricin), a naturally occurring flavone, has anti-inflammatory potential and exhibits diverse biological activities including antigrowth activity in several human cancer cell lines and cancer chemopreventive effects in the gastrointestinal tract of mice. The present study aimed to investigate the biological actions of tricin on hepatic stellate cells (HSCs) in vitro, exploring its potential as a treatment of liver fibrosis, since HSC proliferation is closely related to the progression of hepatic fibrogenesis in chronic liver diseases leading to irreversible liver cirrhosis and hepatocellular carcinoma. Tricin inhibited platelet-derived growth factor (PDGF)-BB-induced cell proliferation by blocking cell cycle progression and cell migration in the human HSC line LI90 and culture-activated HSCs. It also reduced the phosphorylation of PDGF receptor β and the downstream signaling molecules ERK1/2 and Akt, which might be due to its tyrosine kinase inhibitor properties rather than inhibition of the direct binding between PDGF-BB and its receptor. Our findings suggest that tricin might be beneficial in HSC-targeting therapeutic or chemopreventive applications for hepatic fibrosis.  相似文献   

19.
The dimerization and auto-transphosphorylation of platelet-derived growth factor receptor (PDGFR) upon engagement by platelet-derived growth factor (PDGF) activates signals promoting the mitogenic response of hepatic stellate cells (HSCs) due to liver injury, thus contributing to the development of hepatic fibrosis. We demonstrate that the tyrosine phosphatases Src homology 2 domain-containing phosphatase 1 and 2 (SHP-1 and SHP-2) act as crucial regulators of a complex signaling network orchestrated by PDGFR activation in a spatio-temporal manner with diverse and opposing functions in HSCs. In fact, silencing of either phosphatase shows that SHP-2 is committed to PDGFR-mediated cell proliferation, whereas SHP-1 dephosphorylates PDGFR hence abrogating the downstream signaling pathways that result in HSC activation. In this regard, SHP-1 as an off-switch of PDGFR signaling appears to emerge as a valuable molecular target to trigger as to prevent HSC proliferation and the fibrogenic effects of HSC activation. We show that boswellic acid, a multitarget compound with potent anti-inflammatory action, exerts an anti-proliferative effect on HSCs, as in other cell models, by upregulating SHP-1 with subsequent dephosphorylation of PDGFR-β and downregulation of PDGF-dependent signaling after PDGF stimulation. Moreover, the synergism resulting from the combined use of boswellic acid and imatinib, which directly inhibits PDGFR-β activity, on activated HSCs offers new perspectives for the development of therapeutic strategies that could implement molecules affecting diverse players of this molecular circuit, thus paving the way to multi-drug low-dose regimens for liver fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号