首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Legler PM  Massiah MA  Mildvan AS 《Biochemistry》2002,41(35):10834-10848
GDP-mannose mannosyl hydrolase (GDPMH) is an unusual Nudix family member, which catalyzes the hydrolysis of GDP-alpha-D-mannose to GDP and the beta-sugar by nucleophilic substitution at carbon rather than at phosphorus (Legler, P. M., Massiah, M. A., Bessman, M. J., and Mildvan, A. S. (2000) Biochemistry 39, 8603-8608). Using the structure and mechanism of MutT, the prototypical Nudix enzyme as a guide, we detected six catalytic residues of GDPMH, three of which were unique to GDPMH, by the kinetic and structural effects of site-specific mutations. Glu-70 (corresponding to Glu-57 in MutT) provides a ligand to the essential divalent cation on the basis of the effects of the E70Q mutation which decreased kcat 10(2.2)-fold, increased the dissociation constant of Mn2+ from the ternary E-Mn2+-GDP complex 3-fold, increased the K(m)Mg2+ 20-fold, and decreased the paramagnetic effect of Mn2+ on 1/T1 of water protons, indicating a change in the coordination sphere of Mn2+. In the E70Q mutant, Gln-70 was shown to be very near the active site metal ion by large paramagnetic effects of Mn2+ on its side chain -NH2 group. With wild-type GDPMH, the effect of pH on log(kcat/K(m)GDPmann) at 37 degrees C showed an ascending limb of unit slope, followed by a plateau yielding a pK(a) of 6.4, which increased to 6.7 +/- 0.1 in the pH dependence of log(kcat). The general base catalyst was identified as a neutral His residue by the DeltaH(ionization) = 7.0 +/- 0.7 kcal/mol, by the increase in pK(a) with ionic strength, and by mutation of each of the four histidine residues of GDPMH to Gln. Only the H124Q mutant showed the loss of the ascending limb in the pH versus log(kcat) rate profile, which was replaced by a weak dependence of rate on hydroxide concentration, as well as an overall 10(3.4)-fold decrease in kcat, indicating His-124 to be the general base, unlike MutT, which uses Glu-53 in this role. The H88Q mutant showed a 10(2.3)-fold decrease in kcat, a 4.4-fold increase in K(m)GDPmann, and no change in the pH versus log(kcat) rate profile, indicating an important but unidentified role of His-88 in catalysis. One and two-dimensional NMR studies permitted the sequence specific assignments of the imidazole HdeltaC, H(epsilon)C, N(delta), and N(epsilon) resonances of the four histidines and defined their protonation states. The pK(a) of His-124 (6.94 +/- 0.04) in the presence of saturating Mg2+ was comparable to the kinetically determined pK(a) at the same temperature (6.40 +/- 0.20). The other three histidines were neutral N(epsilon)H tautomers with pK(a) values below 5.5. Arg-52 and Arg-65 were identified as catalytic residues which interact electrostatically with the GDP leaving group by mutating these residues to Gln and Lys. The R52Q mutant decreased kcat 309-fold and increased K(m)GDPmann 40.6-fold, while the R52K mutant decreased kcat by only 12-fold and increased K(m)GDPmann 81-fold. The partial rescue of kcat, but not of K(m)GDPmann in the R52K mutant, suggests that Arg-52 is a bifunctional hydrogen bond donor to the GDP leaving group in the ground state and a monofunctional hydrogen bond donor in the transition state. Opposite behavior was found with the Arg-65 mutants, suggesting this residue to be a monofunctional hydrogen bond donor to the GDP leaving group in the ground state and a bifunctional hydrogen bond donor in the transition state. From these observations, a mechanism for GDPMH is proposed involving general base catalysis and electrostatic stabilization of the leaving group.  相似文献   

2.
Conformational flexibility of PEP mutase   总被引:1,自引:0,他引:1  
Liu S  Lu Z  Han Y  Jia Y  Howard A  Dunaway-Mariano D  Herzberg O 《Biochemistry》2004,43(15):4447-4453
Previous work has indicated that PEP mutase catalyzes the rearrangement of phosphoenolpyruvate to phosphonopyruvate by a dissociative mechanism. The crystal structure of the mutase with Mg(II) and sulfopyruvate (a phosphonopyruvate analogue) bound showed that the substrate is anchored to the active site by the Mg(II), and shielded from solvent by a large loop (residues 115-133). Here, the crystal structures of wild-type and D58A mutases, in the apo state and in complex with Mg(II), are reported. In both unbound and Mg(II)-bound states, the active site is accessible to the solvent. The loop (residues 115-133), which in the enzyme-inhibitor complexes covers the active site cavity, is partially disordered or adopts a conformation that allows access to the cavity. In the apo state, the residues associated with Mg(II) binding are poised to accept the metal ion. When Mg(II) binds, the coordination is the same as that previously observed in the enzyme-Mg(II) sulfopyruvate complex, except that the coordination positions occupied by two ligand oxygen atoms are occupied by two water molecules. When the loop opens, three key active site residues are displaced from the active site, Lys120, Asn122, and Leu124. Lys120 mediates Mg(II) coordination. Asn122 and Leu124 surround the transferring phosphoryl group, and thus prevent substrate hydrolysis. Amino acid replacement of any one of these three loop residues results in a significant loss of catalytic activity. It is hypothesized that the loop serves to gate the mutase active site, interconverting between an open conformation that allows substrate binding and product release and a closed conformation that separates the reaction site from the solvent during catalysis.  相似文献   

3.
The imidazole of His-195 plays an essential role in the proposed general base mechanism of chloramphenicol acetyltransferase (CAT). The structure of the binary complex of CATIII and chloramphenicol suggests that two unusual interactions might determine the conformation of the side chain of His-195: (i) an intraresidue hydrogen bond between its main chain carbonyl and the protonated N delta 1 of the imidazole ring and (ii) face-to-face van der Waals contact between the His-195 imidazole group and the aromatic side chain of Tyr-25. Tyr-25 also makes a hydrogen bond, via its phenolic hydroxyl, to the carbonyl oxygen of the substrate chloramphenicol. Replacement of Tyr-25 of CATIII by phenylalanine results in a modest increase in the Km for chloramphenicol (from 11.6 to 14.6 microM) and a 2-fold fall in kcat (599 to 258 s-1), indicative of a free energy contribution to transition state binding of 0.6 kcal mol-1 for the hydrogen bond between Tyr-25 and chloramphenicol. In contrast, substitution of Tyr-25 by alanine yields an enzyme that is dramatically impaired in its ability to bind chloramphenicol (Km = 173 microM). As kcat for Ala-25 CAT is also reduced (130 s-1), the loss of the aryl group results in a 69-fold decrease in kcat/Km, corresponding to a free energy contribution to binding and catalysis of 2.5 kcal mol-1. In addition to the loss of the hydrogen bond between Tyr-25 and chloramphenicol, the loss of substrate affinity in Ala-25 CAT may be a direct consequence of reduced hydrophobicity of the chloramphenicol-binding site and/or the loss of critical constraints on the precise conformation of the catalytic imidazole. However, as with wild type CAT, inactivation of Ala-25 CAT by the affinity reagent 3-(bromoacetyl) chloramphenicol is accompanied by modification solely at N epsilon 2 of His-195. Hence, the results demonstrate that tautomeric stabilization of the imidazole ring persists in the absence of van der Waals interactions with the side chain of Tyr-25, probably as a consequence of hydrogen bonding between the protonated N delta 1 and the carbonyl oxygen of His-195.  相似文献   

4.
GDP-mannose hydrolase (GDPMH) catalyzes the hydrolysis of GDP-alpha-d-sugars by nucleophilic substitution with inversion at the anomeric C1 atom of the sugar, with general base catalysis by H124. Three lines of evidence indicate a mechanism with dissociative character. First, in the 1.3 A X-ray structure of the GDPMH-Mg(2+)-GDP.Tris(+) complex [Gabelli, S. B., et al. (2004) Structure 12, 927-935], the GDP leaving group interacts with five catalytic components: R37, Y103, R52, R65, and the essential Mg(2+). As determined by the effects of site-specific mutants on k(cat), these components contribute factors of 24-, 100-, 309-, 24-, and >/=10(5)-fold, respectively, to catalysis. Both R37 and Y103 bind the beta-phosphate of GDP and are only 5.0 A apart. Accordingly, the R37Q/Y103F double mutant exhibits partially additive effects of the two single mutants on k(cat), indicating cooperativity of R37 and Y103 in promoting catalysis, and antagonistic effects on K(m). Second, the conserved residue, D22, is positioned to accept a hydrogen bond from the C2-OH group of the sugar undergoing substitution at C1, as was shown by modeling an alpha-d-mannosyl group into the sugar binding site. The D22A and D22N mutations decreased k(cat) by factors of 10(2.1) and 10(2.6), respectively, for the hydrolysis of GDP-alpha-d-mannose, and showed smaller effects on K(m), suggesting that the D22 anion stabilizes a cationic oxocarbenium transition state. Third, the fluorinated substrate, GDP-2F-alpha-d-mannose, for which a cationic oxocarbenium transition state would be destabilized by electron withdrawal, exhibited a 16-fold decrease in k(cat) and a smaller, 2.5-fold increase in K(m). The D22A and D22N mutations further decreased the k(cat) with GDP-2F-alpha-d-mannose to values similar to those found with GDP-alpha-d-mannose, and decreased the K(m) of the fluorinated substrate. The choice of histidine as the general base over glutamate, the preferred base in other Nudix enzymes, is not due to the greater basicity of histidine, since the pK(a) of E124 in the active complex (7.7) exceeded that of H124 (6.7), and the H124E mutation showed a 10(2.2)-fold decrease in k(cat) and a 4.0-fold increase in K(m) at pH 9.3. Similarly, the catalytic triad detected in the X-ray structure (H124- - -Y127- - -P120) is unnecessary for orienting H124, since the Y127F mutation had only 2-fold effects on k(cat) and K(m) with either H124 or E124 as the general base. Hence, a neutral histidine rather than an anionic glutamate may be necessary to preserve electroneutrality in the active complex.  相似文献   

5.
 本研究确定了在0℃条件下,(Na~++K~+)-ATP酶纯化制备物与5mmol/L Na~+或Mg~(2+)在5mmol/L咪唑(pH7.4)环境中预保温30分钟,然后进行磷酸化,可以获得最高磷酸化水平,Na~+或Mg~(2+)的K_(0.5)值分别为0.29mmol/L或0.35mmol/L;以ADP代替Na~+和Mg~(2+)与酶预保温,对E_2向E_1转变无任何影响,而与Na~+、Mg~(2+)一起存在时则能加强Na~+及Mg~2的预保温效果。  相似文献   

6.
1. The extent of the allosteric transition from the R into the T conformation of rabbit skeletal muscle phosphofructokinase induced by Mg2+-1,N6-etheno-ATP was determined by stopped-flow fluorimetry from the amplitude of the slow phase of the Mg2+-1,N6-etheno-ATP fluorescence enhancement [Roberts & Kellet (1979) Biochem. J. 183, 349--360]. 2. The amplitude of the slow phase was decreased by low concentrations of the activators cyclic AMP and fructose 1,6-bisphosphate, but increased in a complex manner by the inhibitor citrate. 3. Mg2+-1,N6-etheno-ATP and Mg2+-ATP are unable to induce the T conformation to a detectable extent in the presence of saturating cyclic AMP, but can do so readily in the presence of saturating fructose 1,6-bisphosphate. 4. The conformational transitions induced in enzyme alone by different ligands were observed by changes in intrinsic protein fluorescence. In general, an R-type conformation has diminished protein fluorescence compared with a T-type conformation. 5. Mg2+-ATP exerts a complex effect on protein fluorescence; both the enhancement at low concentrations and the quenching at high concentrations of Mg2+-ATP result from the binding of Mg2+-ATP to the inhibitory site and the ensuing allosteric transition. Enhancement reflects the extent of the allosteric transition and involves both tyrosine and tryptophan, probably in the region of the active site; quenching reflects occupation of the inhibitory site and involves tyrosine at the inhibitory site. 6. The mechanism of the allosteric transition from the R into the T conformation induced by Mg2+-1,N6-etheno-ATP at low concentrations occurs predominantly by a 'prior-isomerization' pathway; at higher concentrations a limited contribution from a 'substrate-guided' pathway occurs. 7. The allosteric behaviour of phosphofructokinase with respect to Mg2+-ATP and Mg2+-1,N6-ethenol-ATP binding may be accounted for in terms of the simple, concerted model.  相似文献   

7.
Active-site cysteine strategically positioned in the P-loop of protein-tyrosine phosphatases has been suggested to be further stabilized by hydrogen bonding arrays radiating out from the P-loop to neighboring residues. In this work, we investigated the structural role of histidine array in HC(X)(5)RS motif of the vaccinia H1-related protein phosphatase (VHR), using site-directed mutagenesis in conjunction with an extensive kinetic analysis. Conserved His-123 was mutated along with neighboring residues Tyr-78 and Thr-73. The increased pK(a) values of active-site Cys-124 found in Y78F and T73A mutants (6.51 and 6.75, respectively) were comparable to those of H123A and H123F mutants. Kinetic evaluation of Y78F and T73A mutants further implicates that the mutations perturb the relative position of Cys-124 within the P-loop. These results imply that Tyr-78 and Thr-73 make up an essential part of the His-123 array and structurally tune the Cys-124 position. Tyr-78 of VHR turns out to be the invariant Tyr reported in several protein-tyrosine phosphatases by a structure-based sequence alignment. Therefore, orientation of the imidazole ring of His-123 by the invariant Tyr-78 is crucial for maintaining the proper position of Cys-124 in the P-loop.  相似文献   

8.
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site.  相似文献   

9.
Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family alpha-oxyanion carboxylate intermediate/transition state) and Mg2+ was determined at 1.9 A resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an alpha/beta barrel fold and two subunits swapping their barrel's C-terminal alpha-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The Nepsilon of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into alpha-oxocarboxylate-containing compounds was confirmed by 1H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an alpha-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (kcat = 7500 s(-1) and Km = 2.2 mM) and 3-methyloxaloacetate (kcat = 250 s(-1) and Km = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.  相似文献   

10.
Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range. The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg2+ binding first (Kd = 140 +/- 40 microM), are kcat = 105 +/- 2 s(-1) and P-pyr Km = 5 +/- 1 microM. PEP (slow substrate kcat = 2 x 10(-4) s(-1)), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 +/- 0.1 mM, 17 +/- 1 microM, and 210 +/- 10 microM, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (alpha/beta)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.  相似文献   

11.
Our crystallographic studies have shown that two active center loops (an inner loop formed by residues 401-413 and outer loop formed by residues 541-557) of the E1 component of the Escherichia coli pyruvate dehydrogenase complex become organized only on binding a substrate analog that is capable of forming a stable thiamin diphosphate-bound covalent intermediate. We showed that residue His-407 on the inner loop has a key role in the mechanism, especially in the reductive acetylation of the E. coli dihydrolipoamide transacetylase component, whereas crystallographic results showed a role of this residue in a disorder-order transformation of these two loops, and the ordered conformation gives rise to numerous new contacts between the inner loop and the active center. We present mapping of the conserved residues on the inner loop. Kinetic, spectroscopic, and crystallographic studies on some inner loop variants led us to conclude that charged residues flanking His-407 are important for stabilization/ordering of the inner loop thereby facilitating completion of the active site. The results further suggest that a disorder to order transition of the dynamic inner loop is essential for substrate entry to the active site, for sequestering active site chemistry from undesirable side reactions, as well as for communication between the E1 and E2 components of the E. coli pyruvate dehydrogenase multienzyme complex.  相似文献   

12.
1. The hydrolyses of the p-nitrophenyl esters of N-benzyloxycarbonylglycine, alpha-N-benzyloxycarbonyl-L-lysine and N-methoxycarbonyl-L-phenylalanylglycine catalysed by papain (EC 3.4.22.2) have been studied in solvents having a variable composition of 2H2O and H2O. 2. kcat., which represents deacylation in the papain-catalysed hydrolysis of reactive esters, is some 2.3-fold less in 2H2O compared with H2O. The magnitude of kcat. has been determined as a function of the 2H atom fraction of the solvent. 3. Both linear and non-linear methods of least-square regression analysis have been applied to the data in order to obtain best-fit parameter values for several three-parameter models which express kcat. in terms of the 2H atom fraction of the solvent. These models represent some possible modes of restructuring of the active site protonic configuration consequent upon transition state formation. 4. The results of curve fitting reveal an essentially linear dependence of kcat. upon the 2H atom fraction, and it may therefore be concluded that the isotope effect originates from a single proton which is in the process of transfer in the transition state. 5. It is postulated on the basis of this and other evidence that the mobile proton is transferred from an attacking water molecule to the imidazole side chain of His-159 during tetrahedral intermediate formation. This has the effect of stabilizing the transition state and promoting catalysis. The role of His-159 in deacylation is therefore to provide general base catalysis. 6. Models that involve two or more protons, such as a two-proton relay system analogous to that proposed for the serine proteinases, or a multiproton 'medium' effect, are considered unlikely on the basis of the data reported in this paper. 7. A more detailed examination of possible transition state structures reveals that the only structure compatible with available experimental data and consistent with certain theoretical predictions is one in which the proton translocated in concern with reorganization of the heavy atom framework. In addition, the transition state vibrations of the mobile proton are strongly coupled to those of the heavy atoms. These properties of the transition state are also manifest in the transition state for the deacylation of serine proteinases.  相似文献   

13.
Site-directed mutations were made to the phosphate-binding loop threonine in the beta-subunit of the chloroplast F1-ATPase in Chlamydomonas (betaT168). Rates of photophosphorylation and ATPase-driven proton translocation measured in coupled thylakoids purified from betaT168D, betaT168C, and betaT168L mutants had <10% of the wild type rates, as did rates of Mg2+-ATPase activity of purified chloroplast F1-ATPase (CF1). The EPR spectra of VO2+-ATP bound to Site 3 of CF1 from wild type and mutants showed that EPR species C, formed exclusively upon activation, was altered in CF1 from each mutant in both signal intensity and in 51V hyperfine parameters that depend on the equatorial VO2+ ligands. These data provide the first direct evidence that Site 3 is a catalytic site. No significant differences between wild type and mutants were observed in EPR species B, the predominant form of the latent enzyme. Thus, the phosphate-binding loop threonine is an equatorial metal ligand in the activated conformation but not in the latent conformation of Site 3. The metal-nucleotide conformation that gives rise to species B is consistent with the Mg2+-ADP complex that becomes entrapped in a catalytic site in a manner that regulates enzymatic activity. The lack of catalytic function of CF1 with entrapped Mg2+-ADP may be explained in part by the absence of the phosphate-binding loop threonine as a metal ligand.  相似文献   

14.
The structure of the binding site for the monovalent cation activator of S-adenosylmethionine (AdoMet) synthetase from Escherichia coli has been characterized by 205Tl NMR of enzyme-bound Tl+. The chemical shift of the enzyme-Tl+ complex is 176 ppm downfield from aquo Tl+, a shift which is typical only of Tl+ complexes with solely oxygen ligands. The 205Tl resonance shifts upfield to 85 ppm in the enzyme-Mg(II)-Tl+ complex, to 38 ppm in the enzyme-Tl+-AdoMet complex and to 34 ppm in the enzyme-Tl+-AdoMet-Mg(II) complex. The 205Tl chemical shift of enzyme-bound Tl+ was not altered by binding of either methionine, or the Mg(II)-ATP analog Mg(II)-adenyl-5'-yl imidodiphosphate, or Mg(II)-pyrophosphate to the enzyme-Tl+-Mg(II) complex. The NMR data suggest that the substrates or products of the enzyme do not coordinate to the monovalent cation activator and imply that monovalent cation activation results from alterations in protein conformation.  相似文献   

15.
Several residues lining the ATP-binding site of Methanobacterium thermoautotrophicum nicotinamide mononucleotide adenylyltransferase (NMNATase) were mutated in an effort to better characterize their roles in substrate binding and catalysis. Residues selected were Arg-11 and Arg-136, both of which had previously been implicated as substrate binding residues, as well as His-16 and His-19, part of the HXGH active site motif and postulated to be of importance in catalysis. Kinetic studies revealed that both Arg-11 and Arg-136 contributed to the binding of the substrate, ATP. When these amino acids were replaced by lysines, the apparent Km values of the respective mutants for ATP decreased by factors of 1.3 and 2.9 and by factors of 1.9 and 8.8 when the same residues were changed to alanines. All four Arg mutants displayed unaltered Km values for NMN. The apparent kcat values of the R11K and R136K mutants were the same as those of WT NMNATase but the apparent kcat values of the alanine mutants had decreased. Crystal structures of the Arg mutants revealed NAD+ and SO42- molecules trapped at their active sites. The binding interactions of NAD+ were unchanged but the binding of SO42- was altered in these mutants compared with wild type. The alanine mutants at positions His-16 and His-19 retained approximately 6 and 1.3%, respectively, of WT NMNATase activity indicating that His-19 is a key catalytic group. Surprisingly, this H19A mutant displayed a novel and distinct mode of NAD+ binding when co-crystallized in the presence of NAD+ and SO42-.  相似文献   

16.
In order to evaluate the potential contribution of conserved aromatic residues to the hydrophobic active site of 3-hydroxy-3-methylglutaryl-CoA synthase, site-directed mutagenesis was employed to produce Y130L, Y163L, F204L, Y225L, Y346L, and Y376L proteins. Each mutant protein was expressed at levels comparable with wild-type enzyme and was isolated in highly purified form. Initial kinetic characterization indicated that F204L exhibits a substantial (>300-fold) decrease in catalytic rate (kcat). Upon modification with the mechanism-based inhibitor, 3-chloropropionyl-CoA, or in formation of a stable binary complex with acetoacetyl-CoA, F204L exhibits binding stoichiometries comparable with wild-type enzyme, suggesting substantial retention of active site integrity. Y130L and Y376L exhibit inflated values (80- and 40-fold, respectively) for the Km for acetyl-CoA in the acetyl-CoA hydrolysis partial reaction; these mutants also exhibit an order of magnitude decrease in kcat. Formation of the acetyl-S-enzyme reaction intermediate by Y130L, F204L, and Y376L proceeds slowly in comparison with wild-type enzyme. However, solvent exchange into the thioester carbonyl oxygen of these acetyl-S-enzyme intermediates is not slow in comparison with previous observations for D159A and D203A mutants, which also exhibit slow acetyl-S-enzyme formation. The magnitude of the differential isotope shift upon exchange of H218O into [13C]acetyl-S-enzyme suggests a polarization of the thioester carbonyl and a reduction in bond order. Such an effect may substantially contribute to the upfield 13C NMR shift observed for [13C]acetyl-S-enzyme. The influence on acetyl-S-enzyme formation, as well as observed kcat (F204L) and Km (Y130L; Y376L) effects, implicate these invariant residues as part of the catalytic site. Substitution of phenylalanine (Y130F, Y376F) instead of leucine at residues 130 and 376 diminishes the effects on catalytic rate and substrate affinity observed for Y130L and Y376L, underscoring the influence of aromatic side chains near the active site.  相似文献   

17.
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes chain elongation of farnesyl pyrophosphate (FPP) to undecaprenyl pyrophosphate (UPP) via condensation with eight isopentenyl pyrophosphates (IPP). UPPs from Escherichia coli is a dimer, and each subunit consists of 253 amino acid residues. The chain length of the product is modulated by a hydrophobic active site tunnel. In this paper, the crystal structure of E. coli UPPs was refined to 1.73 A resolution, which showed bound sulfate and magnesium ions as well as Triton X-100 molecules. The amino acid residues 72-82, which encompass an essential catalytic loop not seen in the previous apoenzyme structure (Ko, T.-P., Chen, Y. K., Robinson, H., Tsai, P. C., Gao, Y.-G., Chen, A. P.-C., Wang, A. H.-J., and Liang, P.-H. (2001) J. Biol. Chem. 276, 47474-47482), also became visible in one subunit. The sulfate ions suggest locations of the pyrophosphate groups of FPP and IPP in the active site. The Mg2+ is chelated by His-199 and Glu-213 from different subunits and possibly plays a structural rather than catalytic role. However, the metal ion is near the IPP-binding site, and double mutation of His-199 and Glu-213 to alanines showed a remarkable increase of Km value for IPP. Inside the tunnel, one Triton surrounds the top portion of the tunnel, and the other occupies the bottom part. These two Triton molecules may mimic the hydrocarbon moiety of the UPP product in the active site. Kinetic analysis indicated that a high concentration (>1%) of Triton inhibits the enzyme activity.  相似文献   

18.
The TaqI restriction endonuclease recognizes and cleaves the duplex DNA sequence T decreases CGA. Steady state kinetic analysis with a small oligodeoxyribonucleotide substrate showed that the enzyme obeyed Michaelis-Menten kinetics (Km = 53 nM, kcat = 1.3 min-1 at 50 degrees C and Km = 0.5 nM, kcat = 2.9 min-1 at 60 degrees C). At 0 degree C, the enzyme was completely inactive, while at 15 degrees C, turnover produced nicked substrate as the major product in excess of enzyme indicating dissociation between nicking events. Above 37 degrees C, both strands in the duplex were cleaved prior to dissociation. In contrast to the tight, temperature-dependent binding of substrate, binding of the Mg2+ cofactor was weak (Kd = 2.5 mM) and the same at either 50 degrees C or 60 degrees C. Single-turnover experiments using oligonucleotide substrate showed that hydrolysis of duplex DNA occurred via two independent nicking events, each with a first order rate constant (kst) of 5.8 min-1 at 60 degrees C and 3.5 min-1 at 50 degrees C. The pH dependence of Km (pKa = 9) and kst (pKa = 7) suggests Lys/Arg and His, respectively, as possible amino acids influencing these constants. Moreover, although kst increased significantly with pH, kcat did not, indicating that at least two steps can be rate-controlling in the reaction pathway. Binding of protein to canonical DNA in the presence of Mg2+ at 0 degree C or in the absence of Mg2+ at 50 degrees C was weak (Kd = 2.5 microM or 5,000-fold weaker than the optimal measured Km) and equal to the binding of noncanonical DNA as judged by retention on nitrocellulose. Similar results were seen in gel retardation assays. These results suggest that both Mg2+ and high temperature are required to attain the correct protein conformation to form the tight complex seen in the steady state analysis. In the accompanying paper (Zebala, J. A., Choi, J., Trainor, G. L., and Barany, F. (1992) J. Biol. Chem. 267, 8106-8116), we report how these kinetic constants are altered using substrate analogues and propose a model of functional groups involved in TaqI endonuclease recognition.  相似文献   

19.
Makde RD  Mahajan SK  Kumar V 《Biochemistry》2007,46(8):2079-2090
The Salmonella typhimurium PhoN protein is a nonspecific acid phosphatase and belongs to the phosphatidic acid phosphatase type 2 (PAP2) superfamily. We report here the crystal structures of phosphate-bound PhoN, the PhoN-tungstate complex, and the T159D mutant of PhoN along with functional characterization of three mutants: L39T, T159D, and D201N. Invariant active site residues, Lys-123, Arg-130, Ser-156, Gly-157, His-158, and Arg-191, interact with phosphate and tungstate oxyanions. Ser-156 also accepts a hydrogen bond from Thr-159. The T159D mutation, surprisingly, severely diminishes phosphatase activity, apparently by disturbing the active site scaffold: Arg-191 is swung out of the active site resulting in conformational changes in His-158 and His-197 residues. Our results reveal a hitherto unknown functional role of Arg-191, namely, restricting the active conformation of catalytic His-158 and His-197 residues. Consistent with the conserved nature of Asp-201 in the PAP2 superfamily, the D201N mutation completely abolished phosphatase activity. On the basis of this observation and in silico analysis we suggest that the crucial mechanistic role of Asp-201 is to stabilize the positive charge on the phosphohistidine intermediate generated by the transfer of phosphoryl to the nucleophile, His-197, located within hydrogen bond distance to the invariant Asp-201. This is in contrast to earlier suggestions that Asp-201 stabilizes His-197 and the His197-Asp201 dyad facilitates formation of the phosphoenzyme intermediate through a charge-relay system. Finally, the L39T mutation in the conserved polyproline motif (39LPPPP43) of dimeric PhoN leads to a marginal reduction in activity, in contrast to the nearly 50-fold reduction observed for monomeric Prevotella intermedia acid phosphatase, suggesting that the varying quaternary structure of PhoN orthologues may have functional significance.  相似文献   

20.
Various apoptotic signals can activate caspases 3 and 7 by triggering the L2 loop cleavage of their proenzymes. These two enzymes have highly similar structures and functions, and serve as apoptotic executioners. The structures of caspase 7 and procaspase 7 differ significantly in the conformation of the loops constituting the active site, indicating that the enzyme undergoes a large structural change during activation. To define the role of the leucine residue on the L2 loop, which shows the largest movement during enzyme activation but has not yet been studied, Leu168 of caspase 3 and Leu191 of caspase 7 were mutated. Kinetic analysis indicated that the mutation of the leucine residues sometimes improved the Km but also greatly decreased the kcat, resulting in an overall decrease in enzyme activity. The tryptophan fluorescence change at excitation/emission = 280/350 nm upon L2-L2' loop cleavage was found to be higher in catalytically active mutants, including the corresponding wild-type caspase, than in the inactive mutants. The crystal structures of the caspase 3 mutants were solved and compared with that of wild-type. Significant alterations in the conformations of the L1 and L4 loops were found. These results indicate that the leucine residue on the L2 loop has an important role in maintaining the catalytic activity of caspases 3 and 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号