首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selective genotyping of extreme progeny is a powerful method to increase the information content per individual when looking for quantitative trait loci (QTLs) using molecular markers for which a map is known. However, if marker information from the selected individuals is used to construct the map of the markers, this can lead to distorted segregation of the markers that in turn can lead to the estimation of a spurious linkage between independently inherited markers. The mistaken estimation of linkage between independently inherited markers will occur when there are two (or more) independently inherited QTLs linked to two (or more) markers and the same individuals are used to estimate the map of the markers and to do the QTL estimation. The incorrect linkage occurs because in selecting individuals from the tails of the phenotypic distribution we will also be selecting certain combinations of the markers instead of obtaining a random sample of the true distribution of the marker genotypes. Analytical results are outlined and the analyses of a simulated data set illustrate the problems that could arise when data from individuals chosen by selective genotyping are incorrectly employed to construct a marker map. A strategy is proposed to remedy this problem.  相似文献   

2.
A genetic linkage map of Salix (2n = 38), composed of 325 AFLP and 38 RFLP markers has been constructed. The map was based on a population ( n = 87) derived from a cross between the male hybrid clone "Bj?rn" ( Salix viminalis x Salix schwerinii) and the female clone "78183" ( S. viminalis). Three hundred fifty seven AFLPs corresponding to DNA polymorphisms heterozygous in one parent and null in the other were scored. A total of 87 RFLP probes, most (83) derived from the Populus genome, yielded 39 and 11 polymorphic loci segregating in a 1:1 and 1:2:1 ratio respectively. Two maps, one for each parent, were constructed according to the "two-way pseudo-testcross" mapping strategy. The S. viminalis x S. schwerinii map (2,404 cM) included 217 markers and formed 26 major linkage groups while S. viminalis (1,844 cM) consisted of 146 markers placed on 18 major groups. In addition, eight and 14 additional minor linkage groups composed of less than four markers (doubles and triplets) were obtained in the S. viminalis x S. schwerinii and the S. viminalis maps, respectively. Both maps provided 70-80% genome coverage with an average density of markers of 14 cM. To investigate possible homologies between the parental maps, 20 AFLPs and 11 RFLPs segregating in 3:1 or 1:2:1 ratios were included in the linkage analysis. Eight linkage groups homologous between the two maps were detected. The present genetic map was used to identify quantitative trait loci (QTLs) affecting growth-related traits. Eleven QTLs were identified; seven QTLs for height growth, one QTL for stem diameter, one QTL for the height: diameter ratio, one QTL for the number of vegetative buds during flowering time and one QTL for the number of shoots. The estimated magnitude of the QTL effect ranged from 14 to 22% of the total phenotypic variance. One QTL associated with height growth and one affecting the height: diameter ratio were overlapping in the same marker interval with the QTL affecting stem diameter. QTL stability over years was estimated for traits measured in multiple years. Generally, QTLs were only significant in a single year although two QTLs for height growth were close to reaching the significance level in 2 consecutive years.  相似文献   

3.
大豆昆虫抗性相关QTLs的元分析   总被引:2,自引:0,他引:2  
大豆虫害严重危害大豆生产。虽然大豆抗虫相关QTLs研究增多, 但由于作图群体不同、同种昆虫抗性QTL的调查性状不同以及数据分析方法存在差异等原因, 使QTL精确性和有效性被降低。因此, 获得相对真实且有效的QTLs位点对于促进分子标记辅助选择有重要意义。文章通过搜集已报道的81个与大豆昆虫抗性相关的QTL, 提取相对有效且可靠的QTLs标记信息, 利用元分析软件BioMercator2.1将这些QTLs映射到大豆公共遗传连锁图谱Soymap2上, 通过单独与联合的两种元分析途径, 利用QTLs的95%的置信区间来推断“真实QTLs”的位置。文章不仅构建了一张大豆昆虫抗性一致性图谱, 而且通过两种元分析途径分别得到12个和14个QTLs位点, 且其中有6个位点QTL的位置一致。它们被定位在9个连锁群上, 主要成簇分布在E、F、H、M等4个连锁群上, 图距由原来平均15 cM缩减到平均3.67 cM。除了一个与大豆食心虫抗性相关的位点外, 其余QTLs都与多种昆虫抗性相关。研究结果明显缩短了原来已报道的QTL置信区间, 为大豆抗虫相关QTL的精细定位以及抗虫相关基因挖掘提供了依据。  相似文献   

4.
The identification of quantitative trait loci (QTLs) based on anchor markers, especially candidate genes that control a trait of interest, has been noted to increase the power of QTL detection. Since these markers can be scored as co-dominant data, they are also valuable for comparing and integrating the QTL linkage maps from diverse mapping populations. To estimate the position and effects of QTLs linked to oil yield traits in African oil palm, co-dominant microsatellites (SSR) and candidate gene-based sequence polymorphisms were applied to construct a linkage map for a progeny showing large differences in oil yield components. The progeny was genotyped for 97 SSR markers, 93 gene-linked markers, and 12 non-gene-linked SNP markers. From these, 190 segregating loci could be arranged into 31 linkage groups while 12 markers remained unmapped. Using the single marker linkage, interval mapping and multiple QTL methods, 16 putative QTLs on seven linkage groups affecting important oil yield related traits such as fresh fruit bunch yield (FFB), ratio of oil per fruit (OF), oil per bunch (OB), fruit per bunch (FB) and wet mesocarp per fruit (WMF) could be identified in the segregating population with estimated values for explained variance ranging from 12.4 % to 54.5 %. Markers designed from some candidate genes involved in lipid biosynthesis were found to be mapped near significant QTLs for various economic yield traits. Associations between QTLs and potential candidate genes are discussed.  相似文献   

5.
The map locations and effects of quantitative trait loci (QTLs) were estimated for alpha-acid content in hop (Humulus lupulus L.) using amplified fragment length polymorphism (AFLP) and microsatellite marker (simple sequence repeat (SSR)) genetic linkage maps constructed from a double pseudotestcross. The mapping population consisted of 111 progeny from a cross between the German hop cultivar 'Magnum', which exhibits high levels of alpha-acids, and a wild Slovene male hop, 2/1. The progeny segregated quantitatively for alpha-acid content determined in 2002, 2003, and 2004. The maternal map consisted of 96 markers mapped on 14 linkage groups defining 661.90 cM of total map distance. The paternal map included 70 markers assigned to 12 linkage groups covering 445.90 cM of hop genome. QTL analysis indicated 4 putative QTLs (alpha1, alpha2, alpha3, and alpha4) on linkage groups (LGs) 03, 01, 09, and 03 of the female map, respectively. QTLs explained 11.9%-24.8% of the phenotypic variance. The most promising QTL to be used in marker-assisted selection is alpha2, the peak of which colocated exactly with the AFLP marker. Three chalcone synthase-like genes (chs2, chs3, and chs4) involved in hop bitter acid synthesis mapped together on LG04 of the female map. Saturation of the maps, particularly the putative QTL regions, will be carried out using SSR markers, and the stability of the QTLs will be tested in the coming years.  相似文献   

6.
Using the deterministic sampling, patterns of the log-likelihood surfaces expected in some interval mapping procedures for estimating the position of, and the effect for, QTL(s) were investigated for the situations where a single QTL or closely linked QTLs are contained in a chromosome segment bracketed with two markers. The mapping procedures compared were the conventional, likelihood-based interval mapping (IM), the regression interval mapping (RIM), and the QTL-cluster mapping (CM) in which the conditional probabilities of transmission of the whole segment marked by the flanking markers were taken into consideration. The half-sib design was used here, and several cases of the true genetic model were considered, differing in the number of QTLs contained in the marker interval, the linkage phase for the sire, and the magnitude of the QTL(s) effect. For the true genetic models where a single QTL or closely linked QTLs being in coupling phase are contained in the interval, with (R)IM, clear global maxima of the log-likelihood were observed within the range of the marker interval. It was shown that the estimates of the QTL(s) effect at the marked segment level are expected to be unbiased. On the other hand, in a setting where the linkage phase for the linked QTLs located in the interval was different from coupling and repulsion, there was found a ridge along the interval for the log-likelihood surface with (R)IM, indicating the dependency between the estimates of the position of, and the effect for, the putative QTL. For this case, it was found that the position of the putative QTL could be estimated as that of one of the flanking markers, and the estimate of the QTL effect be biased. In contrast, it was revealed that CM is expected to provide the unbiased estimate of the QTL(s)-effect at the segment level for any case of the true genetic models considered here. If the aim is for marker-assisted selection rather than mapping closely linked QTLs individually, then the CM approach is considered to be useful.  相似文献   

7.
Wang W  Tian Y  Kong J  Li X  Liu X  Yang C 《Genetika》2012,48(4):508-521
In this study, totally 54 selected polymorphic SSR loci of Chinese shrimp (Fenneropenaeus chinensis), in addition with the previous linkage map of AFLP and RAPD markers, were used in consolidated linkage maps that composed of SSR, AFLP and RAPD markers of female and male construction, respectively. The female linkage map contained 236 segregating markers, which were linked in 44 linkage groups, and the genome coverage was 63.98%. The male linkage map contained 255 segregating markers, which were linked in 50 linkage groups, covering 63.40% of F. chinensis genome. There were nine economically important traits and phenotype characters of F. chinensis were involved in QTL mapping using multiple-QTL mapping strategy. Five potential QTLs associated with standard length (q-standardl-01), with cephalothorax length (q-cephal-01), with cephaloghorax width (q-cephaw-01), with the first segment length (q-firsel-01) and with anti-WSSV (q-antiWSSV-01) were detected on female LG1 and male LG44 respectively with LOD> 2.5. The QTL q-firsel-01 was at 73.603 cM of female LG1. Q-antiWSSV-01 was at 0 cM of male LG44. The variance explained of these five QTLs was from 19.7-33.5% and additive value was from -15.9175 to 7.3675. The closest markers to these QTL were all SSR, which suggested SSR marker was superior to AFLP and RAPD in the QTL mapping.  相似文献   

8.
林木遗传连锁图谱构建研究进展与发展方向   总被引:6,自引:1,他引:5  
宋婉  陈晓阳  续九如  张志毅 《遗传》2003,25(6):749-756
本文就目前国内外林木连锁遗传图谱领域的研究进展进行了综述,指出了该领域研究中存在的主要问题,即一方面是作图个体的数量有限,另一方面是采用的标记以随机标记为主,导致了建成的图谱以及利用图谱获得的数量性状基因位点(QTLs)信息具有杂交组合特异性,造成了QTLs的可信度和在林木遗传改良以及标记辅助选择中的实用性降低等现象。针对存在的问题,讨论了根据林木生物学特点选择合适遗传标记的意义,指出进行林木比较作图研究的重要性和必要性。文中接着较为详尽地介绍了国外重要林木表达序列标签(EST)测序项目的研究进展,论述了功能已知和种间高度保守的表达序列标签多态性(ESTP)标记的由来,阐述了获得ESTP标记的主要方法,并指出应当利用ESTP标记进行林木遗传图谱构建、QTL定位和比较作图的研究。文中最后讨论了未来林木遗传图谱构建和QTL定位研究的发展方向,并探讨了我国在该领域取得重大进展的突破口,指出我国应首先进行杨树尤其是中国乡土杨树树种该方面的研究。 Abstract:The research progress in genetic linkage map construction of forest tree species both at home and abroad were reviewed in the paper.Two main problems involved in the field were discussed.One was the limitation of the number of individuals of mapping populations and the other was the random markers mostly employed by the majority of studies.These problems have resulted in crossing combination specificity in the constructed maps and the QTLs located on the basis of the maps.As a result,the QTLs discovered up to now have low credibility and poor practicability in marker-assisted selection.Therefore considering the biological characteristics of forest tree species,the selection of the most suitable genetic markers is crucial to obtain a high quality genetic linkage map,and it is both important and necessary to carry out comparative genetic mapping.Progress in the ongoing expressed sequence tag (EST) sequencing projects were summarized and EST polymorphism (ESTP),the most informative and highly conservative marker with known function,as well as the main ESTP detection techniques were elaborated.It was pointed out that ESTP markers should be integrated into the present studies of genetic linkage map construction,QTL mapping and genome comparative mapping.Finally the future prospects in the fields of genetic linkage map and QTL mapping were discussed.In China,Such studies around Populus,especially in the local Populus species should make a breakthrough in the related fields.  相似文献   

9.
以小麦光温敏核雄性不育系BS20×Fu3双单倍体(DH)群体的289个系为材料,从1112对SSR和EST-SSR引物中筛选出多态性引物243对,利用其中128个SSR和6个EST-SSR标记构建遗传连锁图谱,该图谱覆盖长度为2749.2 c M,分布在小麦的19个连锁群(除4D、6A),不同连锁群标记数为2~15个,长度在15.3~244.4 c M之间,平均长度为144.7 c M,标记之间平均遗传距离为17.4 c M。同时构建3个DNA池(包括恢复池、北京不育池和阜阳不育池),用分离群体分组分析法(BSA)对育性进行分析,筛选出的多态性引物为Wmc264、Wmc73、Xgwm350,分布在3A、5B、2A/7D染色体上。同时用混合线性复合区间作图法(MCIM)对育性进行QTL分析,当F7.5时,检测到6个主效QTL,用复合区间作图法(CIM)对育性进行QTL分析,当LOD值2.5时,共检测到13个主效QTL,两种方法检测到一致的QTL有3个,分别为1BL的Wmc365-cfa2129、2BS的Wmc602-Xgwm148和3AL的Wmc264a-cfa2262区间的QTL。综合BSA和QTL的结果,位于1BL、2BS和3AL上的小麦光温敏不育基因是真实的。  相似文献   

10.
Molecular mapping of quantitative trait loci in japonica rice.   总被引:1,自引:0,他引:1  
E D Redo?a  D J Mackill 《Génome》1996,39(2):395-403
Rice (Oryza sativa L.) molecular maps have previously been constructed using interspecific crosses or crosses between the two major subspecies: indica and japonica. For japonica breeding programs, however, it would be more suitable to use intrasubspecific crosses. A linkage map of 129 random amplified polymorphic DNA (RAPD) and 18 restriction fragment length polymorphism (RFLP) markers was developed using 118 F2 plants derived from a cross between two japonica cultivars with high and low seedling vigor, Italica Livorno (IL) and Labelle (LBL), respectively. The map spanned 980.5 cM (Kosambi function) with markers on all 12 rice chromosomes and an average distance of 7.6 cM between markers. Codominant (RFLP) and coupling phase linkages (among RAPDs) accounted for 79% of total map length and 71% of all intervals. This map contained a greater percentage of markers on chromosome 10, the least marked of the 12 rice chromosomes, than other rice molecular maps, but had relatively fewer markers on chromosomes 1 and 2. We used this map to detect quantitative trait loci (QTL) for four seedling vigor related traits scored on 113 F3 families in a growth chamber slantboard test at 18 degrees C. Two coleoptile, five root, and five mesocotyl length QTLs, each accounting for 9-50% of the phenotypic variation, were identified by interval analysis. Single-point analysis confirmed interval mapping results and detected additional markers significantly influencing each trait. About two-thirds of alleles positive for the putative QTLs were from the high-vigor parent, IL. One RAPD marker (OPAD13720) was associated with a IL allele that accounted for 18.5% of the phenotypic variation for shoot length, the most important determinant of seedling vigor in water-seeded rice. Results indicate that RAPDs are useful for map development and QTL mapping in rice populations with narrow genetic base, such as those derived from crosses among japonica cultivars. Other potential uses of the map are discussed. Key words : QTL mapping, RAPD, RFLP, seedling vigor, japonica, Oryza sativa.  相似文献   

11.
E. S. Lander  D. Botstein 《Genetics》1989,121(1):185-199
The advent of complete genetic linkage maps consisting of codominant DNA markers [typically restriction fragment length polymorphisms (RFLPs)] has stimulated interest in the systematic genetic dissection of discrete Mendelian factors underlying quantitative traits in experimental organisms. We describe here a set of analytical methods that modify and extend the classical theory for mapping such quantitative trait loci (QTLs). These include: (i) a method of identifying promising crosses for QTL mapping by exploiting a classical formula of SEWALL WRIGHT; (ii) a method (interval mapping) for exploiting the full power of RFLP linkage maps by adapting the approach of LOD score analysis used in human genetics, to obtain accurate estimates of the genetic location and phenotypic effect of QTLs; and (iii) a method (selective genotyping) that allows a substantial reduction in the number of progeny that need to be scored with the DNA markers. In addition to the exposition of the methods, explicit graphs are provided that allow experimental geneticists to estimate, in any particular case, the number of progeny required to map QTLs underlying a quantitative trait.  相似文献   

12.
A recent genetic linkage map was employed to detect quantitative trait loci (QTLs) associated with Vibrio anguillarum resistance in Japanese flounder. An F1 family established and challenged with V. anguillarum in 2009 was used for QTL mapping. Of the 221 simple sequence repeat (SSR) markers used to detect polymorphisms in the parents of F1, 170 were confirmed to be polymorphic. The average distance between the markers was 10.6 cM. Equal amounts of genomic DNA from 15 fry that died early and from 15 survivors were pooled separately to constitute susceptible bulk and resistance bulk DNA. Bulked segregant analysis and QTL mapping were combined to detect candidate SSR markers and regions associated with the disease. A genome scan identified four polymorphic SSR markers, two of which were significantly different between susceptible and resistance bulk (P?=?0.008). These two markers were located in linkage group (LG) 7; therefore, all the SSR markers in LG7 were genotyped in all the challenged fry by single marker analysis. Using two different models, 11–17 SSR markers were detected with different levels of significance. To confirm the associations of these markers with the disease, composite interval mapping was employed to genotype all the challenged individuals. One and three QTLs, which explained more than 60 % of the phenotypic variance, were detected by the two models. Two of the QTLs were located at 48.6 cM. The common QTL may therefore be a major candidate region for disease resistance against V. anguillarum infection.  相似文献   

13.
The development of an oil palm RFLP marker map has enabled marker-based QTL mapping studies to be undertaken. Information from 153 RFLP markers was used in combination with phenotypic data from an F2 population to estimate the position and effects of quantitative trait loci (QTLs) for traits including yield of fruit and its components and measures of vegetative growth. The mapping population consisted of 84 palms segregating for the major gene influencing shell thickness. Marker data were analysed to produce a linkage map consisting of 22 linkage groups. The QTL mapping analysis was carried out by interval mapping and single-marker analysis for the unlinked markers; significance thresholds were generated by permutation. Using both single-marker and interval-mapping analysis significant marker associated QTL effects were found for 11 of the 13 traits analysed. The results of interval-mapping analysis of fruit weight, petiole cross section and rachis length, and ratios of shell:fruit, mesocarp:fruit and kernel:fruit indicated significant (P<0.05) QTLs at the genome-wide threshold. The putative QTLs were associated with between 8.2% and 44.0% of the phenotypic variation, with an average of 27% for the single-marker analysis and 19% for the interval-mapping analysis. The higher percentage of phenotypic variation explained in the single-marker analysis, when compared to the interval-mapping analysis, is likely to be due to the lower stringency associated with the single-marker analysis. Large dominance deviations were associated with a sizeable proportion of the putative QTLs. The ultimate objective of mapping QTLs in commercial populations is to utilise novel breeding strategies such as marker-assisted selection (MAS). The potential impact of MAS in oil palm breeding programmes is discussed. Received: 26 June 2000 / Accepted: 24 October 2000  相似文献   

14.
We developed a genetic linkage map of sweetpotato using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers and a mapping population consisting of 202 individuals derived from a broad cross between Xushu 18 and Xu 781, and mapped quantitative trait loci (QTL) for the storage root dry-matter content. The linkage map for Xushu 18 included 90 linkage groups with 2077 markers (1936 AFLP and 141 SSR) and covered 8,184.5 cM with an average marker distance of 3.9 cM, and the map for Xu 781 contained 90 linkage groups with 1954 markers (1824 AFLP and 130 SSR) and covered 8,151.7 cM with an average marker distance of 4.2 cM. The maps described herein have the best coverage of the sweetpotato genome and the highest marker density reported to date. These are the first maps developed that have 90 complete linkage groups, which is in agreement with the actual number of chromosomes. Duplex and triplex markers were used to detect the homologous groups, and 13 and 14 homologous groups were identified in Xushu 18 and Xu 781 maps, respectively. Interval mapping was performed first and, subsequently, a multiple QTL model was used to refine the position and magnitude of the QTL. A total of 27 QTL for dry-matter content were mapped, explaining 9.0–45.1 % of the variation; 77.8 % of the QTL had a positive effect on the variation. This work represents an important step forward in genomics and marker-assisted breeding of sweetpotato.  相似文献   

15.
茄子分子遗传图谱的构建及果实性状的QTL定位   总被引:1,自引:0,他引:1  
谢立峰  李烨  李景富 《植物学报》2016,51(5):601-608
以茄子(Solanum melongena)材料09-101-M和10TL-102-F4-1的重组自交系(RIL)为作图群体,构建总长度为991.7c M、共包含16个连锁群157个位点、平均图距为6.32 c M的遗传图谱。应用复合区间作图法(CIM),共检测到18个与茄子果实性状相关的QTLs,其中10个为主效QTLs,8个QTLs在两年两点的实验中能够被重复检测到。在所有QTLs中,控制果重的QTL fw1.1的效应值最大,为23.8%–31.6%,被定位在LG01(E09)上E25M34–E33M57b区域内;果长、果径与果重显著相关,且控制果长、果径与果重的QTL位于同一连锁群的相同区域。  相似文献   

16.
Recent advances in the use of microsatellite markers and the development of comparative gene mapping techniques have made the construction of high resolution genetic maps of livestock species possible. Framework and comprehensive genetic linkage maps of porcine chromosome 6 have resulted from the first international effort to integrate genetic maps from multiple laboratories. Eleven highly polymorphic genetic markers were exchanged and mapped by four independent laboratories on a total of 583 animals derived from four reference populations. The chromosome 6 framework map consists of 10 markers ordered with high local support. The average marker interval of the framework map is 15.1 cM (sex averaged). The framework map is 135, 175 and 109 cM in length (for sex averaged, female and male maps, respectively). The comprehensive map includes a total of 48 type I and type II markers with a sex averaged interval of 3.5 cM and is 166, 196 and 126 cM (for sex averaged, female and male maps, respectively). Additional markers within framework map marker intervals can thus be selected from the comprehensive map for further analysis of quantitive trait loci (QTL) located on chromosome 6. The resulting maps of swine chromosome 6 provide a valuable tool for analysing and locating QTL.  相似文献   

17.
A. Darvasi  A. Weinreb  V. Minke  J. I. Weller    M. Soller 《Genetics》1993,134(3):943-951
A simulation study was carried out on a backcross population in order to determine the effect of marker spacing, gene effect and population size on the power of marker-quantitative trait loci (QTL) linkage experiments and on the standard error of maximum likelihood estimates (MLE) of QTL gene effect and map location. Power of detecting a QTL was virtually the same for a marker spacing of 10 cM as for an infinite number of markers and was only slightly decreased for marker spacing of 20 or even 50 cM. The advantage of using interval mapping as compared to single-marker analysis was slight. ``Resolving power' of a marker-QTL linkage experiment was defined as the 95% confidence interval for the QTL map location that would be obtained when scoring an infinite number of markers. It was found that reducing marker spacing below the resolving power did not add appreciably to narrowing the confidence interval. Thus, the 95% confidence interval with infinite markers sets the useful marker spacing for estimating QTL map location for a given population size and estimated gene effect.  相似文献   

18.
In this study, totally 54 selected polymorphic SSR loci of Chinese shrimp (Fenneropenaeus chinensis), in addition with the previous linkage map of AFLP and RAPD markers, were used in consolidated linkage maps that composed of SSR, AFLP and RAPD markers of female and male construction, respectively. The female linkage map contained 236 segregating markers, which were linked in 44 linkage groups, and the genome coverage was 63.98%. The male linkage map contained 255 segregating markers, which were linked in 50 linkage groups, covering 63.40% of F. chinensis genome. There were nine economically important traits and phenotype characters of F. chinensis were involved in QTL mapping using multiple-QTL mapping strategy. Five potential QTLs associated with standard length (q-standardl-01), with cephalothorax length (q-cephal-01), with cephaloghorax width (q-cephaw-01), with the first segment length (q-firsel-01) and with anti-WSSV (q-antiWSSV-01) were detected on female LG1 and male LG44 respectively with LOD > 2.5. The QTL q-firsel-01 was at 73.603 cM of female LG1. Q-antiWSSV-01 was at 0 cM of male LG44. The variance explained of these five QTLs was from 19.7–33.5% and additive value was from −15.9175 to 7.3675. The closest markers to these QTL were all SSR, which suggested SSR marker was superior to AFLP and RAPD in the QTL mapping.  相似文献   

19.
A genetic linkage map of common carp (Cyprinus carpio L.) was constructed using Type I and Type II microsatellite markers and a pseudo-testcross mapping strategy. The microsatellite markers were isolated from microsatellite-enriched genomic libraries and tested for their segregation in a full-sib mapping panel containing 92 individuals. A total of 161 microsatellite loci were mapped into 54 linkage groups. The total lengths of the female, male and consensus maps were 2,000, 946, and 1,852?cM, with an average marker spacing of approximately 13, 7, and 11?cM, respectively. Muscle fiber-related traits, including muscle fiber cross-section area and muscle fiber density, were mapped to the genetic map. Three QTLs for muscle fiber cross-section area and two QTLs for muscle fiber density were identified when considering both significant and suggestive QTL effects. The QTLs with largest effects for muscle fiber cross-section area and muscle fiber density were 21.9% and 18.9%, and they were located in LG3, respectively.  相似文献   

20.
Single nucleotide polymorphisms (SNPs) were used to construct an integrated SNP linkage map of peach (Prunus persica (L.) Batsch). A set of 1,536 SNPs were evaluated with the GoldenGate® Genotyping assay in two mapping populations, Pop-DF, and Pop-DG. After genotyping and filtering, a final set of 1,400 high quality SNPs in Pop-DF and 962 in Pop-DG with full map coverage were selected and used to construct two linkage maps with JoinMap®4.0. The Pop-DF map covered 422 cM of the peach genome and included 1,037 SNP markers, and Pop-DG map covered 369 cM and included 738 SNPs. A consensus map was constructed with 588 SNP markers placed in eight linkage groups (n?=?8 for peach), with map coverage of 454 cM and an average distance of 0.81 cM/marker site. Placements of SNPs on the “peach v1.0” physical map were compared to placement on the linkage maps and several differences were observed. Using the SNP linkage map of Pop-DG and phenotypic data collected for three harvest seasons, a QTL analysis for fruit quality traits and chilling injury symptoms was carried out with the mapped SNPs. Significant QTL effects were detected for mealiness (M) and flesh bleeding (FBL) QTLs on linkage group 4 and flesh browning (FBr) on linkage group 5. This study represents one of the first examples of QTL detection for quality traits and chilling injury symptoms using a high-density SNP map in a single peach F1 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号