首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic processes, such as DNA methylation, are known to regulate tissue specific gene expression. We explored this concept in the placenta to define whether DNA methylation is cell-type specific. Cytotrophoblasts and fibroblasts were isolated from normal midtrimester placentas. Using immunocytochemistry, we demonstrated 95% purity for cytotrophoblasts and 60–70% for fibroblasts. We compared DNA methylation profiles from cytotrophoblasts, fibroblasts and whole placental villi using bisulfite modified genomic DNA hybridized to the Illumina Methylation27 array. Euclidean cluster analysis of the DNA methylation profiles showed two main clusters, one containing cytotrophoblasts and placenta, the other fibroblasts. Differential methylation analysis identified 442 autosomal CpG sites that differed between cytotrophoblasts and fibroblasts, 315 between placenta and fibroblasts and 61 between placenta and cytotrophoblasts. Three candidate methylation differences were validated by targeted pyrosequencing assays. Pyrosequencing assays were developed for CpG sites less methylated in cytotrophoblasts than fibroblasts mapping to the promoter region of the beta subunit of human chorionic gonadotropin 5 (CGB5), as well as two CpG sites mapping to each of two tumor suppressor genes. Our data suggest that epigenetic regulation of gene expression is likely to be a key factor in the functional specificity of cytotrophoblasts. These data are proof of principle for cell-type specific epigenetic regulation in placenta and demonstrate that the methylation profile of placenta is mainly driven by cytotrophoblasts.Key words: cytotrophoblast purification, placental fibroblast purification, DNA methylation, epigenetics, placenta, cell type-specific methylation  相似文献   

2.
We have observed extensive interindividual differences in DNA methylation of 8590 CpG sites of 6229 genes in 153 human adult cerebellum samples, enriched in CpG island “shores” and at further distances from CpG islands. To search for genetic factors that regulate this variation, we performed a genome-wide association study (GWAS) mapping of methylation quantitative trait loci (mQTLs) for the 8590 testable CpG sites. cis association refers to correlation of methylation with SNPs within 1 Mb of a CpG site. 736 CpG sites showed phenotype-wide significant cis association with 2878 SNPs (after permutation correction for all tested markers and methylation phenotypes). In trans analysis of methylation, which tests for distant regulation effects, associations of 12 CpG sites and 38 SNPs remained significant after phenotype-wide correction. To examine the functional effects of mQTLs, we analyzed 85 genes that were with genetically regulated methylation we observed and for which we had quality gene expression data. Ten genes showed SNP-methylation-expression three-way associations—the same SNP simultaneously showed significant association with both DNA methylation and gene expression, while DNA methylation was significantly correlated with gene expression. Thus, we demonstrated that DNA methylation is frequently a heritable continuous quantitatively variable trait in human brain. Unlike allele-specific methylation, genetic polymorphisms mark both cis- and trans-regulatory genetic sites at measurable distances from their CpG sites. Some of the genetically regulated DNA methylation is directly connected with genetically regulated gene expression variation.  相似文献   

3.
4.
5.
We performed whole-genome analyses of DNA methylation in Shewanella oneidensis MR-1 to examine its possible role in regulating gene expression and other cellular processes. Single-molecule real-time (SMRT) sequencing revealed extensive methylation of adenine (N6mA) throughout the genome. These methylated bases were located in five sequence motifs, including three novel targets for type I restriction/modification enzymes. The sequence motifs targeted by putative methyltranferases were determined via SMRT sequencing of gene knockout mutants. In addition, we found that S. oneidensis MR-1 cultures grown under various culture conditions displayed different DNA methylation patterns. However, the small number of differentially methylated sites could not be directly linked to the much larger number of differentially expressed genes under these conditions, suggesting that DNA methylation is not a major regulator of gene expression in S. oneidensis MR-1. The enrichment of methylated GATC motifs in the origin of replication indicates that DNA methylation may regulate genome replication in a manner similar to that seen in Escherichia coli. Furthermore, comparative analyses suggest that many Gammaproteobacteria, including all members of the Shewanellaceae family, may also utilize DNA methylation to regulate genome replication.  相似文献   

6.
Methylation of CpG islands spanning promoter regions is associated with control of gene expression. However, it is considered that methylation of exonic CpG islands without promoter is not related to gene expression, because such exonic CpG islands are usually distant from the promoter. Whether methylation of exonic CpG islands near the promoter, as in the case of a CpG-rich intronless gene, causes repression of the promoter remains unknown. To gain insight into this issue, we investigated the distribution and methylation status of CpG dinucleotides in the mouse Tact1/Actl7b gene, which is intronless and expressed exclusively in testicular germ cells. The region upstream to the gene was poor in CpG, with CpG dinucleotides absent from the core promoter. However, a CpG island was found inside the open reading frame (ORF). Analysis of the methylation status of the Tact1/Actl7b gene including the 5′-flanking area demonstrated that all CpG sites were methylated in somatic cells, whereas these sites were unmethylated in the Tact1/Actl7b-positive testis. Trans fection experiments with in vitro-methylated constructs indicated that methylation of the ORF but not 5′ upstream repressed Tact1/Actl7b promoter activity in somatic cells. Similar effects of ORF methylation on the promoter activity were observed in testicular germ cells. These are the first results indicating that methylation of the CpG island in the ORF represses its promoter in somatic cells and demethylation is necessary for gene expression in spermatogenic cells.  相似文献   

7.
8.
Direct detection of methylation in genomic DNA   总被引:2,自引:0,他引:2  
The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene expression. Three types of methylated nucleobases are known: N6-methyladenine, 5-methylcytosine and N4-methylcytosine. The aim of this study was to develop a method to detect all three types of DNA methylation in complete genomic DNA. It was previously shown that N6-methyladenine and 5-methylcytosine in plasmid and viral DNA can be detected by intersequence trace comparison of methylated and unmethylated DNA. We extended this method to include N4-methylcytosine detection in both in vitro and in vivo methylated DNA. Furthermore, application of intersequence trace comparison was extended to bacterial genomic DNA. Finally, we present evidence that intrasequence comparison suffices to detect methylated sites in genomic DNA. In conclusion, we present a method to detect all three natural types of DNA methylation in bacterial genomic DNA. This provides the possibility to define the complete methylome of any prokaryote.  相似文献   

9.
《Epigenetics》2013,8(3):368-379
Epigenetic processes, such as DNA methylation, are known to regulate tissue specific gene expression. We explored this concept in the placenta to define whether DNA methylation is cell-type specific. Cytotrophoblasts and fibroblasts were isolated from normal midtrimester placentas. Using immunocytochemistry, we demonstrated 95% purity for cytotrophoblasts and 60-70% for fibroblasts. We compared DNA methylation profiles from cytotrophoblasts, fibroblasts and whole placental villi using bisulfite modified genomic DNA hybridized to the Illumina Methylation27 array. Euclidean cluster analysis of the DNA methylation profiles showed 2 main clusters, one containing cytotrophoblasts and placenta, the other fibroblasts. Differential methylation analysis identified 442 autosomal CpG sites that differed between cytotrophoblasts and fibroblasts, 315 between placenta and fibroblasts and 61 between placenta and cytotrophoblasts. Three candidate methylation differences were validated by targeted pyrosequencing assays. Pyrosequencing assays were developed for CpG sites less methylated in cytotrophoblasts than fibroblasts mapping to the promoter region of the beta subunit of human chorionic gonadotropin 5 (CGB5), as well as 2 CpG sites mapping to each of 2 tumor suppressor genes. Our data suggest that epigenetic regulation of gene expression is likely to be a key factor in the functional specificity of cytotrophoblasts. These data are proof of principle for cell-type specific epigenetic regulation in placenta and demonstrate that the methylation profile of placenta is mainly driven by cytotrophoblasts.  相似文献   

10.
11.
Polymorphisms and decreased activity of methylenetetrahydrofolate reductase (MTHFR) are linked to disease, including cancer. However, epigenetic regulation has not been thoroughly studied. Our goal was to generate DNA methylation profiles of murine/human MTHFR gene regions and examine methylation in brain and liver tumors. Pyrosequencing in four murine tissues revealed minimal DNA methylation in the CpG island. Higher methylation was seen in liver or intestine in the CpG island shore 5′ to the upstream translational start site or in another region 3′ to the downstream start site. In the latter region, there was negative correlation between expression and methylation. Three orthologous regions were investigated in human MTHFR, as well as a fourth region between the two translation start sites. We found significantly increased methylation in three regions (not the CpG island) in pediatric astrocytomas compared with control brain, with decreased expression in tumors. Methylation in hepatic carcinomas was also increased in the three regions compared with normal liver, but the difference was significant for only one CpG. This work, the first overview of the Mthfr/MTHFR epigenetic landscape, suggests regulation through methylation in some regions, demonstrates increased methylation/decreased expression in pediatric astrocytomas, and should serve as a resource for future epigenetic studies.  相似文献   

12.
Phase variation: genetic analysis of switching mutants   总被引:50,自引:0,他引:50  
M Silverman  M Simon 《Cell》1980,19(4):845-854
Site-specific inversion of a controlling element is responsible for flagellar phase transition in Salmonella. When a 900 bp DNA sequence is in one configuration, it allows the expression of the H2 gene, a structural gene which codes for the flagellar antigen. When it is in the opposite configuration, the H2 gene is not expressed. A hybrid λ phage containing the invertible control region and the adjacent H2 gene was constructed, and expression of the H2 gene was shown to be regulated by the orientation of the inversion region. Transposon Tn5 insertion derivatives of this hybrid phage were isolated and λH2::Tn5 mutants defective for inversion (H2 switching) were selected and characterized. Two classes of switching phenotypes were observed among the mutants—those which had slightly reduced frequencies of transition from expression of the H2 gene (H2 on) to nonexpression (H2 off) (intermediate class) and those in which the frequency of transition was reduced at least three orders of magnitude (null class). Physical mapping of the Tn5 insertion sites revealed that in all mutants the insertion was located inside the inversion region. Tn5 insertion sites in the null class of mutants defined a region of DNA including approximately 500 bp which was necessary for inversion. Genetic complementation tests showed that these λH2::Tn5 mutants could invert the H2 gene control element if the 500 bp region was introduced in the trans configuration. It is concluded that a gene is located inside the inversion segment and codes for a protein which is required for the inversion event. Furthermore, the two sites at which the crossover event occurred functioned in a cis configuration and were required for inversion. The presence of a gene which is involved in controlling site-specific recombination events may be a general feature of transposon-like elements.  相似文献   

13.
The oriC unwinding by dam methylation in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
H Yamaki  E Ohtsubo  K Nagai    Y Maeda 《Nucleic acids research》1988,16(11):5067-5073
It has been shown that dam methylation is important in the regulation of initiation of DNA replication in E.coli. The question then arises as to whether dam methylation in the oriC region mediates any structural changes in DNA involved in the regulation of initiation of DNA replication. We demonstrate that the thermal melting temperature of the oriC region is lowered by adenine methylation at GATC sites. The regulation of initiation of DNA replication by dam methylation may be attributed to the ease of unwinding at GATC sites in oriC.  相似文献   

14.
15.
16.
Abnormal hypermethylation of CpG islands not only associated with tumor suppressor genes can lead to repression of gene expression, but also contribute to escape of the tumor from immune surveillance and contribute significantly to tumorigenesis. In the present study, we studied the hypermethylation of low molecular-weight protein (LMP) gene and its regulation on protein expression in biopsies from resected tissues from Kazak’s esophageal squamous cell carcinoma (ESCC) patients and their neighboring normal tissues. LMP2 and LMP7 genes promoter region methylation sequences were maped in esophageal cancer cell line Eca109 by bisulfite-sequencing PCR and quantitative detection of methylated DNA from 30 pairs of Kazak’s ESCC and adjacent normal tissues by MassARRAY (Sequenom, San Diego, CA, USA) and LMP2 and LMP7 protein expression were analyzed with immunohistochemistry. In Eca109, we identified 6 CG sites methylated from all of 22 CpG sites of LMP7 gene. However, no methylation was found for LMP2. The analysis of the data resulted from the quantitative analysis of single CpG site methylation by Sequenom MassARRAY platform, has shown that the methylation level between two groups CpG sites (CpG_5, CpG_9, CpG_20, CpG_21 and CpG_20) from CpG_1, CpG_2, CpG_3, CpG_4, CpG_5, CpG_6, CpG_7, CpG_8, CpG_9, CpG_10.11, CpG_12.13.14, CpG_15.16.17.18, CpG_19, CpG_20, CpG_21 and CpG_22 significant differences between ESCC and neighboring normal tissues. The analysis of methylation level of whole target CpG fragment indicated that the methylation level of LMP7 was significant higher in ESCC (0.0517 ± 0.0357) than in neighboring normal tissues (0.0380 ± 0.0214, P < 0.05). there was a tendency of decreasing the LMP7 proteins expression as the increasing the methylation level of LMP7 gene promoter regions (F = 7.69, P = 0.041). The LMP7 gene promoter methylation and protein downregulation were correlated at high extent in Kazakh’s ESCC patients, and may explain the epigenetic regulation on gene expression.  相似文献   

17.
In the bacterial world, methylation is most commonly associated with restriction-modification systems that provide a defense mechanism against invading foreign genomes. In addition, it is known that methylation plays functionally important roles, including timing of DNA replication, chromosome partitioning, DNA repair, and regulation of gene expression. However, full DNA methylome analyses are scarce due to a lack of a simple methodology for rapid and sensitive detection of common epigenetic marks (ie N6-methyladenine (6 mA) and N4-methylcytosine (4 mC)), in these organisms. Here, we use Single-Molecule Real-Time (SMRT) sequencing to determine the methylomes of two related human pathogen species, Mycoplasma genitalium G-37 and Mycoplasma pneumoniae M129, with single-base resolution. Our analysis identified two new methylation motifs not previously described in bacteria: a widespread 6 mA methylation motif common to both bacteria (5′-CTAT-3′), as well as a more complex Type I m6A sequence motif in M. pneumoniae (5′-GAN7TAY-3′/3′-CTN7 ATR-5′). We identify the methyltransferase responsible for the common motif and suggest the one involved in M. pneumoniae only. Analysis of the distribution of methylation sites across the genome of M. pneumoniae suggests a potential role for methylation in regulating the cell cycle, as well as in regulation of gene expression. To our knowledge, this is one of the first direct methylome profiling studies with single-base resolution from a bacterial organism.  相似文献   

18.
19.
DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for mammalian development and maintenance of DNA methylation following DNA replication in cells. The DNA methylation process generates S-adenosyl-l-homocysteine, a strong inhibitor of DNMT1. Here we report that S-adenosylhomocysteine hydrolase (SAHH/AHCY), the only mammalian enzyme capable of hydrolyzing S-adenosyl-l-homocysteine binds to DNMT1 during DNA replication. SAHH enhances DNMT1 activity in vitro, and its overexpression in mammalian cells led to hypermethylation of the genome, whereas its inhibition by adenosine periodate or siRNA-mediated knockdown resulted in hypomethylation of the genome. Hypermethylation was consistent in both gene bodies and repetitive DNA elements leading to aberrant gene regulation. Cells overexpressing SAHH specifically up-regulated metabolic pathway genes and down-regulated PPAR and MAPK signaling pathways genes. Therefore, we suggest that alteration of SAHH level affects global DNA methylation levels and gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号