首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of septic induction of antimicrobial peptide synthesis in insects is well reported in current papers. On the contrary, there is little data on aseptic, particularly hormonal, regulation of immune defense. Insect neuroendocrinology traditionally considers hormones as regulators of development and reproduction, focusing less attention on their role in regulation of defense reactions. In the present study, the direct influence of ecdysones, adipokinetic hormone, and biogenic amines on antimicrobial peptide synthesis in isolated fat body cells of Calliphora vicina was studied. According to the results, low concentrations of α- and β-ecdysones and high doses of adipokinetic hormone and octopamine can stimulate the fat body activity in vitro. Thus, these hormones are key mediators of the adaptive syndrome, hormonal activation of endogenic antibiotic synthesis which probably takes place in response to extreme stimuli.  相似文献   

2.
DNA synthesis in cells of the corpus allata (CA) of the silkworm, Bombyx mori, was studied immunocytochemically after in vivo labeling with 5-bromo-2'-deoxyuridine (BrdU); developmental changes during the 3rd, 4th, and last larval instars and effects of 20-hydroxyecdysone treatment were examined. During both the 3rd and 4th larval instars, the number of DNA-synthesizing cells fluctuated, and relatively low levels were observed during the middle stages. On day 0 of the last larval instar, the number of DNA-synthesizing cells per gland was 9.2, which then increased on day 1 and remained at levels ranging from 12.9 and 16.9 cells per gland. A major peak level (28 BrdU-labeled cells per gland) occurred on day 8, two days after larvae entered the wandering stage. When last instar larvae were fed 20-hydroxyecdysone-supplemented mulberry leaves starting on day 0 or 1, the number of DNA-synthesizing cells dramatically decreased to very low levels and these low levels were maintained throughout the remainder of the instar. However, no effect was observed when last instar larvae were fed 20-hydroxyecdysone-supplemented mulberry leaves starting on day 3, indicating the stage-specific action of 20-hydroxyecdysone. The mechanism by which 20-hydroxyecdysone treatment inhibits DNA synthesis of CA cells was further examined by using continuous in vitro BrdU labeling for a 2-day incubation. It was found that the decrease in responsiveness of DNA synthesis of CA cells of 20-hydroxyecdysone-treated larvae to stimulation by growth factors from hemolymph may have been, at least in part, responsible for the indirect inhibitory effects of 20-hydroxyecdysone.  相似文献   

3.
Effects of fenoxycarb at ultralow doses were investigated on juvenile hormone (JH)–regulated parameters in the silkworm, B. mori. Like JH, this non-terpenoid carbamate is able to induce permanent larvae in the last larval instar. However, whereas micrograms of JH are needed to produce this effect, only a few picograms of fenoxycarb are necessary to induce the same effect. The effects of fenoxycarb observed in this study were only visible from day 4 of the last larval instar—that is, when the JH titer has dropped to undetectable levels and JH-repressed physiological parameters would naturally be expressed. We observed that the permanent larvae induced with low doses of fenoxycarb (100 pg/larva) had no 20-hydroxyecdysone (20E) peak. Their prothoracic glands (Pgs) were completely inactive and very weakly sensitive to prothoracicotropic hormone (PTTH). Fenoxycarb at doses of 1 ng/larva also significantly inhibited silk gland growth and coloration, whereas carotenoid content of the hemolymph was maintained at high levels, which could reflect an inhibition of its uptake by the silk glands. Total hemolymph protein levels in last instar larvae were also depressed at these doses. So, it seems that low doses of fenoxycarb are sufficient to maintain in a juvenilized status the physiological parameters that are normally expressed when JH titer has declined. Moreover, from an endocrinological viewpoint, we demonstrated that the corpora allata (CA) are not necessary for fenoxycarb to induce those effects and discussed its possible mode of action. Arch. Insect Biochem. Physiol. 37:178–189, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
5.
The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids 20-hydroxyecdysone, makisterone A and a phytoecdysteroid on DNA synthesis in imaginal wing discs of day 4 final instarHelicoverpa armigera larvae was studied. DNA synthesis increased with increase in time of incubation up to 8 h and decreased later without the addition of moulting hormone. Addition of 20-hydroxyecdysone supported long term acquisition of competence for DNA synthesis in the wing discs. Both DNA synthesis and protein content were drastically reduced in plumbagin and azadirachtin-treated insects. Underin vitro conditions, plumbagin had a more pronounced inhibitory effect than azadirachtin. All the ecdysteroids tested, viz. makisterone A, 20-hydroxyecdysone and the ecdysteroidal fraction from the silver fernCheilanthes farinosa enhanced DNA synthesis  相似文献   

6.
Several lines of evidence suggest a novel regulatory mechanism for diapause regulation in the gypsy moth. We propose that ecdysteroids play a role in the induction and maintenance of the pharate first instar larval diapause in this species. A 55 kDa gut protein that is indicative of diapause is expressed in intact and neck-ligated pharate larvae but is not expressed when a ligature is placed posterior to the prothorax, site of the prothoracic gland. Guts cultured in vitro for 12 h cease to synthesize the 55 kDa protein, but synthesis of the protein resumes if the culture medium is enriched with a prothorax extract from pharate larvae or a prothoracic gland extract from fifth instar larvae. Injection of 20-hydroxyecdysone or the ecdysteroid agonist, RH-5992, into isolated abdomens stimulates synthesis of the diapause-specific 55 kDa protein, suggesting that the essential factor from the prothorax is an ecdysteroid. KK-42, an imidazole derivative known to inhibit ecdysteroid biosynthesis, averts diapause when applied to prediapausing pharate first instar larvae, but this effect can be countered by application of 20-hydroxyecdysone or RH-5992, i.e. KK-42 treated pharate larvae that are exposed to an ecdysteroid or RH-5992 readily enter diapause. A chilling period (120 days at 5 degrees C) is normally adequate to prompt an immediate termination of diapause when pharate larvae are transferred to 25 degrees C, but if such larvae are held in hanging drop cultures with ecdysteroids they fail to terminate diapause. Together, these results suggest that ecdysteroids are essential for the induction and maintenance of diapause and imply that a drop in the ecdysteroid titer is essential for diapause termination. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

7.
Houseflies ovariectomized within 12 h after emergence do not produce (Z)-9-tricosene nor demonstrate the shift from alkene to alkane synthesis that is typcal of flies with developing ovaries. A single injection of 20-hydroxyecdysone at doses of 0.1 to 10 μg will induce the pattern in ovariectomized insects that is characteristic of flies with ovaries. Furthermore, this pattern persists for 3 days, but by 6 days after hormone injection, the synthesis of (Z)-9-tricosene stops and more alkenes are produced than alkanes. A post-hormone treatment time of 16 h was required before detectable amounts of (Z)-9-tricosene appeared on ovariectomized flies. Multiple injections of 20-hydroxyecdysone at doses of 50 ng into ovariectomized flies induced (Z)-9-tricosene synthesis and a shift in alkene to alkane synthesis. Thus, 20-hydroxyecdysone was able to act as an ovarian substitute in ovariectomized flies by stimulating pheromone synthesis.  相似文献   

8.
Juvenile hormone synthesis by adult female corpora allata was inhibited following implantation into final-larval-instar males; inhibition was prevented by decapitation of the larval hosts on day 11 (prior to the head critical period for moulting), but not by decapitation on day 13. Implantation of one larval protocerebrum restored inhibition of implanted corpora allata, demonstrating that the brain releases an inhibitory factor. Corpora allata implanted into larvae decapitated on day 11 were inhibited by injections of 20-hydroxyecdysone. Since treatment of corpora allata with 20-hydroxyecdysone in vitro did not inhibit juvenile hormone synthesis, ecdysteroids probably act indirectly on the corpora allata. Juvenile hormone synthesis and haemolymph ecdysteroid concentration were measured following implantation of corpora allata along with two larval brains into larval hosts. Brain implantation did not affect ecdysteroid concentration, but did inhibit juvenile hormone synthesis, even in animals with low haemolymph ecdysteroid concentration. Incubation with farnesoic acid stimulated juvenile hormone synthesis by corpora allata from males early in the final larval stadium, but not after day 8, showing that one of the final two reactions of juvenile hormone synthesis is rate-limiting in larval corpora allata at this stage. Adult female corpora allata which had been humorally inhibited by implantation into larvae were stimulated by farnesoic acid.  相似文献   

9.
10.
Penultimate-instar larvae of Bombyx mori were neck-ligated or ligated posterior to the prothoracic glands. Repetitive injections of 20-hydroxyecdysone every 3 or more hours elicited the gut purge in thorax-ligated animals. Single injections of 20-hydroxyecdysone up to 40 μg failed to induce the gut purge. However, a single injection of 20-hydroxyecdysone together with juvenile hormone analogue, resulted in larval moulting of thorax-ligated animals. Once the thorax-ligated larvae showed the gut purge, a single injection of 20-hydroxyecdysone was enough to provoke pupation. The change in ecdysteroid titre in those animals receiving repeated injections was compared with that observed in neck-ligated larvae that spontaneously underwent the gut purge followed by precocious pupation. These data indicate that the very low ecdysteroid titre found before the gut purge is important for the acquisition of competence to undergo the gut purge in response to a small ecdysteroid surge just before the gut purge.  相似文献   

11.
A nondiapause strain of the gypsy moth offers an additional tool for evaluating the regulation of diapause in this species. Patterns of protein expression in the gut and gut enzyme activity distinguished the two strains. Synthesis of a 55kDa gut protein, previously linked to diapause, began 14days after oviposition in both the diapause (D) and nondiapause (ND) strains. Though synthesis of this protein persisted in the D strain, its synthesis decreased after day 18 in the ND strain. In the D strain, activity of the proteolytic enzymes (trypsin, chymotrypsin, elastase, aminopeptidase) and esterase remained low, while activity of all of these enzymes increased dramatically in the ND strain 18-20days after oviposition. By contrast, alkaline phosphatase (ALP) activity was high in both strains 15-17days after oviposition, activity remained high in the D strain but in the ND strain activity then decreased. Patterns of ALP zymograms were similar in the two strains on day 15, but later a band of high mobility appeared only in the D strain. When 20-hydroxyecdysone was added to hanging drop cultures containing ND pharate larvae 15days after oviposition, the larvae assumed the characteristics of diapause larvae: the 55kDa gut protein was synthesized, the ALP zymogram revealed the characteristic diapause pattern, and they failed to ingest culture medium. The fact that 20-hydroxyecdysone could elicit these responses in ND individuals further supports previous results indicating that ecdysteroids promote the induction and maintenance of the pharate larval diapause in this species.  相似文献   

12.
【目的】黑化反应在昆虫表皮骨化以及免疫防御过程中起着重要作用, 酚氧化酶是黑化反应中的关键酶类, 漆酶2 (laccase2, LAC2)是酚氧化酶的一种, 在昆虫变态发育和免疫系统中起着重要的作用。本研究旨在探讨LAC2在棉铃虫Helicoverpa armigera表皮骨化中表达模式及激素调控作用。 【方法】采用PCR及RACE的方法, 从棉铃虫5龄幼虫中得到了lac2 cDNA全序列。利用荧光定量PCR、 激素处理及RNA干扰方法, 对LAC2的表达模式差异和激素调控作用进行分析。【结果】序列分析表明, lac2 cDNA全长3 221 bp, 编码框长度为2 268 bp, 编码756个氨基酸残基。发育时序表达分析发现, lac2在幼虫各龄期表达规律相似, 均在蜕皮期高水平表达, 在5龄96 h转录水平达到最高峰。组织表达结果分析, lac2基因在幼虫表皮和成虫卵巢以及触角表达量较高。激素处理实验发现, 保幼激素类似物(methoprene)对lac2基因转录有抑制作用; 蜕皮激素(20-hydroxyecdysone)则促进其表达。进一步利用RNA干扰蜕皮激素受体EcR (ecdysone receptor)和USP (ultraspiracle isoform)基因发现, 干扰后蜕皮激素受体的表达明显受到抑制, 同时lac2基因的表达也显著受到抑制, 表明蜕皮激素调控lac2基因转录。【结论】这些结果为进一步研究漆酶在昆虫表皮的骨化以及免疫防御等方面不同的生理功能提供理论依据。  相似文献   

13.
The effects of ingested or injected 20-hydroxyecdysone on silkworm larvae (Bombyx mori) including death without moulting, death following completion of promoted moulting, death during promoted moulting (ecdysis inhibition) and inhibition in growth with and without effects on moulting, are dependent upon the concentration of exogenous hormone, the precise developmental stage of the treated larvae, and the duration of exposure to the exogenous ecdysteroid. Comparisons of 20-hydroxyecdysone with other phytoecdysteroids in the silkworm and pink bollworm, Pectinophora gossypiella, show a similar but more potent effect induced by ponasterone A, while cyasterone causes an ‘antiecdysone’ effect.  相似文献   

14.
Surfaces of higher eukaryotes are normally covered with microorganisms but are usually not infected by them. Innate immunity and the expression of gene-encoded antimicrobial peptides play important roles in the first line of defence in higher animals. The immune response in Drosophila promotes systemic expression of antimicrobial peptides in response to microbial infection. We now demonstrate that the epidermal cells underlying the cuticle of larvae respond to infected wounds by local expression of the genes for the antimicrobial peptide cecropin A. Thus, the Drosophila epidermis plays an active role in the innate defence against microorganisms. The immune deficiency (imd) gene was found to be a crucial component of the signal-induced epidermal expression in both embryos and larvae. In contrast, melanization, which is part of the wound healing process, is not dependent on the imd gene, indicating that the signalling pathways promoting melanization and antimicrobial peptide gene expression can be uncoupled.  相似文献   

15.
We have analyzed the effects of Toxoneuron nigriceps parasitization on the midgut development of its host Heliothis virescens. In parasitized H. virescens larvae, the midgut epithelium undergoes a complete replacement, which is qualitatively not different to that observed in synchronous unparasitized larvae, with similar temporal profiles of cell death and metabolic activity. However, the whole gut replacement process is significantly delayed in parasitized larvae, with complete differentiation of the new gut epithelium being observed 4 days later than in unparasitized controls. The administration of juvenile hormone before commitment and of 20-hydroxyecdysone (20E) after commitment delays and fosters, respectively, the replacement process of the midgut epithelium; moreover, the injection of 20E into developmentally arrested and 20E-deficient host last-instar larvae parasitized by T. nigriceps immediately triggers regular gut development. These hormone-based experiments suggest that endocrine alterations in the larval host, induced by T. nigriceps parasitism, are responsible for the temporal alterations in the gut replacement process. The role of this parasitoid-induced developmental change in the host regulation process is discussed. This work was partially supported by FAR 2006–2007 (University of Insubria) to G.T., by MIUR-FIRB-COFIN (grant no. RBNE01YXA8/2004077251), and by the Centro Grandi Attrezzature (University of Insubria).  相似文献   

16.
There is no study implying the effect of plant lectins on insect immune elements in both challenged and non‐challenged conditions with entomopathogenic agents. Lectins may bind to immune receptors on the surface of insect hemocytes, thus inducing or even disabling common immune functions including hemocyte counts, nodulation/encapsulation, phenoloxidase activity, and synthesis of antimicrobial peptides. In the present study, effect of Polygonum persicaria L. agglutinin (PPA) on immune responses of Helicoverpa armigera Hübner was investigated by feeding artificial diet treated to the larvae. Subsequently hemocyte count and expression of some immune‐related genes were considered for analyses. The two groups of larvae including control and PPA‐treated (1%) were divided into four subgroups of intact, Tween‐80 injected, latex‐bead injected and Beauveria bassiana‐injected. Except for intact larvae, the highest numbers of total and differential hemocyte counts were recorded 12 hr postinjection, however, the PPA‐fed larvae showed a significantly lower hemocyte counts compared to control. The number of nodules in PPA‐fed larvae was significantly lower than control, but the injected larvae of both control and PPA showed the highest nodulation 24 hr postinjection. Although the highest activity of phenoloxidase was observed 12 and 24 hr postinjection but its activity significantly decreased in PPA‐fed larvae compared to control. Gene expression of antimicrobial peptides including attacin, cecropin, and peptidoglycan receptor proteins were significantly decreased in artificial diet‐fed larvae containing PPA and then injected by B. bassiana spores and latex bead compared to control. These results clearly indicate adverse effects of PPA on immune responses in H. armigera.  相似文献   

17.
A comparative survey was carried out to investigate the effects, distribution and metabolism of ingested 20-hydroxyecdysone in four species of lepidopteran larvae in relation to the phytoecdysteroid content of the insect's host plants. Analysis of the leaves of the host plants of each of the species revealed a strong relationship between the levels of phytoecdysteroids and the relative tolerance of the larvae to ingested 20-hydroxyecdysone. Monophagous or oligophagous species (Aglais urticae, Inachis io) feeding on ecdysteroid-negative host plants were either deterred from feeding or showed marked abnormalities in growth and development after incorporation of 20-hydroxyecdysone in their diets. Oligophagous or polyphagous species (Tyria jacobaeae, Cynthia cardui) which feed on host plants from families which are known to contain phytoecdysteroid-positive species, were able to tolerate low levels of 20-hydroxyecdysone in their diets, but exhibited developmental defects at high concentrations. These species were termed semi-tolerant. In each of the species, ingested [3H]20-hydroxyecdysone appeared to follow the same fate as injected [3H]20-hydroxyecdysone. The data are compared to those obtained in previous studies, where truly polyphagous species were shown to tolerate very high concentrations of 20-hydroxyecdysone in their diets by the production of ecdysteroid 22-fatty acyl esters. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

18.
《Insect Biochemistry》1988,18(7):729-734
Ecdysone and 20-hydroxyecdysone metabolism was investigated in third instar Drosophila larvae both in vivo by injecting radiolabelled ecdysteroids and in vitro by incubating various tissues with labelled ecdysteroids.Ecdysone metabolism proceeds through different pathways: (1) C-20 hydroxylation; (2) C-26 hydroxylation and C-26 oxidation leading to the formation of 26-hydroxyecdysteroids (26-hydroxyecdysone and 20,26-dihydroxyecdysone) and acidic compounds (ecdysonoic acid and 20-hydroxyecdysonoic acid); C-3 oxidation and C-3 epimerization then conjugation leading to the formation of 3-dehydrocompounds (3-dehydroecdysone and 3-dehydro-20-hydroxyecdysone), 3-epimers (3-epiecdysone and 3-epi-20-hydroxyecdysone) and conjugates (only one conjugate was tentatively characterized as 3-epi-20-hydroxyecdysone-3-phosphate). 3-Dehydrocompounds are the major metabolites formed in third instar Drosophila larvae and C-3 oxidation occurs in various tissues. Experiments using tritiated cholesterol provided evidence that 3-dehydroecdysone and 3-dehydro-20-hydroxyecdysone are true endogenous ecdysteroids in Drosophila larvae.  相似文献   

19.
Synthesis of antimicrobial peptides in diapausing larvae of the blowfly Calliphora vicina can be induced by two different pathways. One pathway is well known in insects and includes recognition of microbial particles by the pattern-recognizing receptors. The other pathway includes perception and transduction of stress signal to immunocompetent cells by neuroendocrine system. This phenomenon consists in stimulation of synthesis of defensins, cecropins, and diptericins under effect of chromic stimulation of mechanoreceptors with ligature applied on the larva head end. Formation of immune response in brain is established to need less than 30 s, after which isolation of the neuroendocrine complex does not eliminate activation of immune response. As judging from rate of the neurogenic induction, transduction of the stimulating signal from brain to the immune system cells can be connected with release into hemolymph of biogenic amines or other neurohormones stored preliminarily in the neurohemal organ. The nature of this inductor at present remains unknown, as analysis of role of octopamine, dopamine, and adipokinetic hormone did not reveal stimulating effect on synthesis of bactericidal peptides. Physiological mechanism of this phenomenon is not finally understood, its key links seem to be CNS, hormonal factor of cardiac bodies, and system of antimicrobial peptides. Synthesis of antimicrobial peptides is directly regulated by the neuroendocrine system that can produce both stimulating and stress action by reminding in this aspect the known immunoneuroendocrine interrelations in vertebrates. The existence of similar integrating mechanisms in such polar animal kingdom groups as insects and vertebrates indicate that they are more ancient than this was considered earlier.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号