首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Gene 8 of bacteriophage M13 codes for procoat, the precursor of its major coat protein. Gene 8 has been cloned into a plasmid and mutagenized. We have isolated mutants of this gene in which procoat is synthesized but is not processed to coat protein. We now describe mutants in the leader region of procoat, at positions -6, -3, and -1 with respect to the leader peptidase cleavage site. These positions are quite conserved among the leader peptides of various pre-proteins. Each of these mutant procoats is synthesized at a normal rate and inserts correctly into the plasma membrane, as judged by its accessibility to protease in intact spheroplasts. Procoat accumulates, largely in its transmembrane form, and is not cleaved to coat. In detergent extracts, the mutant procoats are very poor substrates for added leader peptidase. We conclude that these 3 residues are not conserved for insertion across the membrane but are part of an essential recognition site for the leader peptidase.  相似文献   

2.
Many secreted and membrane proteins have amino-terminal leader peptides which are essential for their insertion across the membrane bilayer. These precursor proteins, whether from prokaryotic or eukaryotic sources, can be processed to their mature forms in vitro by bacterial leader peptidase. While different leader peptides have shared features, they do not share a unique sequence at the cleavage site. To examine the requirements for substrate recognition by leader peptidase, we have truncated M13 procoat, a membrane protein precursor, from both the amino- and carboxy-terminal ends with specific proteases or chemical cleavage agents. The fragments isolated from these reactions were assayed as substrates for leader peptidase. A 16 amino acid residue peptide which spans the leader peptidase cleavage site is accurately cleaved. Neither the basic amino-terminal region nor most of the hydrophobic central region of the leader peptide are essential for accurate cleavage.  相似文献   

3.
Y Akiyama  T Inada  Y Nakamura    K Ito 《Journal of bacteriology》1990,172(6):2888-2893
SecY is an Escherichia coli integral membrane protein required for efficient translocation of other proteins across the cytoplasmic membrane; it is embedded in this membrane by the 10 transmembrane segments. Among several SecY-alkaline phosphatase (PhoA) fusion proteins that we constructed previously, SecY-PhoA fusion 3-3, in which PhoA is fused to the third periplasmic region of SecY just after the fifth transmembrane segment, was found to be subject to rapid proteolytic processing in vivo. Both the SecY and PhoA products of this cleavage have been identified immunologically. In contrast, cleavage of SecY-PhoA 3-3 was barely observed in a lep mutant with a temperature-sensitive leader peptidase. The full-length fusion protein accumulated in this mutant was cleaved in vitro by the purified leader peptidase. A sequence Ala-202-Ile-Ala located near the proposed interface between transmembrane segment 5 and periplasmic domain 3 of SecY was found to be responsible for the recognition and cleavage by the leader peptidase, since a mutated fusion protein with Phe-Ile-Phe at this position was no longer cleaved even in the wild-type cells. These results indicate that SecY contains a potential leader peptidase cleavage site that undergoes cleavage if the PhoA sequence is attached carboxy terminally. Thus, transmembrane segment 5 of SecY can fulfill both of the two important functions of the signal peptide, translocation and cleavage, although the latter function is cryptic in the normal SecY protein.  相似文献   

4.
OmpA is a major protein of the outer membrane of Escherichia coli. It is made as a larger precursor, pro-OmpA, which requires a membrane potential for processing. We now show that pro-OmpA accumulates in the cytoplasm of cells treated with carbonyl cyanide m-chlorophenylhydrazone, an uncouple which lowers the membrane potential. Upon restoration of the potential, this pro-OmpA is secreted, processed, and assembled into the outer membrane. Pro-OmpA made in vitro is also recovered with the postribosomal supernatant. It is efficiently processed to OmpA by liposomes which have bacterial leader peptidase that is exclusively internally oriented. These experiments show that: (i) the insertion of pro-OmpA into the plasma membrane is not coupled to its synthesis; (ii) insertion is promoted by the transmembrane electrochemical potential; (iii) pro-OmpA can cross a bilayer spontaneously; and (iv) pro-OmpA is processed by the same leader peptidase which converts M13 procoat to coat.  相似文献   

5.
Leader peptidase is an integral protein of the Escherichia coli cytoplasmic membrane whose topology is known. We have taken advantage of this knowledge and available mutants of this enzyme to develop a genetic test for a cell-free protein translocation reaction. We report that leader peptidase inserted into inverted plasma membrane vesicles in its correct transmembrane orientation. We have examined the in vitro membrane assembly characteristics of a variety of leader peptidase mutants and found that domains required for insertion in vivo are also necessary for insertion in vitro. These data demonstrate the physiological validity of the in vitro insertion reaction and strengthen the use of this in vitro protein translocation reaction for the dissection of this complex sorting pathway.  相似文献   

6.
Leader peptidase, an integral membrane protein of Escherichia coli, is made without a cleavable leader sequence. It has 323 amino acid residues and spans the plasma membrane with a small amino-terminal domain exposed to the cytoplasm and a large, carboxyl-terminal domain exposed to the periplasm. We have investigated which regions of leader peptidase are necessary for its assembly across the membrane. Deletions were made in the carboxyl-terminal domain of leader peptidase, removing residues 141-222, 142-323, or 222-323. Protease accessibility was used to determine whether the polar, carboxyl-terminal domains of these truncated leader peptidases were translocated across the membrane. The removal of either residues 222-323 (the extreme carboxyl terminus) or residues 141-222 does not prevent leader peptidase membrane assembly. However, leader peptidase lacking both regions, i.e. amino acid residues 142-323, cannot translocate the remaining portion of its carboxyl terminus across the membrane. Our data suggest that the polar, periplasmic domain of leader peptidase contains information which is needed for membrane assembly.  相似文献   

7.
8.
Proteins which are transported across the bacterial plasma membrane, endoplasmic reticulum and thylakoid membrane are usually synthesized as larger precursors containing amino-terminal targeting signals. Removal of the signals is carried out by specific, membrane-bound processing peptidases. In this report we show that the reaction specificities of these three peptidases are essentially identical. Precursors of two higher plant thylakoid lumen proteins are efficiently processed by purified Escherichia coli leader peptidase. Processing of one precursor, that of the 23 kd photosystem II protein, by both the thylakoidal and E. coli enzymes generates the correct mature amino terminus. Similarly, leader (signal) peptides of both eukaryotic and prokaryotic origin are cleaved by partially purified thylakoidal processing peptidase. No evidence of incorrect processing was obtained. Both leader peptidase and thylakoidal peptidase are inhibited by a synthetic leader peptide.  相似文献   

9.
Leader peptidase of Escherichia coli, a protein of 323 residues, has three hydrophobic domains. The first, residues 1-22, is the most apolar and is followed by a polar region (23-61) which faces the cytoplasm. The second hydrophobic domain (residues 62-76) spans the membrane. The third hydrophobic domain, which has a minimal apolar character, and the polar, carboxyl-terminal two-thirds of the protein are exposed to the periplasm. Deletion of either the amino terminus (residues 4-50) or the third hydrophobic region (residues 83-98) has almost no effect on the rate of leader peptidase membrane assembly, while the second hydrophobic domain is essential for insertion (Dalbey, R., and Wickner, W. (1987) Science 235, 783-787). To further define the roles of these domains, we have replaced the normal, cleaved leader sequence of pro-OmpA and M13 procoat with regions containing either the first or second apolar domain of leader peptidase. The second apolar domain supports the translocation of OmpA or coat protein across the plasma membrane, establishing its identity as an internal, uncleaved signal sequence. In addition to this sequence, we now find that leader peptidase needs either the amino-terminal domain or the third hydrophobic domain to permit its rapid membrane assembly. These results show that, although a signal sequence is necessary for rapid membrane assembly of leader peptidase, it is not sufficient.  相似文献   

10.
Dimethyl sulfoxide reductase is a heterotrimeric enzyme (DmsABC) localized to the cytoplasmic surface of the inner membrane. Targeting of the DmsA and DmsB catalytic subunits to the membrane requires the membrane targeting and translocation (Mtt) system. The DmsAB dimer is a member of a family of extrinsic, cytoplasmic facing membrane subunits that require Mtt in order to assemble on the membrane. We show that the MttA(2), MttB, and presumably MttA(1) but not the MttC proteins are required for targeting DmsAB to the membrane. Unlike other Mtt substrates such as trimethylamine N-oxide reductase, the soluble cytoplasmic DmsAB dimer that accumulates in the mtt deletions is very labile. Deletion of the mttA(2) or mttB genes also prevents anaerobic growth on fumarate even though fumarate reductase does not require Mtt for assembly. This was due to the lethality of membrane insertion of DmsC in the absence of the DmsAB subunits. In the absence of DmsC, DmsAB accumulates in the cytoplasm. A 45-amino acid leader on DmsA is removed during assembly. Processing does not require DmsC but does require Mtt. Translocation of DmsAB to the periplasm is not required for processing. The leader may be cleaved by a novel leader peptidase, or the long DmsA leader may traverse the membrane through the Mtt system resulting in cleavage by the periplasmic leader peptidase I followed by release of DmsA into the cytoplasm.  相似文献   

11.
The leader peptidase of Escherichia coli cleaves a 23-residue leader sequence from M13 procoat to yield mature coat protein in virus-infected cells. We have reconstituted pure leader peptidase into vesicles of E. coli lipids and found that these liposomes are active in the conversion of procoat to coat. Trypsin removes all but 10% of the leader peptidase, yet the vesicles retain nearly full capacity to convert procoat to coat, suggesting that only procoat which inserts across the liposomal membrane is a substrate for leader peptidase. This is confirmed by the finding that over 70% of the coat protein produced by these liposomes spans the membrane. The rate at which leader peptidase inside protease-treated liposomes cleaves externally added procoat is comparable to the rate of procoat cleavage by the same amount of leader peptidase in detergent micelles. Thus, procoat can rapidly integrate across a liposomal membrane and be cleaved to coat protein. These findings confirm the central part of the membrane trigger hypothesis that certain proteins (such as procoat) can cross a bilayer without the aid of a proteinaceous pore or transport system.  相似文献   

12.
F pilin is the subunit required for the assembly of conjugative pili on the cell surface of Escherichia coli carrying the F plasmid. Maturation of the F-pilin precursor, propilin, involves three F plasmid transfer products: TraA, the propilin precursor; TraQ, which promotes efficient propilin processing; and TraX, which is required for acetylation of the amino terminus of the 7-kDa pilin polypeptide. The mature pilin begins at amino acid 52 of the TraA propilin sequence. We performed experiments to determine the involvement of host cell factors in propilin maturation. At the nonpermissive temperature in a LepBts (leader peptidase B) host, propilin processing was inhibited. Furthermore, under these conditions, only full-length precursor was observed, suggesting that LepB is responsible for the removal of the entire propilin leader peptide. Using propilin processing as a measure of propilin insertion into the plasma membrane, we found that inhibition or depletion of SecA and SecY does not affect propilin maturation. Addition of a general membrane perturbant such as ethanol also had no effect. However, dissipation of the proton motive force did cause a marked inhibition of propilin processing, indicating that membrane insertion requires this energy source. We propose that propilin insertion in the plasma membrane proceeds independently of the SecA-SecY secretion machinery but requires the proton motive force. These results present a model whereby propilin insertion leads to processing by leader peptidase B to generate the 7-kDa peptide, which is then acetylated in the presence of TraX.  相似文献   

13.
L M Shen  J I Lee  S Y Cheng  H Jutte  A Kuhn  R E Dalbey 《Biochemistry》1991,30(51):11775-11781
Leader peptidase cleaves the leader sequence from the amino terminus of newly made membrane and secreted proteins after they have translocated across the membrane. Analysis of a large number of leader sequences has shown that there is a characteristic pattern of small apolar residues at -1 and -3 (with respect to the cleavage site) and a helix-breaking residue adjacent to the central apolar core in the region -4 to -6. The conserved sequence pattern of small amino acids at -1 and -3 around the cleavage site most likely represents the substrate specificity of leader peptidase. We have tested this by generating 60 different mutations in the +1 to -6 domain of the M13 procoat protein. These mutants were analyzed for in vivo and in vitro processing, as well as for protein insertion into the cytoplasmic membrane. We find that in vivo leader peptidase was able to process procoat with an alanine, a serine, a glycine, or a proline residue at -1 and with a serine, a glycine, a threonine, a valine, or a leucine residue at -3. All other alterations at these sites were not processed, in accordance with predictions based on the conserved features of leader peptides. Except for proline and threonine at +1, all other residues at this position were processed by leader peptidase. None of the mutations at -2, -4, or -5 of procoat (apart from proline at -4) completely abolished leader peptidase cleavage in vivo although there were large effects on the kinetics of processing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Leader peptidase is an enzyme of the Escherichia coli cytoplasmic membrane which removes amino-terminal leader sequences from many secreted and membrane proteins. Three potential membrane-spanning segments exist in the first 98 amino acids of leader peptidase. We have characterized the topology of leader peptidase based on its sensitivity to protease digestion. Proteinase K and trypsin treatment of right-side-out inner membrane vesicles and spheroplasts yields protected fragments of approximately 80 and 105 amino acid residues, respectively. We have shown that both fragments are derived from the amino terminus of the protein and that the smaller protected peptide can be derived from the larger. Removal of the third potential membrane-spanning segment (residues 82-98) does not affect the size of the proteinase K-protected fragment but does reduce the size of the trypsin-protected peptide. Because the proteinase K-protected fragment is about 9000 daltons, is derived from the amino terminus of leader peptidase, and its size is not affected when amino acids 82-98 are removed from the protein, it must extend from the amino terminus to approximately residue 80. Likewise, the trypsin-protected fragment must extend from the amino terminus to about residue 105. These data suggest a model for the orientation of leader peptidase in which the second hydrophobic stretch (residues 62-76) spans the cytoplasmic membrane and the third hydrophobic stretch resides in the periplasmic space.  相似文献   

15.
Leader peptidase of Escherichia coli spans the plasma membrane twice with its amino terminus on the periplasmic surface of the membrane and its large carboxyl-terminal domain protruding into the periplasm. To monitor the transfer of the amino terminus of leader peptidase to the periplasm, we have constructed a fusion protein between the 18-residue amino-terminal periplasmic domain of Pf3 bacteriophage coat protein and the beginning of leader peptidase. We find that neither the SecA or SecY proteins nor a transmembrane electrochemical potential is required for insertion of the amino terminus, while the transfer of the carboxyl-terminal domain of leader peptidase has these requirements. The first 35 residues of leader peptidase, which include the first hydrophobic domain and the carboxyl-terminal positively charged cluster, are sufficient to insert the amino terminus. When positively charged residues are introduced before the first transmembrane segment, translocation of the amino terminus is abolished. These studies in protein membrane topogenesis, showing that there are different requirements for amino and carboxyl termini insertion, indicate that multiple mechanisms exist even within the same protein.  相似文献   

16.
Leader peptidase of Escherichia coli cleaves the leader sequence from the amino terminus of membrane and secreted proteins after these proteins insert across the membrane. Despite considerable research, the mechanism of catalysis of leader peptidase remains unknown. This peptidase cannot be classified using protease inhibitors to the serine, cysteine, aspartic acid, or metallo- classes of proteases (Zwizinski, C., Date, T., and Wickner, W. (1981) J. Biol. Chem. 256, 3593-3597). Using site-directed mutagenesis, we have attempted to place leader peptidase in one of these groups. We found that leader peptidase, lacking all of the cysteine residues, can cleave the leader peptide from procoat, the precursor to bacteriophage M13 coat protein. Replacement of each histidine residue with an alanyl residue was without effect on catalysis. Among all the serine and aspartic acid residues, serine 90 and serine 185 as well as aspartic acid 99, 153, 273, and 276 are necessary to cleave procoat in a detergent extract. However, only serine 90 and aspartic acid 153 were required for processing using a highly sensitive in vivo assay. In addition to the residues directly affecting catalysis, aspartic acid 99 plays a role in maintaining the structure of leader peptidase. Replacement of this residue with alanine results in a very unstable leader peptidase protein. This study thus defines two critical residues, serine 90 and aspartic acid 153, that may be directly involved in catalysis and provides evidence that leader peptidase belongs to a novel class of serine proteases.  相似文献   

17.
Leader peptidase, typical of inner membrane proteins of Escherichia coli, does not have an amino-terminal leader sequence. This protein contains an internal signal peptide, residues 51-83, which is essential for assembly and remains as a membrane anchor domain. We have employed site-directed mutagenesis techniques to either delete residues within this domain or substitute a charged amino acid for one of these residues to determine the important properties of the internal signal. The deletion analysis showed that a very small apolar domain, residues 70-76, is essential for assembly, whereas residues that flank it are dispensable for its function. However, point mutations with charged amino acid residues within the polar sequence (residues 77-82) slow or abolish leader peptidase membrane assembly. Thus, a polar region, Arg-Ser-Phe-Ile-Tyr-Glu, is important for the signal peptide function of leader peptidase, unlike other signals identified thus far.  相似文献   

18.
Leader peptidase   总被引:10,自引:1,他引:9  
The Escherichia coli leader peptidase has been vital for unravelling problems in membrane assembly and protein export. The role of this essential peptidase is to remove amino-terminal leader peptides from exported proteins after they have crossed the plasma membrane. Strikingly, almost all periplasmic proteins, many outer membrane proteins, and a few inner membrane proteins are made with cleavable leader peptides that are removed by this peptidase. This enzyme of 323 amino acid residues spans the membrane twice, with its large carboxyl-terminal domain protruding into the periplasm. Recent discoveries show that its membrane orientation is controlled by positively charged residues that border (on the cytosolic side) the transmembrane segments. Cleavable pre-proteins must have small residues at -1 and a small or aliphatic residue at -3 (with respect to the cleavage site). Leader peptidase does not require a histidine or cysteine amino acid for catalysis. Interestingly, serine 90 and aspartic acid 153 are essential for catalysis and are also conserved in a mitochondrial leader peptidase, which is 30.7% homologous with the bacterial enzyme over a 101-residue stretch.  相似文献   

19.
Biological membranes contain a substantial amount of "nonbilayer lipids", which have a tendency to form nonlamellar phases. In this study the hypothesis was tested that the presence of nonbilayer lipids in a membrane, due to their overall small headgroup, results in a lower packing density in the headgroup region, which might facilitate the interfacial insertion of proteins. Using the catalytic domain of leader peptidase (delta2-75) from Escherichia coli as a model protein, we studied the lipid class dependence of its insertion and binding. In both lipid monolayers and vesicles, the membrane binding of (catalytically active) delta2-75 was much higher for the nonbilayer lipid DOPE compared to the bilayer lipid DOPC. For the nonbilayer lipids DOG and MGDG a similar effect was observed as for DOPE, strongly suggesting that no specific interactions are involved but that the small headgroups create hydrophobic interfacial insertion sites. On the basis of the results of the monolayer experiments, calculations were performed to estimate the space between the lipid headgroups accessible to the protein. We estimate a maximal size of the insertion sites of 15 +/- 7 A2/lipid molecule for DOPE, relative to DOPC. The size of the insertion sites decreases with an increase in headgroup size. These results show that nonbilayer lipids stimulate the membrane insertion of delta2-75 and support the idea that such lipids create insertion sites by reducing the packing density at the membrane-water interface. It is suggested that PE in the bacterial membrane facilitates membrane insertion of the catalytic domain of leader peptidase, allowing the protein to reach the cleavage site in preproteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号