首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol (PI) 3-kinase is a cytoplasmic signaling molecule that is recruited to activated growth factor receptors after growth factor stimulation of cells. Activation of PI 3-kinase results in increased intracellular levels of 3' phosphorylated inositol phospholipids and the induction of signaling responses, including the activation of the protein kinase Akt, which is also known as RAC-PK or PKB. We tested the possibility that the phospholipid products of PI 3-kinase directly mediate the activation of Akt. We have previously described a constitutively active PI 3-kinase, p110, which can stimulate Akt activity. We used purified p110 protein to generate a series of 3' phosphorylated inositol phospholipids and tested whether any of these lipids could activate Akt in vitro. Phospholipid vesicles containing PI3,4 bisphosphate (P2) specifically activated Akt in vitro. By contrast, the presence of phospholipid vesicles containing PI3P or PI3,4,5P3 failed to increase the kinase activity of Akt. Akt could also be activated by synthetic dipalmitoylated PI3,4P2 or after enzymatic conversion of PI3,4,5P3 into PI3,4P2 with the signaling inositol polyphosphate 5' phosphatase SIP. We show that PI3,4P2-mediated activation is dependent on a functional pleckstrin homology domain in Akt, since a point mutation in the pleckstrin homology domain abrogated the response to PI3,4P2. Our findings show that a phospholipid product of PI 3-kinase can directly stimulate an enzyme known to be an important mediator of PI 3-kinase signaling.  相似文献   

2.
PI3K-Akt pathway: Its functions and alterations in human cancer   总被引:26,自引:0,他引:26  
Phosphatidylinositol-3-kinase (PI3K) is a lipid kinase and generates phosphatidylinositol-3,4,5-trisphosphate (PI(3, 4, 5)P3). PI(3, 4, 5)P3 is a second messenger essential for the translocation of Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase (PDK) 1 and PDK2. Activation of Akt plays a pivotal role in fundamental cellular functions such as cell proliferation and survival by phosphorylating a variety of substrates. In recent years, it has been reported that alterations to the PI3K-Akt signaling pathway are frequent in human cancer. Constitutive activation of the PI3K-Akt pathway occurs due to amplification of the PIK3C gene encoding PI3K or the Akt gene, or as a result of mutations in components of the pathway, for example PTEN (phosphatase and tensin homologue deleted on chromosome 10), which inhibit the activation of Akt. Several small molecules designed to specifically target PI3K-Akt have been developed, and induced cell cycle arrest or apoptosis in human cancer cells in vitro and in vivo . Moreover, the combination of an inhibitor with various cytotoxic agents enhances the anti-tumor efficacy. Therefore, specific inhibition of the activation of Akt may be a valid approach to treating human malignancies and overcoming the resistance of cancer cells to radiation or chemotherapy.  相似文献   

3.
Phosphoinositide-specific inositol polyphosphate 5- phosphatase IV has the affinity for PI(3,4,5)P(3) (K(m) = 0.65 microM) that is approximately 10-fold greater than the other inositol polyphosphate 5-phosphatases, which use this substrate including SHIP, OCRL, and 5ptase II, suggesting that it may be important in controlling intracellular levels of this metabolite. We created cell lines stably expressing the enzyme to study its effect on cell function. We found that overexpression of 5ptase IV in 293 cells caused the rapid depletion of both PI(4,5)P(2) and PI(3,4,5)P(3) in cells with corresponding increases in the products, PI(4)P and PI(3,4)P(2), changing the balance of two phosphoinositol products of phosphoinositide 3-kinase, PI(3,4)P(2) and PI(3,4,5)P(3), in the cell. One of the targets of these phosphoinositides is the serine/threonine kinase Akt, which plays an important role in the control of apoptosis. We were able to address the relative roles of PI(3,4)P(2) and PI(3,4,5)P(3) in the activation of Akt by selective depletion of these phosphoinositides in cells stably transfected with 5ptase IV and inositol polyphosphate 4-phosphatase (4ptase I). In cells transfected with 4ptase I, the level of PI(3,4)P(2) was reduced, and PI(3,4,5)P(3) was increased. Expression of the two enzymes had the opposite effect on the phosphorylation of Akt in response to stimulation with growth factors or heat shock. Akt phosphorylation was inhibited in cells expressing 5ptase IV but increased in 4ptase I cells and correlated with the intracellular level of PI(3,4,5)P(3) and not that of PI(3,4)P(2). The inhibition of Akt phosphorylation in cells expressing 5ptase IV makes them highly susceptible to FAS-induced apoptosis, whereas overexpressing of the 4ptase I protects cells from apoptosis. Our results place 5ptase IV as a relevant biological regulator of PI3K/Akt pathway in cells.  相似文献   

4.
Phosphatase of regenerating liver 3 (PRL-3) is suggested as a biomarker and therapeutic target in several cancers. It has a well-established causative role in cancer metastasis. However, little is known about its natural substrates, pathways, and biological functions, and only a few protein substrates have been suggested so far. To improve our understanding of the substrate specificity and molecular determinants of PRL-3 activity, the wild-type (WT) protein, two supposedly catalytically inactive mutants D72A and C104S, and the reported hyperactive mutant A111S were tested in vitro for substrate specificity and activity toward phosphopeptides and phosphoinositides (PIPs), their structural stability, and their ability to promote cell migration using stable HEK293 cell lines. We discovered that WT PRL-3 does not dephosphorylate the tested phosphopeptides in vitro. However, as shown by two complementary biochemical assays, PRL-3 is active toward the phosphoinositide PI(4,5)P(2). Our experimental results substantiated by molecular docking studies suggest that PRL-3 is a phosphatidylinositol 5-phosphatase. The C104S variant was shown to be not only catalytically inactive but also structurally destabilized and unable to promote cell migration, whereas WT PRL-3 promotes cell migration. The D72A mutant is structurally stable and does not dephosphorylate the unnatural substrate 3-O-methylfluorescein phosphate (OMFP). However, we observed residual in vitro activity of D72A against PI(4,5)P(2), and in accordance with this, it exhibits the same cellular phenotype as WT PRL-3. Our analysis of the A111S variant shows that the hyperactivity toward the unnatural OMFP substrate is not apparent in dephosphorylation assays with phosphoinositides: the mutant is completely inactive against PIPs. We observed significant structural destabilization of this variant. The cellular phenotype of this mutant equals that of the catalytically inactive C104S mutant. These results provide a possible explanation for the absence of the conserved Ser of the PTP catalytic motif in the PRL family. The correlation of the phosphatase activity toward PI(4,5)P(2) with the observed phenotypes for WT PRL-3 and the mutants suggests a link between the PI(4,5)P(2) dephosphorylation by PRL-3 and its role in cell migration.  相似文献   

5.
The tumor suppressor PTEN is a lipid phosphatase that is frequently mutated in various human cancers. PTEN suppresses tumor cell proliferation, survival, and growth mainly by inhibiting the PI3K-Akt signaling pathway through dephosphorylation of phosphatidylinositol 3,4,5-triphosphate. In addition to it role in tumor suppression, the PTEN-PI3K pathway controls many cellular functions, some of which may be important for cellular resistance to infection. Currently, the intersection between tumorigenic signaling pathways and cellular susceptibility to infection is not well defined. In this study we report that PTEN signaling regulates infection of both noncancerous and cancerous cells by multiple intracellular mycobacterial pathogens and that pharmacological modulation of PTEN signaling can affect mycobacterial infection. We found that PTEN deficiency renders multiple types of cells hyper-susceptible to infection by Mycoplasma and Mycobacterium bovis Bacillus Calmette-Guérin (BCG). The lipid phosphatase activity of PTEN is required for attenuating infection. Furthermore, we found mycobacterial infection activates host cell Akt phosphorylation, and pharmacological inhibition of Akt or PI3K activity reduced levels of intracellular infection. Intriguingly, inhibition of mTOR, one of the downstream components of the Akt signaling and a promising cancer therapeutic target, also lowered intracellular Bacillus Calmette-Guérin levels in mammary epithelial cancer MCF-7 cells. These findings demonstrate a critical role of PTEN-regulated pathways in pathogen infection. The relationship of PTEN-PI3K-Akt mTOR status and susceptibility to mycobacterial infection suggests that the interaction of mycobacterial pathogens with cancer cells may be influenced by genetic alterations in the tumor cells.  相似文献   

6.
7.
Cofilin plays an essential role in cell migration and morphogenesis by enhancing actin filament dynamics via its actin filament-severing activity. Slingshot-1 (SSH1) is a protein phosphatase that plays a crucial role in regulating actin dynamics by dephosphorylating and reactivating cofilin. In this study, we identified insulin receptor substrate (IRS)-4 as a novel SSH1-binding protein. Co-precipitation assays revealed the direct endogenous binding of IRS4 to SSH1. IRS4, but not IRS1 or IRS2, was bound to SSH1. IRS4 was bound to SSH1 mainly through the unique region (amino acids 335–400) adjacent to the C terminus of the phosphotyrosine-binding domain of IRS4. The N-terminal A, B, and phosphatase domains of SSH1 were bound to IRS4 independently. Whereas in vitro phosphatase assays revealed that IRS4 does not directly affect the cofilin phosphatase activity of SSH1, knockdown of IRS4 increased cofilin phosphorylation in cultured cells. Knockdown of IRS4 decreased phosphatidylinositol 3-kinase (PI3K) activity, and treatment with an inhibitor of PI3K increased cofilin phosphorylation. Akt preferentially phosphorylated SSH1 at Thr-826, but expression of a non-phosphorylatable T826A mutant of SSH1 did not affect insulin-induced cofilin dephosphorylation, and an inhibitor of Akt did not increase cofilin phosphorylation. These results suggest that IRS4 promotes cofilin dephosphorylation through sequential activation of PI3K and SSH1 but not through Akt. In addition, IRS4 co-localized with SSH1 in F-actin-rich membrane protrusions in insulin-stimulated cells, which suggests that the association of IRS4 with SSH1 contributes to localized activation of cofilin in membrane protrusions.  相似文献   

8.
Redox regulation of PI 3-kinase signalling via inactivation of PTEN   总被引:19,自引:0,他引:19  
The tumour suppressor PTEN is a PtdIns(3,4,5)P(3) phosphatase that regulates many cellular processes through direct antagonism of PI 3-kinase signalling. Here we show that oxidative stress activates PI 3-kinase-dependent signalling via the inactivation of PTEN. We use two assay systems to show that cellular PTEN phosphatase activity is inhibited by oxidative stress induced by 1 mM hydrogen peroxide. PTEN inactivation by oxidative stress also causes an increase in cellular PtdIns(3,4,5)P(3) levels and activation of the downstream PtdIns(3,4,5)P(3) target, PKB/Akt, that does not occur in cells lacking PTEN. We then show that endogenous oxidant production in RAW264.7 macrophages inactivates a fraction of the cellular PTEN, and that this is associated with an oxidant-dependent activation of downstream signalling. These results show that oxidants, including those produced by cells, can activate downstream signalling via the inactivation of PTEN. This demonstrates a novel mechanism of regulation of the activity of this important tumour suppressor and the signalling pathways it regulates. These results may have significant implications for the many cellular processes in which PtdIns(3,4,5)P(3) and oxidants are produced concurrently.  相似文献   

9.
Pharbin, a 5-phosphatase that induces arborization, is one of the phosphoinositide 5-phosphatases that is highly mutated in patients with Joubert syndrome. Pharbin can hydrolyse PI(4,5)P(2) and PI(3,4,5)P(3) and has the same substrate specificity as SHIP2 and SKIP, which negatively regulate PI3K signalling. Here, we investigated the role of pharbin in IGF-1/PI3K signalling. Ectopic expression of pharbin markedly suppressed the IGF-1-induced activation of Akt without affecting p42/44 MAP kinase phosphorylation. In contrast, pharbin silencing by RNA interference increased the IGF-1-induced phosphorylation of Akt, suggesting that pharbin negatively regulates PI3K/Akt signalling. Pharbin expression also inhibited the phosphorylation of p70 S6 kinase and 4E-BP1 as well as the subsequent protein synthesis in response to IGF-1 treatment. Taken together, these results indicate that pharbin is an important negative regulator of IGF-1/PI3K/Akt signalling and protein synthesis.  相似文献   

10.
A PTEN-related 5-phosphatidylinositol phosphatase localized in the Golgi   总被引:3,自引:0,他引:3  
Phosphoinositides play important roles as signaling molecules in different cell compartments by regulating the localization and activity of proteins through their interaction with specific domains. The activity of these lipids depends on which sites on the inositol ring are phosphorylated. Signaling pathways dependent on phosphoinositides phosphorylated at the D3 position of this ring (3-phosphoinositides) are negatively regulated by 3-phosphoinositide-specific phosphatases that include PTEN and myotubularin. Using the conserved PTEN catalytic core motif, we have identified a new protein in the Dictyostelium genome called phospholipid-inositol phosphatase (PLIP), which defines a new subfamily of phosphoinositide phosphatases clearly distinct from PTEN or other closely related proteins. We show that PLIP is able to dephosphorylate a broad spectrum of phosphoinositides, including 3-phosphoinositides. In contrast to previously characterized phosphoinositide phosphatases, PLIP has a preference for phosphatidylinositol 5-phosphate, a newly discovered phosphoinositide. We found that PLIP is localized in the Golgi, with its phosphatase domain facing the cytoplasmic compartment. PLIP null cells created via homologous recombination are unable to effectively aggregate to form multicellular organisms at low cell densities. The presence of PLIP in the Golgi suggests that it may be involved in membrane trafficking.  相似文献   

11.
SHIP2 belongs to the inositol 5-phosphatase family and is characterized by a phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) 5-phosphatase activity. Evidence based on mice lacking the SHIP2 gene has demonstrated its predominant role in the control of insulin sensitivity. However, SHIP2 expression in both hematopoietic and non-hematopoietic cells suggests additional functions. SHIP2 was previously identified in chronic myelogenous progenitor cells, in which its constitutive tyrosine phosphorylation was reported by Wisniewski et al., [Blood 93 (1999) 2707-2720]. Here, we further investigated the function of SHIP2 in this hematopoietic and malignant context. A detailed analysis of the substrate specificity of SHIP2 indicated that this phosphatase is primarily directed towards PI(3,4,5)P(3) both in vitro and in K562 chronic myeloid leukemia cells. The SHIP2-mediated decrease in PI(3,4,5)P(3) levels and increase in phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) was accompanied by a reduction of cell proliferation, characterized by an accumulation of the cells in the G2/M phase of the cell cycle. Thus, in addition to its role in the control of insulin sensitivity, SHIP2 may also play a role in cell proliferation, at least in chronic myelogenous progenitor cells.  相似文献   

12.
Phosphatidylinositol (PI) 3-kinase plays an important role in various metabolic actions of insulin including glucose uptake and glycogen synthesis. Although PI 3-kinase primarily functions as a lipid kinase which preferentially phosphorylates the D-3 position of phospholipids, the effect of hydrolysis of the key PI 3-kinase product PI 3,4,5-triphosphate [PI(3,4,5)P3] on these biological responses is unknown. We recently cloned rat SH2-containing inositol phosphatase 2 (SHIP2) cDNA which possesses the 5'-phosphatase activity to hydrolyze PI(3,4,5)P3 to PI 3,4-bisphosphate [PI(3,4)P2] and which is mainly expressed in the target tissues of insulin. To study the role of SHIP2 in insulin signaling, wild-type SHIP2 (WT-SHIP2) and 5'-phosphatase-defective SHIP2 (Delta IP-SHIP2) were overexpressed in 3T3-L1 adipocytes by means of adenovirus-mediated gene transfer. Early events of insulin signaling including insulin-induced tyrosine phosphorylation of the insulin receptor beta subunit and IRS-1, IRS-1 association with the p85 subunit, and PI 3-kinase activity were not affected by expression of either WT-SHIP2 or Delta IP-SHIP2. Because WT-SHIP2 possesses the 5'-phosphatase catalytic region, its overexpression marked by decreased insulin-induced PI(3,4,5)P3 production, as expected. In contrast, the amount of PI(3,4,5)P3 was increased by the expression of Delta IP-SHIP2, indicating that Delta IP-SHIP2 functions in a dominant-negative manner in 3T3-L1 adipocytes. Both PI(3,4,5)P3 and PI(3,4)P2 were known to possibly activate downstream targets Akt and protein kinase C lambda in vitro. Importantly, expression of WT-SHIP2 inhibited insulin-induced activation of Akt and protein kinase C lambda, whereas these activations were increased by expression of Delta IP-SHIP2 in vivo. Consistent with the regulation of downstream molecules of PI 3-kinase, insulin-induced 2-deoxyglucose uptake and Glut4 translocation were decreased by expression of WT-SHIP2 and increased by expression of Delta IP-SHIP2. In addition, insulin-induced phosphorylation of GSK-3beta and activation of PP1 followed by activation of glycogen synthase and glycogen synthesis were decreased by expression of WT-SHIP2 and increased by the expression of Delta IP-SHIP2. These results indicate that SHIP2 negatively regulates metabolic signaling of insulin via the 5'-phosphatase activity and that PI(3,4,5)P3 rather than PI(3,4)P2 is important for in vivo regulation of insulin-induced activation of downstream molecules of PI 3-kinase leading to glucose uptake and glycogen synthesis.  相似文献   

13.
We previously determined that the cellular repressor of E1A-stimulated genes, (CREG) plays a role in the maintenance of the mature phenotype of vascular smooth muscle cells (SMCs). This study aimed to identify the role of CREG in modulating the migration of SMCs. Recombinant virus-mediated CREG expression inhibited the cellular migration of cultured SMCs associated with down-regulated activity of matrix metalloproteinase-9 (MMP-9). In contrast, CREG knockdown via the retroviral transfer of short hairpin RNAs promoted cellular migration. Enzyme-linked immunosorbent assay and endocytosis analysis revealed that CREG knockdown attenuated the internalization and increased secretion of insulin-like growth factor (IGF)-II. Western blot analysis demonstrated that both phosphoinositide 3-kinase (PI3K) and phosphatase Akt were enhanced in CREG knockdown SMCs. Furthermore, the effect of CREG knockdown on SMC migration was abrogated in a dose-dependent manner by the addition of either IGF-II neutralizing antibody or the PI3K inhibitor, LY294002. These results indicate that the CREG knockdown-mediated increase in IGF-II secretion promoted cellular migration in SMCs via the PI3K/Akt signal pathway. Additionally, blockage of IGF-II binding to the mannose-6-phosphate/IGF-II receptor (M6P/IGF2R) by IGF2R antibody or recombinant IGF2R fragment attenuated the endocytosis of IGF-II in cells overexpressing CREG. This indicates that M6P/IGF2R is involved in the regulation of CREG-mediated IGF-II endocytosis. In summary, these data demonstrate for the first time that CREG plays a critical role in the inhibition of SMC migration, as well as maintaining SMCs in a mature phenotype. These results may provide a new therapeutic target for vascular disease associated with neointimal hyperplasia.  相似文献   

14.
15.
Normal cellular functions of hamartin and tuberin, encoded by the TSC1 and TSC2 tumor suppressor genes, are closely related to their direct interactions. However, the regulation of the hamartin-tuberin complex in the context of the physiologic role as tumor suppressor genes has not been documented. Here we show that insulin or insulin growth factor (IGF) 1 stimulates phosphorylation of tuberin, which is inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 but not by the mitogen-activated protein kinase inhibitor PD98059. Expression of constitutively active PI3K or active Akt, including Akt1 and Akt2, induces tuberin phosphorylation. We further demonstrate that Akt/PKB associates with hamartin-tuberin complexes, promoting phosphorylation of tuberin and increased degradation of hamartin-tuberin complexes. The ability to form complexes, however, is not blocked. Akt also inhibits tuberin-mediated degradation of p27(kip1), thereby promoting CDK2 activity and cellular proliferation. Our results indicate that tuberin is a direct physiological substrate of Akt and that phosphorylation of tuberin by PI3K/Akt is a major mechanism controlling hamartin-tuberin function.  相似文献   

16.
Phosphatidylinositol transfer proteins (PITP) are abundant cytosolic proteins found in all mammalian cells. Two cytosolic isoforms of 35 and 36 kDa (PITP alpha and PITP beta) have been identified which share 77% identity. These proteins are characterized by having a single phospholipid binding site which exhibits dual headgroup specificity. The preferred lipid that can occupy the site can be either phosphatidylinositol (PI) or phosphatidylcholine (PC). In addition, PITP beta can also bind sphingomyelin. A second characteristic of these proteins is the ability to transfer PI and PC (or SM) from one membrane compartment to another in vitro. The function of PITP in mammalian cells has been examined mainly using reconstitution studies utilizing semi-intact cells or cell-free systems. From such analyses, a requirement for PITP has been identified in phospholipase C-mediated phosphatidylinositol bisphosphate (PI(4,5)P2) hydrolysis, in phosphoinositide 3-kinase catalyzed PIP3 generation, in regulated exocytosis, in the biogenesis of secretory granules and vesicles and in intra-golgi transport. Studies aimed at elucidating the mechanism of action of PITP in each of these seemingly disparate processes have yielded a singular theme: the activity of PITP stems from its ability to transfer PI from its site of synthesis to sites of cellular activity. This function was predicted from its in vitro characteristics. The second feature of PITP that was not predicted is the ability to stimulate the local synthesis of several phosphorylated forms of PI including PI(4)P, PI(4,5)P2, PI(3)P, PI(3,4,5)P3 by presenting PI to the lipid kinases involved in phosphoinositide synthesis. We conclude that PITP contributes in multiple aspects of cell biology ranging from signal transduction to membrane trafficking events where a central role for phosphoinositides is recognized either as a substrate or as an intact lipid signalling molecule.  相似文献   

17.
The SH2 domain containing inositol 5-phosphatase 2 (SHIP2) belongs to the family of the mammalian inositol polyphosphate 5-phosphatases. The two closely related isoenzymes SHIP1 (or SHIP) and SHIP2 contain a N-terminal SH2 domain, a catalytic domain, potential PTB domain-binding sites (NPXY), and C-terminal proline-rich regions with consensus sites for SH3 domain interactions. In addition, SHIP2 contains a unique sterile alpha motif (SAM) domain that could be involved in SAM-SAM domain interactions with other proteins or receptors. SHIP2 also shows the presence of an ubiquitin interacting motif at the C-terminal end. SHIP2 is essentially a PI(3,4,5)P(3) 5-phosphatase that negatively controls PI(3,4,5)P(3) levels in intact cells and produce PI(3,4)P(2) . Depending on the cells and stimuli, PI(3,4)P(2) could accumulate at important levels and be a "second messenger" by its own. It could interact with a very large number of target proteins such as PKB or TAPP1 and 2 that control insulin sensitivity. In addition to its catalytic activity, SHIP2 is also a docking protein for a large number of proteins: Cytoskeletal, focal adhesion proteins, scaffold proteins, adaptors, protein phosphatases, and tyrosine kinase associated receptors. These interactions could play a role in the control of cell adhesion, migration, or endocytosis of some receptors. SHIP2 could be acting independently of its phosphatase activity being part of a protein network of some receptors, e.g., the EGF receptor or BCR/ABL. These non-catalytic properties associated to a PI phosphatase have also been reported for other enzymes of the metabolism of myo-inositol such as Ins(1,4,5)P(3) 3-kinases, inositol phosphate multikinase (IPMK), or PTEN.  相似文献   

18.
The phosphotyrosyl [Tyr(P)]-immunoglobulin G (IgG) phosphatase activity in the extracts of bovine heart, bovine brain, human kidney, and rabbit liver can be separated by DEAE-cellulose at neutral pH into two fractions. The unbound fraction exhibits a higher activity at acidic than neutral pH while the reverse is true for the bound fraction. Of all tissues examined, the Tyr(P)-IgG phosphatase activity in the unbound fraction measured at pH 5.0 is higher than that in the bound fraction measured at pH 7.2. The acid Tyr(P)-IgG phosphatase activity has been extensively purified from bovine heart. It copurified with an acid phosphatase activity (p-nitrophenyl phosphate (PNPP) as a substrate) throughout the purification procedure. These two activities coelute from various ion-exchange and gel filtration chromatographies and comigrate on polyacrylamide gel electrophoresis, indicating that they reside on the same protein molecule. The phosphatase has a Mr = 15,000 by gel filtration and exhibits an optimum between pH 5.0 and 6.0 when either Tyr(P)-IgG-casein or PNPP is the substrate. It is highly specific for Tyr(P)-protein with little activities toward phosphoseryl [Ser(P)]- or phosphothreonyl [Thr(P)]-protein. The enzyme activities toward Tyr(P)-casein and PNPP are strongly inhibited by microM molybdate and vanadate but insensitive to inhibition by L(+)-tartrate, NaF, or Zn2+. The molecular and catalytic properties of the acid Tyr(P)-protein phosphatase purified from bovine heart are very similar to those of the low-molecular-weight acid phosphatases of Mr = 14,000 previously identified and purified from the cytosolic fraction of human liver, placenta, and other animal tissues.  相似文献   

19.
Zhong R  Burk DH  Morrison WH  Ye ZH 《The Plant cell》2004,16(12):3242-3259
Type II inositol polyphosphate 5-phosphatases (5PTases) in yeast and animals have been known to regulate the level of phosphoinositides and thereby influence various cellular activities, such as vesicle trafficking and actin organization. In plants, little is known about the phosphatases involved in hydrolysis of phosphoinositides, and roles of type II 5PTases in plant cellular functions have not yet been characterized. In this study, we demonstrate that the FRAGILE FIBER3 (FRA3) gene of Arabidopsis thaliana, which encodes a type II 5PTase, plays an essential role in the secondary wall synthesis in fiber cells and xylem vessels. The fra3 mutations caused a dramatic reduction in secondary wall thickness and a concomitant decrease in stem strength. These phenotypes were associated with an alteration in actin organization in fiber cells. Consistent with the defective fiber and vessel phenotypes, the FRA3 gene was found to be highly expressed in fiber cells and vascular tissues in stems. The FRA3 protein is composed of two domains, an N-terminal localized WD-repeat domain and a C-terminal localized 5PTase catalytic domain. In vitro activity assay demonstrated that recombinant FRA3 exhibited phosphatase activity toward PtdIns(4,5)P2, PtdIns(3,4,5)P3, and Ins(1,4,5)P3, with the highest substrate affinity toward PtdIns(4,5)P2. The fra3 missense mutation, which caused an amino acid substitution in the conserved motif II of the 5PTase catalytic domain, completely abolished the FRA3 phosphatase activity. Moreover, the endogenous levels of PtdIns(4,5)2 and Ins(1,4,5)P3 were found to be elevated in fra3 stems. Together, our findings suggest that the FRA3 type II 5PTase is involved in phosphoinositide metabolism and influences secondary wall synthesis and actin organization.  相似文献   

20.
SH2-containing inositol 5'-phosphatase (SHIP) plays a negative regulatory role in hematopoietic cells. We have now cloned the rat SHIP isozyme (SHIP2) cDNA from skeletal muscle, which is one of the most important target tissue of insulin action. Rat SHIP2 cDNA encodes a 1183-amino-acid protein that is 45% identical with rat SHIP. Rat SHIP2 contains an amino-terminal SH2 domain, a central 5'-phosphoinositol phosphatase activity domain, and a phosphotyrosine binding (PTB) consensus sequence and a proline-rich region at the carboxyl tail. Specific antibodies to SHIP2 were raised and the function of SHIP2 was studied by stably overexpressing rat SHIP2 in Rat1 fibroblasts expressing human insulin receptors (HIRc). Endogenous SHIP2 underwent insulin-mediated tyrosine phosphorylation and phosphorylation was markedly increased when SHIP2 was overexpressed. Although overexpression of SHIP2 did not affect insulin-induced tyrosine phosphorylation of the insulin receptor beta-subunit and Shc, subsequent association of Shc with Grb2 was inhibited, possibly by competition between the SH2 domains of SHIP2 and Grb2 for the Shc phosphotyrosine. As a result, insulin-stimulated MAP kinase activation was reduced in SHIP2-overexpressing cells. Insulin-induced tyrosine phosphorylation of IRS-1, IRS-1 association with the p85 subunit of PI3-kinase, and PI3-kinase activation were not affected by overexpression of SHIP2. Interestingly, although both PtdIns-(3,4,5)P3 and PtdIns(3,4)P2 have been implicated in the regulation of Akt activity in vitro, overexpression of SHIP2 inhibited insulin-induced Akt activation, presumably by its 5'-inositol phosphatase activity. Furthermore, insulin-induced thymidine incorporation was decreased by overexpression of SHIP2. These results indicate that SHIP2 plays a negative regulatory role in insulin-induced mitogenesis, and regulation of the Shc. Grb2 complex and of the downstream products of PI3-kinase provides possible mechanisms of SHIP2 action in insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号