首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of an indirect anaerobic electrochemical regeneration of galactose oxidase (GOase) allows the prevention of the undesired production of the enzyme inhibitor hydrogen peroxide, which is generated under aerobic regeneration conditions during synthetic applications of GOase. The pH optimum for the electrochemical regeneration of GOase with polyethyleneglycol-modified ferrocene mediators in carbonate buffer is 10.8. Total turnover numbers achieved by either electrochemical or aerobic regeneration of GOase are almost the same. The electrochemical regeneration is half as fast as the aerobic regeneration. It is not necessary to work under anaerobic conditions, because at pH 10.8 the aerobic regeneration of GOase is prevented. The enzyme can be stabilized most effectively by immobilization on an aminopropylated polysiloxane (DELOXAN) via the glutaric dialdehyde procedure with good activity yields up to 37%. Buffers containing amino groups proved to be fatal for long-term GOase stability.  相似文献   

2.
Alcohol substrate binding to the copper-containing enzyme galactose oxidase (GOase) has been studied by kinetic competition against cyanide and fluoride, 13C nmr relaxation, and esr competition experiments. The 13C nmr spectra of the substrate beta-O-methyl-D-galactopyranoside (beta-O-me-gal) show no apparent paramagnetic relaxation rate enhancement that could be attributed to innersphere equatorial binding of this molecule at the Cu(II) center. Moreover, the kinetics observed when CN- or F- are used as inhibitors of GOase with beta-O-me-gal as the substrate suggest that these anions act as apparent non-competitive inhibitors; the binding of the substrates beta-O-me-gal and O2 is not hindered per se, but the catalytic activity of the enzyme substrate complex is greatly decreased. The esr competition data also confirm that, in the absence of O2, CN- and beta-O-me-gal do not compete for the same GOase binding site. Previously reported esr and 19F nmr data show that CN- binds to the GOase Cu(II) at an equatorial coordination site, as does the F- detected in esr experiments. Thus, the results from the various competition experiments supports a model in which alcohol substrates bind outersphere to the GOase Cu(II), or, possibly, to an axial site.  相似文献   

3.
A procedure for the preparation of the fully reduced Cu(I) form of galactose oxidase, GOase(red), involving reduction of GOase(semi) (or GOase(ox)) with non-coordinating [Ru(NH(3))(6)](2+) (51 mV vs. nhe) is described. Air-free conditions and a two-fold excess of [Ru(NH(3))(6)](2+) give a stable product with no further UV-Vis changes over >1.5 h. Rate constants for the reduction of GOase(semi) (k(f)=860 M(-1) s(-1)) give a first-order [H(+)]-dependence (pK(1a)=7.9), but the reverse process involving [Ru(NH(3))(6)](3+) oxidation of GOase(red) (k(b)=18.6 M(-1) s(-1)) is independent of pH (5.5 to 9.5). The reduction potential E(2)(o)' (vs. nhe) for the GOase(semi)/GOase(red) (i.e. Cu(II)/Cu(I)) couple is 149 mV at pH 7.5, which varies from 160 mV (pH 5.5) to 120 mV (pH 10.5), suggesting pK(1a) (GOase(semi)) and pK(2a) (GOase(red)) acid dissociation constants both involving Tyr-495. It is concluded that pK(2a) is for acid dissociation of uncoordinated H(+)Tyr-495. Consistent with this interpretation rate constants/M(-1) s(-1) for the GOase(semi) Tyr495 Phe variant, k(f)=1.59x10(3) and k(b)=16.1, respectively, are independent of pH and give a reduction potential of 169 mV. Comparisons are made of reduction potentials (E(1)(o)'/mV pH 7.5) for the GOase(ox)/GOase(semi) (i.e. Tyr(.)/Tyr) couple, and are for the Cys228Gly variant (630), for enzyme with N(3)(-) for H(2)O at the substrate binding exogenous site (393), and for apo-protein (570). These compare with previously reported values for the variants Trp290His (730) and Tyr495Phe (450), and together serve to quantify different contributions to the unusually small E(1)(o)' of 400 mV for the Tyr(.)/Tyr couple. At pH 7.5 the reduction potential for the two-equivalent GOase(ox)/GOase(red) couple is calculated to be 275 mV. The rate constant for the reaction of GOase(red) with GOase(ox) is 4.4x10(3) M(-1) s(-1) at pH 7.5.  相似文献   

4.
Discoidin (DS) domains occur in a large variety of proteins. We have recently reported the D1 domain of galactose oxidase (GOase), a copper-containing enzyme whose structure has been determined at 1.7 Å resolution, as distant member of the DS domain family. The D1 domain of GOase consists of a five-stranded antiparallel β-sheet packing against a three-stranded antiparallel β-sheet. We here show that it is possible to build 3D models for DS domains using GOase as initial template and propose a 3D structure for the C1 and C2 domains of factor V (residues 1879-2037 and 2038-2196). Factors V (FV) and VIII (FVIII) are essential and homologous non-enzymatic cofactors in the coagulation cascade. They share the domain organization A1-A2-B-A3-C1 and C2 and their C domains are members of the DS family. The C1 and C2 domains of FV are rich in positively charged residues. Several clusters of amino acids, most likely involved in inter-domain interactions, protein-protein interactions and/or phospholipid binding, are identified. Our report opens new avenues to study the structure-function relationships of DS domains.  相似文献   

5.
Biochemical, electrophoretic and immunological studies were made among peroxisomal enzymes in three organs of soybean [Glycine max (L.) Merr. cv. Centennial] to compare the enzyme distribution and characteristics of specialized peroxisomes in one species. Leaves, nodules and etiolated cotyledons were compared with regard to several enzymes localized solely in their peroxisomes: catalase (EC 1.11.1.6), malate synthase (EC 4.1.3.2), glycolate oxidase (EC 1.1.3.1), and urate oxidase (EC 1.7.3.3). Catalase activity was found in all tissue extracts. Electrophoresis on native polyacrylamide gels indicated that leaf catalase migrated more anodally than nodule or cotyledon catalase as shown by both activity staining and Western blotting. Malate synthase activity and immunologically detectable protein were present only in the cotyledon extracts. Western blots of denaturing (lithium dodecyl sulfate) gels probed with anti-cotton malate synthase antiserum, reveal a single subunit of 63 kDa in both cotton and soybean cotyledons. Glycolic acid oxidase activity was present in all three organs, but ca 20-fold lower (per mg protein) in both nodule and cotyledon extracts compared to leaf extracts. Electrophoresis followed by activity staining on native gels indicated one enzyme form with the same mobility in nodule, cotyledon and leaf preparations. Urate oxidase activity was found in nodule extracts only. Native gel electrophoresis showed a single band of activity. Novel electrophoretic systems had to be developed to resolve the urate oxidase and glycolate oxidase activities; both of these enzymes moved cathodally in the gel system employed while most other proteins moved anodally. This multifaceted study of enzymes located within three specialized types of peroxisomes in a single species has not been undertaken previously, and the results indicate that previous comparisons between the enzyme content of specialized peroxisomes from different organisms are mostly consistent with that for a single species, soybean.  相似文献   

6.
The aim of this study was to elucidate the evolution of enzyme secretome of early lineage fungi to contribute to resolving the basal part of Fungal Kingdom and pave the way for industrial evaluation of their unique enzymes. By combining results of advanced sequence analysis with secretome mass spectrometry and phylogenetic trees, we provide evidence for that plant cell wall degrading enzymes of higher fungi share a common ancestor with enzymes from aerobic ancient fungi. Sequence analysis (HotPep, confirmed by dbCAN-HMM models) enabled prediction of enzyme function directly from sequence. For the first time, oxidative enzymes are described here in early lineage fungi (Chytridiomycota & Cryptomycota), which supports the conceptually new understanding that fungal LPMOs were also present in the early evolution of the Fungal Kingdom. Phylogenetic analysis of fungal AA9 proteins suggests an LPMO-common-ancestor with Ascomycetes and Basidiomycetes and describes a new clade of AA9s. We identified two very strong biomass degraders, Rhizophlyctis rosea (soil-inhabiting) and Neocallimastix californiae (rumen), with a rich spectrum of cellulolytic, xylanolytic and pectinolytic enzymes, characteristically including several different enzymes with the same function. Their secretome composition suggests horizontal gene transfer was involved in transition to terrestrial and rumen habitats. Methods developed for recombinant production and protein characterization of enzymes from zoosporic fungi pave the way for biotechnological exploitation of unique enzymes from early lineage fungi with potential to contribute to improved biomass conversion. The phyla of ancient fungi through evolution have developed to be very different and together they constitute a rich enzyme discovery pool.  相似文献   

7.
Both plant and fungal mitochondria have cyanide-resistant alternative oxidases that use reductant from the mitochondrial ubiquinone pool to reduce oxygen to water in a reaction that conserves no energy for ATP synthesis. The dimeric plant alternative oxidase is relatively inactive when its subunits are linked by a disulfide bond. When this bond is reduced, the enzyme can then be stimulated by its activators, alpha-keto acids. A Cys in the N-terminal section of the protein is responsible for both of these features. We examined the alternative oxidases in mitochondria isolated from two fungi Neurospora crassa and Pichia stipitis for dimeric structure, ability to form an intermolecular disulfide, and sensitivity to alpha-keto acids. Neither of the two fungal alternative oxidases could be covalently linked by diamide, which induces disulfide bond formation between nearby Cys residues, nor could they be cross-linked by a Lys-specific reagent or glutaraldehyde at concentrations which cross-link the plant alternative oxidase dimer completely. Alternative oxidase activity in fungal mitochondria was not stimulated by the alpha-keto acids pyruvate and glyoxylate. Pyruvate did stimulate activity when succinate was the respiratory substrate, but this was not a direct effect on the alternative oxidase. In contrast, added GMP was a strong activator of fungal alternative oxidase activity. Analysis of plant and fungal alternative oxidase protein sequences revealed a unique domain of about 40 amino acids surrounding the regulatory Cys in the plant sequences that is not present in the fungal sequences. This domain may be where dimerization of the plant enzymes occurs. In contrast to plant enzymes, the fungal alternative oxidases studied here are monomeric and their activities are independent of alpha-keto acids.  相似文献   

8.
SUMMARY. 1. Sets of ten Gammarus pulex fed on controlled diets of sterile alder leaves, or fungal mycelium, or alder leaves incubated for 10 days with an aquatic hyphomycete, were assayed for cellulase, β-1,3-glucanase an d chiitinase activity and compared with (a) animals taken directly from the stream, (b) animals starved for 2 days, and (c) enzyme activity in fungal mycelium.
2. Gut enzyme activity was compared on natural substrates of sterile leaves, mycelium and inoculated leaves as well as on model substrates.
3. G. pulex secretes an endogenous coupled cellulase system capable of degrading native cellulose in plant cell walls. It also secretes β-1,3-glucanase and chitinase capable of degrading fungal cell walls thus affording access for gut enzymes to cell contents.
4. Secretion of enzymes active on native cellulose is enhanced on a diet of leaves already partially degraded by fungal enzymes. Gut enzymes extract more reducing sugar from this substrate than from sterile leaves. Specific enzyme secretion is enhanced by the presence in the diet of exposed, accessible substrates. Fungal enzymes do not appear to contribute to the digestive processes of G. pulex.  相似文献   

9.
P Marcotte  C Walsh 《Biochemistry》1978,17(14):2864-2868
Upon oxidation of D-propargylglycine by D-amino acid oxidase, the enzyme is converted by covalent alkylation to catalytic species with different properties from those of native enzyme. At least five distinct modified enzyme species are present in the preparation, as determined by gel electro-focusing. Individual characterization of the components has not yet been attempted. The combined kinetic and spectral properties of the preparation have been studied. The modified enzymes have a marked preference for hydrophobic amino acids: the rates of oxidation decrease in the series D-phenylalanine, D-methionine, D-norleucine, D-norvaline, D-alpha-aminobutyrate, D-alanine. In addition, the observed Kms of the amino acids are increased, especially those of the smaller substrates (D-alanine and D-alpha-aminobutyrate). A primary kinetic isotope effect is observed upon oxidation of amino acids by the modified enzymes, evidence that this catalysis exhibits a different rate-determining step from catalysis by native enzyme. The modified apoenzyme exhibits intense absorbance at 318--320 nm, not present in native enzyme. This chromophore can be partially (75%) removed by treatment of the modified enzyme with hydrazine. However, the activity of native enzyme is not substantially restored by this process, suggesting the existence of superficial alkylations in addition to the modification responsible for the observed changes in kinetic parameters.  相似文献   

10.
Larvae of a number of chrysomelid leaf beetles sequester phenol glucosides such as salicin from their food plants, i.e. Salix and Populus spp. Salicin is hydrolyzed in the glandular reservoir of the defensive glands. The resulting salicyl alcohol (saligenin) is oxidized by an extracellular oxidase. The product salicylaldehyde accumulates as major defensive compound. The secretions from Chrysomela populi and Phratora vitellinae were preserved in saturated ammonium sulfate solution and subjected to micro-purification of the oxidase by means of electrophoretic methods. The enzyme from P. vitellinae has a native M(r) of 334,000 and a subunit M(r) of 79,000 indicating a tetrameric enzyme. The isoelectric points of the enzymes from C. populi and P. vitellinae are at pH 5.4 and 5.2, respectively. In the oxidation of salicyl alcohol oxygen functions as electron acceptor yielding hydrogen peroxide as product. Hydrogen peroxide does not accumulate in native secretions but appears to be degraded most likely by a catalase. The oxidases from the two species show broad pH optima in the range 5.5 to 6.5, they oxidize salicyl alcohol as main substrate. Minor substrates are several ortho-substituted and to a lesser extent meta- but not para-substituted benzyl alcohols. In the presence of 8-hydroxygeraniol only trace amounts of the respective aldehyde are formed. The Km values of salicyl alcohol are 132 mM (C. populi) and 63 mM (P. vitellinae). The extracellular enzyme, which is functionally related to fungal aryl alcohol oxidase (EC 1.1.3.7) and vanillyl alcohol oxidase (EC 1.1.3.38) was named salicyl alcohol oxidase. The continuous formation of salicylaldehyde in the glandular reservoir can be compared to the operation of an enzyme reactor. Due to its low aqueous solubility the produced aldehyde steadily leaves the aqueous reaction fluid and builds up an organic phase which may account for 15% of the total liquid volume of the secretion.  相似文献   

11.
Directed evolution has become an important enabling technology for the development of new enzymes in the chemical and pharmaceutical industries. Some of the most interesting substrates for these enzymes, such as polymers, have poor solubility or form highly viscous solutions and are therefore refractory to traditional high-throughput screens used in directed evolution. We combined digital imaging spectroscopy and a new solid-phase screening method to screen enzyme variants on problematic substrates highly efficiently and show here that the specific activity of the enzyme galactose oxidase can be improved using this technology. One of the variants we isolated, containing the mutation C383S, showed a 16-fold increase in activity, due in part to a 3-fold improvement in K(m). The present methodology should be applicable to the evolution of numerous other enzymes, including polysaccharide-modifying enzymes that could be used for the large-scale synthesis of modified polymers with novel chemical properties.  相似文献   

12.
An electron microscope cytochemical technique was used to determine the subcellular distribution of marker enzymes in Fusidium sp. 100-3 cells. Nucleoside diphosphatase was found in the nuclear envelope and intracytoplasmic membrane segment. Thiamine pyrophosphatase was found to be associated with the mesosomes. Cytochrome c (oxidase) activity was found only in the mitochondrial cristae. Strong alkaline phosphatase activity was present in the vacuole; in addition, the enzyme activity was discretely dispersed throughout the cytoplasm without any association with any membrane material. The overall characteristics of the cell ultrastructure and subcellular enzyme distribution of Fusidium sp. 100-3 cells compare fairly well with those of a fungal cell. But there are considerable differences from the characteristics of higher eucaryotic cells. Detailed data on the marker enzymes distribution in a variety of fungal cells are not available. Therefore, it is not possible to conclude whether the marker enzyme distribution of Fusidium sp. 100-3 cells is unique or is typical of any fungal organism. Detailed studies of cell ultrastructure of and marker enzyme distribution in minute fungal cells and their comparison to the ultrastructure of and marker enzyme distribution in other fungal organisms may be helpful in understanding the phylogenetic and ontogenic development of subcellular organelles.  相似文献   

13.
Fungal β-N-acetylhexosaminidases are inducible extracellular enzymes with many biotechnological applications. The enzyme from Penicillium oxalicum has unique enzymatic properties despite its close evolutionary relationship with other fungal hexosaminidases. It has high GalNAcase activity, tolerates substrates with the modified N-acyl group better and has some other unusual catalytic properties. In order to understand these features, we performed isolation, biochemical and enzymological characterization, molecular cloning and molecular modelling. The native enzyme is composed of two catalytic units (65 kDa each) and two propeptides (15 kDa each), yielding a molecular weight of 160 kDa. Enzyme deglycosylated by endoglycosidase H had comparable activity, but reduced stability. We have cloned and sequenced the gene coding for the entire hexosaminidase from P. oxalicum. Sufficient sequence identity of this hexosaminidase with the structurally solved enzymes from bacteria and humans with complete conservation of all catalytic residues allowed us to construct a molecular model of the enzyme. Results from molecular dynamics simulations and substrate docking supported the experimental kinetic and substrate specificity data and provided a molecular explanation for why the hexosaminidase from P. oxalicum is unique among the family of fungal hexosaminidases.  相似文献   

14.
Ligninase-I (Mr 42,000-43,000; carbohydrate, 21%) and peroxidase-M2 (Mr 45,000-47,000; carbohydrate, 17%), two representative, hydrogen peroxide-dependent extracellular enzymes produced by ligninolytic cultures of the white-rot fungus Phanerochaete chrysosporium BKM-F-1767, were purified and their properties compared. Spectroscopic studies showed that both native enzymes are heme proteins containing protoporphyrin IX. EPR spectroscopy indicated that iron ions are coordinated with the enzymes' prosthetic groups as high-spin ferriheme complexes. We confirmed reports of others that the ligninase-hydrogen peroxide complex (activated enzyme) reverts to its native state on addition of dithionite or one of the enzyme's substrates (e.g., veratryl alcohol); however, we found that the peroxidase-M2-hydrogen peroxide complex required Mn2+ ions to accomplish a similar cycle. The peroxidase oxidized Mn2+ to a higher oxidation state, and the oxidized Mn acted as a diffusible catalyst able to oxidize numerous organic substrates. Unlike ligninase-I which is found free extracellularly, peroxidase-M2 appears to be associated closely with the fungal mycelium. In its peroxidatic reactions, ligninase-I oxidizes a variety of nonphenolic and phenolic lignin model compounds. In the presence of Mn2+, peroxidase-M2 oxidizes numerous phenolic compounds, especially syringyl (3,5-dimethoxy-4-hydroxyphenyl) and vinyl side-chain substituted substrates. Also, the peroxidase-Mn2+ system (without hydrogen peroxide) expresses oxidase activity against NADPH, GSH, dithiothreitol, and dihydroxymaleic acid, forming hydrogen peroxide at the expense of oxygen. Both enzymes were believed to play roles in lignin degradation, and these are discussed.  相似文献   

15.
Mechanisms of inactivation of molybdoenzymes by cyanide   总被引:1,自引:0,他引:1  
The reduced forms of xanthine oxidase, xanthine dehydrogenase, aldehyde oxidase, and sulfite oxidase are inactivated by cyanide. Following gel filtration to remove excess of reductant and cyanide, the isolated enzymes remain inactive. Thiocyanate, a product of inactivation of the oxidized forms of the xanthine- and aldehyde-oxidizing enzymes by cyanide, is not released during inactivation of the reduced enzymes. Studies with [14C]cyanide show that, while stoichiometric binding is required for the onset of inactivation, its continued binding is not essential to maintenance of the inactivated state. Electron paramagnetic resonance and absorption spectroscopic studies on the isolated inactivated enzymes show that prosthetic groups other than molybdenum are fully oxidized but that the molybdenum centers are modified. Reactivation is accomplished by incubation with suitable oxidants. Aerobic reactivation of inactive sulfite oxidase required only 1 eq of ferricyanide/active site. However, under rigorously anaerobic conditions, 3 to 4 mol of ferricyanide/active site were reduced, indicating that the molybdenum centers in the inactive enzyme had been reduced below the levels attained by the native enzyme during catalysis.  相似文献   

16.
Bacterial xanthine oxidase from Arthrobacter S-2.   总被引:4,自引:1,他引:3       下载免费PDF全文
Arthrobacter S-2, originally isolated by enrichment on xanthine, produced high levels of xanthine oxidase activity, requiring as little as a 20-fold purification to approach homogeneity with some preparations. Molecular oxygen, ferricyanide, and 2,6-dichlorophenol-indophenol served as electron acceptors, but nicotinamide adenine dinucleotide did not. The enzyme was relatively specific when compared with previously studied xanthine-oxidizing enzymes, but at least one purine was observed to be oxidized at each of the three positions of the purine ring that have been subject to oxidation by this type of enzyme. The enzyme had a relatively high Km for xanthine (1.3 X 10(-4) M), and substrate inhibition was not observed with this compound, in contrast to the enzyme from cow's milk. In fact, an opposite effect was observed, and double-reciprocal plots with xanthine as the variable substrate showed a concave downward deviation at high concentrations. At 2.5 mM xanthine the enzyme had a specific activity approximately 50 times that of the most active preparations of the milk enzyme. The spectrum of the Arthrobacter enzyme resembled that of milk xanthine oxidase, suggesting a similarity of the prosthetic centers of the two enzymes. The bacterial enzyme was relatively small and may be dimeric, with approximate native and subunit molecular weights of 146,000 and 79,000, respectively.  相似文献   

17.
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a long-known flavoenzyme whose most important biocatalytic application is currently the industrial production of 7-amino-cephalosporanic acid (7-ACA) from cephalosporin C. Lacking mechanistic foundation, rational stabilization of TvDAO for improved process performance remains a problem. We report on results of thermal denaturation studies at 50 degrees C in which two purified TvDAO forms were compared: the native enzyme, and a site-specifically oxidized protein variant that had the side chain of cysteine108 converted into a sulfinic acid and lost 75% of original specific activity. Although inactivation time courses for both enzymes are fairly well described by simple single-exponential decays, the underlying denaturation mechanisms are shown by experiments and modeling to be complex. One main path leading to inactivation is FAD release, a process whose net rate is determined by the reverse association rate constant (k), which is 25-fold lower in the oxidized form of TvDAO. Cofactor dissociation is kinetically coupled to aggregation and can be blocked completely by the addition of free FAD. Aggregation is markedly attenuated in the less stable Cys108-SO(2)H-containing enzyme, suggesting that it is a step accompanying but not causing the inactivation. A second parallel path, characterized by a k-value of 0.26/h that is not dependent on protein concentration and identical for both enzymes, likely reflects thermal unfolding reactions. A third, however, slow process is the conversion of the native enzyme into the oxidized form (k < 0.03/h). The results fully explain the different stabilities of native and oxidized TvDAO and provide an inactivation mechanism-based tool for the stabilization of the soluble oxidase.  相似文献   

18.
Microbial degradation of synthetic chelating agents, such as EDTA and nitrilotriacetate (NTA), may help immobilizing radionuclides and heavy metals in the environment. The EDTA- and NTA-degrading bacterium BNC1 uses EDTA monooxygenase to oxidize NTA to iminodiacetate (IDA) and EDTA to ethylenediaminediacetate (EDDA). IDA- and EDDA-degrading enzymes have not been purified and characterized to date. In this report, an IDA oxidase was purified to apparent homogeneity from strain BNC1 by using a combination of eight purification steps. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein band of 40 kDa, and by using size exclusion chromatography, we estimated the native enzyme to be a homodimer. Flavin adenine dinucleotide was determined as its prosthetic group. The purified enzyme oxidized IDA to glycine and glyoxylate with the consumption of O2. The temperature and pH optima for IDA oxidation were 35 degrees C and 8, respectively. The apparent Km for IDA was 4.0 mM with a kcat of 5.3 s(-1). When the N-terminal amino acid sequence was determined, it matched exactly with that encoded by a previously sequenced hypothetical oxidase gene of BNC1. The gene was expressed in Escherichia coli, and the gene product as a C-terminal fusion with a His tag was purified by a one-step nickel affinity chromatography. The purified fusion protein had essentially the same enzymatic activity and properties as the native IDA oxidase. IDA oxidase also oxidized EDDA to ethylenediamine and glyoxylate. Thus, IDA oxidase is likely the second enzyme in both NTA and EDTA degradation pathways in strain BNC1.  相似文献   

19.
Cytochrome ba3 is an integral membrane protein that serves as a terminal oxidase of the respiratory chain in some prokaryotes. We have cloned the complete cba operon of Thermus thermophilus HB8 in an Escherichia coli/T. thermophilus shuttle vector. The ba3-encoding operon, cba, was eliminated from the chromosome of T. thermophilus strain MT111 using the pyrE system of Yamagishi and co-workers. Expression of functional cytochrome ba3 occurred in cells grown at reduced dioxygen levels. A hepta-histidine tag was placed at the N-terminus of subunit I, and a purification method for this form of the enzyme was developed. Growth conditions were investigated for moderate sized cultures (2L) with typical yields of approximately 2 mg of highly pure enzyme per liter of culture medium. The physical properties and enzymatic activities of these recombinant enzymes were compared with those of native enzyme. Recombinant enzyme lacking the histidine tag is spectrally identical to wild-type enzyme. Histidine-tagged cytochrome ba3 shows minor differences from wild-type, and it appears be somewhat less active as a cytochrome c552 oxidase. Exemplary mutants were also produced and compared to native protein. Tyrosine I-237, previously found to be covalently bonded to I-His-233, was changed to phenylalanine (I-Y237F) and to histidine (I-Y237H) in the hepta-histidine tagged cytochrome ba3. The Y to F mutant is devoid of enzyme activity whereas the Y to H mutant possesses approximately 5% wild-type oxidase activity; their properties are compared with those of wild-type enzyme. The above versions of the histidine-tagged enzyme have been crystallized, and our analysis of a 2.3 angstrom resolution electron-density map will be discussed elsewhere.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号