首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
We established that chemical analogues of alkylhydroxybenzenes (AHB), belonging to alkylresorcinols and functioning as microbial autoregulatory d1 factors, enhance the UV resistance of various DNA molecules of different origin and conformation. These include the linear DNA of the lambda phage, bovine spleen DNA, and the DNA of the pUC19 plasmid that is composed of a number of annular (supercoiled and relaxed) and linearized molecules. Irradiating DNA with UV light (lambda = 254 nm) in the presence of methylresorcinol (MR) or hexylresorcinol (HR) results in comparatively insignificant DNA destruction as evidenced by our data on the electrophoretic mobility pattern in agarose gel. Using the linear Hind III restricts of the lambda phage DNA, we revealed that the protective effect of AHB varies depending on their chemical structure (it is more manifest with HR than MR) and concentration. Importantly, the effect of HR on bovine spleen DNA was based on its protective activity and manifested itself after a long incubation period. Studies using the pUC19 plasmid demonstrated that AHB, apart from increasing the resistance of linearized DNA molecules to UV irradiation, prevented both the supercoiled annular-supercoiled relaxed and the supercoiled relaxed-linearized transitions. The possible mechanisms of the UV-protective effect of AHB on DNA and their contributions to the resistance of dormant microbial forms to environmental factors are discussed.  相似文献   

2.
Introduction of the plasmids pUC8CaMVCAT and pNOSCAT into plant protoplasts is known to result in transient expression of the chloramphenicol acetyl transferase (CAT) gene. Also, transfection with the plasmid pDO432 results in transient appearance of the luciferase enzyme. In the present work we have used these systems to study the effect of DNA topology on the expression of the above recombinant genes. Linear forms of the above plasmids exhibited much higher activity in supporting gene expression than their corresponding super-coiled structures. CAT activity in protoplasts transfected with the linear forms of pUC8CaMVCAT and pNOSCAT was up to ten-fold higher than that observed in protoplasts transfected by the supercoiled template of these plasmids. This effect was observed in protoplasts derived from two different lines of Petunia hybrida and from a Nicotiana tabacum cell line. Transfection with the relaxed form of pUC8CaMVCAT resulted in very low expression of the CAT gene.Northern blot analysis revealed that the amount of poly(A)+ RNA extracted from protoplasts transformed with the linear forms of the DNA was about 10-fold higher than that found in protoplasts transformed with supercoiled DNA.Southern blot analysis revealed that about the same amounts of supercoiled and linear DNA molecules were present in nuclei of transfected protoplasts. No significant quantitative differences have been observed between the degradation rates of the various DNA templates used.  相似文献   

3.
4.
With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase‐mediated plasmid supercoiling. SGS from three different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57‐SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total percentage supercoiled monomer was maintained to 85–90%. A twofold increase in plasmid yield was also observed for pUC57‐SGS in comparison to pUC57. pUC57‐SGS displayed greater segregational stability than pUC57‐cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. Biotechnol. Bioeng. 2016;113: 2064–2071. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

5.
The plasmid pUC18 DNA isolated from Escherichia coli HB101 were analyzed by two-dimensional agarose gel electrophoresis and hybridization. The results show that the DNA sample can be separated into six groups of different structural components. The plectonemically and solenoidally supercoiled pUC18 DNA coexist in it. These two different conformations of supercoiled DNA are interchangeable with the circumstances (ionic strength and type, etc.). The amount of solenoidally supercoiled pUC18 DNA in the samples can be changed by treatment of DNA topoisome rases. Under an electron microscope, the solenoidal supercoiling DNA has a round shape with an average diameter of 45 nm. The facts suggest that solenoidaUy supercoiled DNA be a structural entity independent of histones. The polymorphism of DNA structure may be important to packing of DNA in vivo.  相似文献   

6.
Pleiotropic protein promoting DNA repair A (PprA) is a key protein that facilitates the extreme radioresistance of Deinococcus radiodurans. To clarify the role of PprA in the radioresistance mechanism, the interaction between recombinant PprA expressed in Escherichia coli with several double-stranded DNAs (i.e., super coiled, linear, or nicked circular dsDNA) was investigated. In a gel-shift assay, the band shift of supercoiled pUC19 DNA caused by the binding of PprA showed a bimodal distribution, which was promoted by the addition of 1 mM Mg, Ca, or Sr ions. The dissociation constant of the PprA-supercoiled pUC19 DNA complex, calculated from the relative portions of shifted bands, was 0.6 μM with Hill coefficient of 3.3 in the presence of 1 mM Mg acetate. This indicates that at least 281 PprA molecules are required to saturate a supercoiled pUC19 DNA, which is consistent with the number (280) of bound PprA molecules estimated by the UV absorption of the PprA–pUC19 complex purified by gel filtration. This saturation also suggests linear polymerization of PprA along the dsDNA. On the other hand, the bands of linear dsDNA and nicked circular dsDNA that eventually formed PprA complexes did not saturate, but created larger molecular complexes when the PprA concentration was >1.3 μM. This result implies that DNA-bound PprA aids association of the termini of damaged DNAs, which is regulated by the concentration of PprA. These findings are important for the understanding of the mechanism underlying effective DNA repair involving PprA.  相似文献   

7.
The relative permittivity and dielectric loss of aqueous solutions of plasmid (pUC8.c1 and pUC8.c2) DNA have been measured at 20 degrees C over the frequency range 100 MHz-10 GHz. The solutions had a concentration of 0.1% DNA, and were studied both in the relaxed and the supercoiled form. The dielectric measurements were made using a variety of techniques including frequency domain and time domain methods of operation. No evidence of any resonance absorption, nor of any other kind of enhanced absorption, was observed.  相似文献   

8.
以天然苦瓜基因组为模板PCR扩增去前导肽后成熟的MAP30蛋白基因,克隆至可诱导表达载体pET28a中。将含MAP30基因的表达载体pET28a-MAP30转化至E. coli Rostta(DE3)中并通过IPTG诱导表达。经聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白杂交(Western blot)以及液相色谱-质谱(LC-MS)对表达的重组MAP30蛋白进行鉴定,并通过镍柱亲和层析纯化。将pUC19质粒与不同浓度的纯化后的重组MAP30蛋白孵育,分析其切割DNA的活性。同时将纯化后的重组MAP30蛋白体外作用于人乳腺癌细胞(MCF-7),采用MTT、AO/PI双染等方法进行抗肿瘤活性分析。实验结果表明纯化后的蛋白经质谱鉴定和Western blot分析,目的蛋白成功地与His-tag融合表达。首次发现大肠杆菌异源表达的重组MAP30蛋白同天然蛋白一样可以切割超螺旋DNA活性。MTT、AO/PI双染结果证实重组MAP30体外可诱导MCF-7细胞发生凋亡。通过基因工程技术大量制备MAP30蛋白,进一步研究其体外生物学活性,为以后的临床应用奠定基础。  相似文献   

9.
We induced the B-to-A conformational transition by ethanol in a linearized pUC19 DNA. A primer extension method was used in combination with UV light irradiation to follow the transition, based on pausing of DNA synthesis due to the presence of damaged bases in the template. Primer extension data highly correlated with the results of another method monitoring the B-A transition, i.e. inhibition of restriction endonuclease cleavage of UV light-irradiated DNA. Primer extension enabled us to locate damaged nucleotides within the region of interest. Most damaged nucleotides were located in B-form trimers, exclusively containing both pyrimidine bases (TTC, TCT, CTC, and CTT), and in a cytosine tetramer. The amount of damaged bases decreased in the course of B-A transition. Some of the damage even disappeared in the A-form, which mainly concerns the C(4) and C(3) blocks. The cleavage was nearly restored in the A-form within this region (Eco88I). On the contrary the decrease of damage was less significant with thymine dimers, only dropping to 50-60% of the B-form level. Consequently, the cleavage with EcoRI and HindIII remained mostly as before the transition (75% and 60% of uncleaved DNA preserved). We found significant differences in the B- and A-form pattern of UV light-damaged bases within the same region (polylinker) of DNA embedded within long (plasmid) or short (127 bp fragment) DNA molecules. The B-A transition of the fragment was found less cooperative than with linearized plasmid, which was confirmed by both CD spectroscopy and restriction cleavage inhibition.  相似文献   

10.
Pur alpha is a single-stranded (ss) DNA- and RNA-binding protein with three conserved signature repeats that have a specific affinity for guanosine-rich motifs. Pur alpha unwinds a double-stranded oligonucleotide containing purine-rich repeats by maintaining contact with the purine-rich strand and displacing the pyrimidine-rich strand. Mutational analysis indicates that arginine and aromatic residues in the repeat region of Pur alpha are essential for both ss- and duplex DNA binding. Pur alpha binds either linearized or supercoiled plasmid DNA, generating a series of regularly spaced bands in agarose gels. This series is likely due to localized unwinding by quanta of Pur alpha since removal of Pur alpha in the gel eliminates the series and since Pur alpha binding increases the sensitivity of plasmids to reaction with potassium permanganate, a reaction specific for unwound regions. Pur alpha binding to linear duplex DNA creates binding sites for the phage T4 gp32 protein, an ss-DNA binding protein that does not itself bind linearized DNA. In contrast, Pur beta lacking the Pur alpha C-terminal region binds supercoiled DNA but not linearized DNA. Similarly, a C-terminal deletion of Pur alpha can bind supercoiled pMYC7 plasmid, but cannot bind the same linear duplex DNA segment. Therefore, access to linear DNA initially requires C-terminal sequences of Pur alpha.  相似文献   

11.
Endonuclease activity specific for UV damaged DNA was isolated from tobacco leaf nuclei and detected by relaxation of supercoiled pUC 19 plasmid DNA. The activity did not require divalent cations or ATP. It acted on photoproducts induced by as little as 24 J m−2 of UV-C (primarily 254 nm) radiation. but not on photoproducts produced by UV-B (290–320 nm) radiation in the presence of acetophenone and a N2 atmosphere or by UV-A (320–400 nm) radiation in the presence of 4'-methoxy-methyltrioxsalen in a N2 atmosphere and not on the products of OsO4 oxidation of the DNA. Using end-labeled DNA of defined sequence, it was possible to identify sites in UV-C-irradiated DNA that were cut by the endonuclease preparation: most sites were assocrated with pyrimidine pairs. Cleavage by the tobacco endonuclease was not eliminated by treatment with Escherichia coli photolyase and light, suggesting that the endonuclease did not recognize cyclobutadipyrimidines.  相似文献   

12.
The mixed-ligand complexes [Cu(II)(HisLeu)(phen)](+) (1) and [Cu(II)(HisSer)(phen)](+) (2; phen=1,10-phenanthroline) were synthesized and characterized. The intercalative interaction of the Cu(II) complexes with calf-thymus DNA (CT-DNA) was probed by UV/VIS and fluorescence titration, as well as by thermal-denaturation experiments, and the intrinsic binding constants (K(b)) for the complexes with 1 and 2 were 4.2x10(3) and 4.9x10(3) M(-1), resp. Both complexes were found to be efficient catalysts for the hydrolytic cleavage of plasmid pUC19 DNA, as tested by gel electrophoresis, converting the DNA from the supercoiled to the nicked-circular form at rate constants of 1.32 and 1.40 h(-1) for 1 and 2, resp.  相似文献   

13.
Brian Sauer  Nancy Henderson 《Gene》1988,70(2):331-341
The efficiency with which linearized plasmid DNA can transform competent Escherichia coli can be significantly increased by use of the Cre-lox site-specific recombination system of phage P1. Linear plasmid molecules containing directly repeated loxP sites (lox2 plasmids) are cyclized in Cre+ E. coli strains after introduction either by transformation or by mini-Mu transduction, Exonuclease V activity of the RecBC enzyme inhibits efficient cyclization of linearized lox2 plasmids after transformation. By use of E. coli mutants which lack exonuclease V activity, Cre-mediated cyclization results in transformation efficiencies for linearized lox2 plasmids identical to those obtained with covalently closed circular plasmid DNA. Moreover, Cre+ E. coli recBC strains allow the efficient recovery of lox2 plasmids integrated within large linear DNA molecules such as the 150-kb genome of pseudorabies virus.  相似文献   

14.
Two dinuclear macrocyclic polyamine copper(II) (CuII) complexes, which have two cyclen units linked by urea, were synthesized as DNA‐cleavage agents. The structures of these new dinuclear complexes were identified by HR‐ESI‐MS and IR analyses. The catalytic activities of DNA cleavage of these dinuclear CuII complexes were subsequently studied. The results show that 6a was the better catalyst in the DNA‐cleavage process than 6b . The effects of reaction time and concentration of complexes were also investigated. The results indicate, that the CuII complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA; Form I) under physiological conditions to produce selectively nicked DNA (Form II; no Form III was produced) with high yields (nearly 100%) in short time in the absence of reductant or oxidant.  相似文献   

15.
The naturally occurring flavonoid, quercetin, in the presence of Cu(II) and molecular oxygen caused breakage of calf thymus DNA, supercoiled pBR322 plasmid DNA and single stranded M13 phage DNA. In the case of the plasmid, the product(s) were relaxed circles or a mixture of these and linear molecules depending upon the conditions. For the breakage reaction, Cu(II) could be replaced by Fe(III) but not by other ions tested [Fe(II), Co(II), Ni(II), Mn(II) and Ca(II)]. Structurally related flavonoids, rutin, galangin, apigenin and fisetin were effective or less effecive than quercetin in causing DNA breakage. In the case of the quercetin-Cu(II) reaction, Cu(I) was shown to be essential intermediate by using the Cu(1)-sequestering reagent, bathocuproine. By using Job plots we established that, in the absence of DNA, five Cu(II) ions were reduced by one quercetin molecule; in contrast two ions were reduced per quercetin molecule in the DNA breakage reaction. Equally neocuproine inhibited the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, iodide, mannitol, formate and catalase (the inhibition was complete in the last case). The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation. From these data we propose a mechanism for the DNA strand scission reaction of quercetin and related flavonoids.  相似文献   

16.
Preparations of circular plasmid DNA in either supercoiled or nicked circular form often are contaminated with undesired linear DNA fragments arising from shearing/degradation of chromosomal DNA or linearization of plasmid DNA itself. We report a simple enzymatic method, using a combination of λ exonuclease and RecJf, for the selective removal of linear DNA from such mixtures. λ exonuclease digests one strand of linear duplex DNA in the 5′ to 3′ direction, whereas RecJf, a single-strand-specific exonuclease, digests the remaining complementary single strand into mononucleotides. This combination of exonucleases can remove linear DNA from a mixture of linear and supercoiled DNA, leaving the supercoiled form intact. Furthermore, the inability of λ exonuclease to initiate digestion at nicks or gaps enables the removal of undesired linear DNA when nicked circular DNA has been enzymatically prepared from supercoiled DNA. This method can be useful in the preparation of homogeneous circular plasmid DNA required for therapeutic applications and biophysical studies.  相似文献   

17.
Binding specificity of histone-like HU alpha protein to supercoiled DNA was examined by gel retardation assay and chemical probing with OsO4. The latter method was proved to be a unique means for detecting torsional tension restrained in supercoiled plasmid in the presence of HU alpha. It was shown that HU alpha protein has preferential affinity to negatively supercoiled DNA relative to relaxed, nicked and linearized DNAs. There were two modes for binding of HU alpha to the supercoiled DNA: one was the binding associated with topological changes in DNA and the other was relatively strong binding, probably specific to certain particular structures of DNA. It was suggested that HU in vivo interacts preferentially with the regions deformed under torsional stress or with the metabolically active regions along DNA.  相似文献   

18.
The SfiI endonuclease is a prototype for DNA looping. It binds two copies of its recognition sequence and, if Mg(2+) is present, cuts both concertedly. Looping was examined here on supercoiled and relaxed forms of a 5.5 kb plasmid with three SfiI sites: sites 1 and 2 were separated by 0.4 kb, and sites 2 and 3 by 2.0 kb. SfiI converted this plasmid directly to the products cut at all three sites, though DNA species cleaved at one or two sites were formed transiently during a burst phase. The burst revealed three sets of doubly cut products, corresponding to the three possible pairings of sites. The equilibrium distribution between the different loops was evaluated from the burst phases of reactions initiated by adding MgCl(2) to SfiI bound to the plasmid. The short loop was favored over the longer loops, particularly on supercoiled DNA. The relative rates for loop capture were assessed after adding SfiI to solutions containing the plasmid and MgCl(2). On both supercoiled and relaxed DNA, the rate of loop capture across 0.4 kb was only marginally faster than over 2.0 kb or 2.4 kb. The relative strengths and rates of looping were compared to computer simulations of conformational fluctuations in DNA. The simulations concurred broadly with the experimental data, though they predicted that increasing site separations should cause a shallower decline in the equilibrium constants than was observed but a slightly steeper decline in the rates for loop capture. Possible reasons for these discrepancies are discussed.  相似文献   

19.
以外源红细胞生成素cDNA的表达产物为指标,研究了运载DNA和重组表达质粒的构象对电穿孔转染CHO细胞的效率的影响.结果250mg/L的运载DNA可使外源基因表达水平提高3倍;线性化质粒DNA比超螺旋DNA更适合于用电穿孔方法获得永久表达.这一结果提示,运载DNA的存在和质粒DNA的线性化对提高电穿孔转染CHO细胞的效率是必须的.  相似文献   

20.
We systematically varied conditions of two-dimensional (2D) agarose gel electrophoresis to optimize separation of DNA topoisomers that differ either by the extent of knotting, the extent of catenation or the extent of supercoiling. To this aim we compared electrophoretic behavior of three different families of DNA topoisomers: (i) supercoiled DNA molecules, where supercoiling covered the range extending from covalently closed relaxed up to naturally supercoiled DNA molecules; (ii) postreplicative catenanes with catenation number increasing from 1 to ∼15, where both catenated rings were nicked; (iii) knotted but nicked DNA molecules with a naturally arising spectrum of knots. For better comparison, we studied topoisomer families where each member had the same total molecular mass. For knotted and supercoiled molecules, we analyzed dimeric plasmids whereas catenanes were composed of monomeric forms of the same plasmid. We observed that catenated, knotted and supercoiled families of topoisomers showed different reactions to changes of agarose concentration and voltage during electrophoresis. These differences permitted us to optimize conditions for their separation and shed light on physical characteristics of these different types of DNA topoisomers during electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号