首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
4.
5.
Abscisic acid (ABA) induces the expression of a battery of genes in mediating plant responses to environmental stresses. Here we report one of the early ABA-inducible genes in barley (Hordeum vulgare L.), HVA22, which shares little homology with other ABA-responsive genes such as LEA (late embryogenesis-abundant) and RAB (responsive to ABA) genes. In grains, the expression of HVA22 gene appears to be correlated with the dormancy status. The level of HVA22 mRNA increases during grain development, and declines to an undetectable level within 12 h after imbibition of non-dormant grains. In contrast, the HVA22 mRNA level remains high in dormant grains even after five days of imbibition. Treatment of dormant grains with gibberellin (GA) effectively breaks dormancy with a concomitant decline of the level of HVA22 mRNA. The expression of HVA22 appears to be tissue-specific with the level of its mRNA readily detectable in aleurone layers and embryos, yet undetectable in the starchy endosperm. The expression of HVA22 in vegetative tissues can be induced by ABA and environmental stresses, such as cold and drought. Apparent homologues of this barley gene are found in phylogenetically divergent eukaryotic organisms, including cereals, Arabidopsis, Caenorhabitis elegans, man, mouse and yeast, but not in any prokaryotes. Interestingly, similar to barley HVA22, the yeast homologue is also stress-inducible. These observations suggest that the HVA22 and its homologues encode a highly conserved stress-inducible protein which may play an important role in protecting cells from damage under stress conditions in many eukaryotic organisms.  相似文献   

6.
Isogenic dormant and non-dormant barley grains provide a useful system to study the molecular mechanisms of grain dormancy and the role of plant hormones in this process. As ion fluxes are associated with dormancy-related plant hormone responses, we compared the properties of the inward rectifying potassium conductance in aleurone protoplasts isolated from dormant and non-dormant Triumph grains and in germinating Himalaya grains. Maximal conductance, voltage dependency of steady-state activation, activation and deactivation kinetics were studied in the whole-cell patch-clamp configuration. Activation and deactivation time courses were single exponential. No differences in the above described properties were found between the protoplasts isolated from non-dormant Triumph and Himalaya grains. However, the maximal conductance (corrected for cell size) in protoplasts from dormant Triumph grains was much smaller (65%), and activation time constants were much larger as compared to protoplasts from non-dormant grains. No differences were found in the deactivation kinetics in the three different types of protoplasts. The half-maximal activation potential was slightly more negative in protoplasts from dormant grains than from non-dormant grains.  相似文献   

7.
A cDNA clone with sequence homology to soluble inorganic pyrophosphatase (IPPase) was isolated from a library of developing barley grains. The protein encoded by this clone was produced in transgenic Escherichia coli, and showed IPPase activity. In nondormant barley grains, the gene appeared to be expressed in metabolically active tissue such as root, shoot, embryo and aleurone. During imbibition, a continuous increase of the steady state mRNA level of IPPase was observed in embryos of non-dormant grains. In the embryos of dormant grains its production declined, after an initial increase. With isolated dormant and nondormant embryos, addition of recombinant IPPase, produced by E. coli, enhanced the germination rate. On the other hand, addition of pyrophosphate (PPi), substrate for this enzyme, appeared to reduce the germination rate. A role for this IPPase in germination is discussed.  相似文献   

8.
9.
Phosphoenolpyruvate carboxylase (PEPC) activity and corresponding mRNA levels were investigated in developing and germinating wheat (Triticum aestivum) grains. During grain development PEPC activity increased to reach a maximum 15 d postanthesis. Western-blot experiments detected two main PEPC polypeptides with apparent molecular masses of 108 and 103 kD. The most abundant 103-kD PEPC subunit remained almost constant throughout the process of grain development and in the scutellum and aleurone layer of germinating grains. The less-abundant 108-kD polypeptide progressively disappeared during the second half of grain development and was newly synthesized in the scutellum and aleurone layer of germinating grains. PEPC mRNA was detected throughout the process of grain development; however, in germinating grains PEPC mRNA accumulated transiently in the scutellum and aleurone layer, showing a sharp maximum 24 h after imbibition. Immunolocalization studies revealed the presence of the enzyme in tissues with a high metabolic activity, as well as in the vascular tissue of the crease area of developing grains. A clear increase in PEPC was observed in the scutellar epithelium of grains 24 h after imbibition. The data suggest that the transiently formed PEPC mRNA in the scutellar epithelium encodes the 108-kD PEPC subunit.  相似文献   

10.
An mRNA species, HVA1, has been shown to be rapidly induced by abscisic acid (ABA) in barley aleurone layers (Hong, Uknes and Ho, Plant Mol Biol 11: 495–506, 1988). In the current work we have investigated the expression of HVA1 in other organs of barley plants. In developing seeds, HVA1 mRNA is not detected in starchy endosperm cells, yet it accumulates in aleurone layers and embryo starting 25 days after anthesis, and its level remains high in these organs in dry seeds. Although the levels of HVA1 mRNA are equivalent in the dry embryos of dormant and nondormant barley seeds, upon imbibition HVA1 mRNA declines much slower in the dormant than in the nondormant embryos. The HVA1 mRNA and protein levels are highly induced by ABA treatment in all organs of 3-day-old seedlings. However, the induction in the leaf of 7-day-old seedlings is less than one tenth the level observed in the leaf of 3-day-old seedlings. In the leaf, HVA1 mRNA and protein are induced mainly at the base. These observations indicate that the expression of HVA1 is under developmental regulation. Besides the HVA1 protein, a smaller protein (p20) of approximately 20 kDa cross-reacting with anti-HVA1 polyclonal antibodies, is induced by ABA in barley seedlings but not in seeds. HVA1 mRNA is induced by drought, NaCl, cold or heat treatment. Similar to ABA treatment, the drought induction of HVA1 occurs in all the tissues of 3-day-old seedling, but the induction decreases dramatically in the leaf of 7-day-old plants. The significance of organ-specific, developmentally regulated, and stress-induced expression of HVA1 is discussed.  相似文献   

11.
Dormant and non-dormant barley (Hordeum distichum L.) grains with identical genetic backgrounds were obtained by maturing grains under different climate conditions. When isolated embryos from dormant grains were incubated in a well containing a fixed volume of water (300 l), the germination rate and percentage were dependent on the embryo number per well. A higher embryo number per well was correlated with a lower germination rate and percentage. However, this was not the case for the embryos isolated from nondormant grains. During germination, the endogenous cis-abscisic acid (ABA) in isolated embryos from both dormant and nondormant grains was analyzed. The inhibitory effect on germination of a higher number per well of isolated dormant embryos was due to diffusion of endogenous ABA out of the embryos and accumulation of ABA in the incubation medium. Moreover, there was de-novo synthesis of ABA in embryos isolated from dormant grains during incubation but not in embryos isolated from nondormant grains. The inhibitory effect of ABA on germination of embryos isolated from dormant grains could be mimicked by addition of ABA or the medium in which dormant embryos had been placed. Embryos isolated from nondormant grains were insensitive to addition of ABA and medium from dormant embryos. Our results demonstrate that diffusion of endogenous ABA, de-novo ABA synthesis and ABA sensitivity play a role in the control of germination. It is proposed that dormancy-breaking treatments act via changes to these processes.Abbreviations ABA cis-abscisic acid - E/W embryo(s) per well Prof. K.R. Libbenga (Institute of Molecular Plant Sciences, Leiden University) is thanked for fruitful discussions. B.V.D. was partly supported by E.E.C. BIOTECH program PL 920175.  相似文献   

12.
13.
14.
15.
Resting seeds of several plant species, including barley grains, have been reported to contain aspartic proteinase (EC 3.4.23) activity. Here, the expression of the Hordeum vulgare L. aspartic proteinase (HvAP) was studied in developing and germinating grains by activity measurements as well as by immunocytochemical and in-situ hybridization techniques. Southern blotting suggests the presence of one to two HvAP-encoding genes in the barley genome, while Northern analysis reveals a single 2.1-kb mRNA in grains and vegetative tissues. Western blotting with antibodies to HvAP shows the same subunit structure in different grain parts. In developing grains, HvAP is produced in the embryo, aleurone layer, testa and pericarp, but in the starchy endosperm HvAP is present only in the crushed and depleted area adjacent to the scutellum. During seed maturation, HvAP-encoding mRNA remains in the aleurone layer and in the embryo, but the enzyme disappears from the aleurone cells. The enzyme, however, remains in the degenerating tissues of the testa and pericarp as well as in resting embryo and scutellum. During the first three days of germination, the enzyme reappears in the aleurone layer cells but is not secreted into the starchy endosperm. The HvAP is also expressed in the flowers, stem, leaves, and roots of barley. The wide localization of HvAP in diverse tissues suggests that it may have several functions appropriate to the needs of different tissues.Abbreviations DAA days after anthesis - DTT dithiothreitol - HvAP Hordeum vulgare aspartic proteinase Both authors have contributed equally to this workWe thank Mart Saarma, Pia Runeberg-Roos, Alan Schulman and Yrjö Helariutta for helpful discussions during the study, Tiina Arna and Sari Makkonen for their help in proteinase activity experiments as well as Jaana Korhonen (Department of Pathology, University of Helsinki), Salla Marttila and Ilkka Porali (Department of Biology, University of Jyväskylä, Jyväskylä, Finland) for their advice on microscopical techniques. We also thank Liisa Pyhälä and Leena Liesirova for the production of the antibodies to HvAP at the National Public Health Institute, Helsinki. This study was supported by grants from the Ministry of Agriculture and Forestry and the Academy of Finland.  相似文献   

16.
17.
Localization of carboxypeptidase I in germinating barley grain   总被引:2,自引:0,他引:2       下载免费PDF全文
Activity measurements and Northern blot hybridizations were used to study the temporal and spatial expression of carboxypeptidase I in germinating grains of barley (Hordeum vulgare L. cv Himalaya). In the resting grain no carboxypeptidase I activity was found in the aleurone layer, scutellum, or starchy endosperm. During germination high levels of enzyme activity appeared in the scutellum and in the starchy endosperm but only low activity was found in the aleurone layer. No mRNA for carboxypeptidase I was observed in the resting grain. By day 1 of germination the mRNA appeared in the scutellum where its level remained high for several days. In contrast, little mRNA was observed in the aleurone layer. These results indicate that the scutellum plays an important role in the production of carboxypeptidase I in germinating barley grain.  相似文献   

18.

Background and Aims

α-Amylase in grass caryopses (seeds) is usually expressed upon commencement of germination and is rarely seen in dry, mature seeds. A heat-stable α-amylase activity was unexpectedly selected for expression in dry annual ryegrass (Lolium rigidum) seeds during targeted selection for low primary dormancy. The aim of this study was to characterize this constitutive activity biochemically and determine if its presence conferred insensitivity to the germination inhibitors abscisic acid and benzoxazolinone.

Methods

α-Amylase activity in developing, mature and germinating seeds from the selected (low-dormancy) and a field-collected (dormant) population was characterized by native activity PAGE. The response of seed germination and α-amylase activity to abscisic acid and benzoxazolinone was assessed. Using an alginate affinity matrix, α-amylase was purified from dry and germinating seeds for analysis of its enzymatic properties.

Key Results

The constitutive α-amylase activity appeared late during seed development and was mainly localized in the aleurone; in germinating seeds, this activity was responsive to both glucose and gibberellin. It migrated differently on native PAGE compared with the major activities in germinating seeds of the dormant population, but the enzymatic properties of α-amylase purified from the low-dormancy and dormant seeds were largely indistinguishable. Seed imbibition on benzoxazolinone had little effect on the low-dormancy seeds but greatly inhibited germination and α-amylase activity in the dormant population.

Conclusions

The constitutive α-amylase activity in annual ryegrass seeds selected for low dormancy is electrophoretically different from that in germinating seeds and its presence confers insensitivity to benzoxazolinone. The concurrent selection of low dormancy and constitutive α-amylase activity may help to enhance seedling establishment under competitive conditions.  相似文献   

19.
20.
Peroxiredoxins (Prx) are thiol-dependent antioxidants containing one (1-cysteine [-Cys]) or two (2-Cys) conserved Cys residues that protect lipids, enzymes, and DNA against reactive oxygen species. In plants, the 1-Cys Prxs are highly expressed during late seed development, and the expression pattern is dormancy related in mature seeds. We have expressed the Arabidopsis 1-Cys Prx AtPER1 in Escherichia coli and show that this protein has antioxidant activity in vitro and protects E. coli in vivo against the toxic oxidant cumene hydroperoxide. Although some 1-Cys Prxs are targeted to the nucleus, a green fluorescent protein-AtPER1 fusion protein was also localized to the cytoplasm in an onion epidermis subcellular localization assay. It has been proposed that seed Prxs are involved in maintenance of dormancy and/or protect the embryo and aleurone layer surviving desiccation against damage caused by reactive oxygen species. These hypotheses were tested using transgenic Arabidopsis lines overexpressing the barley (Hordeum vulgare) 1-Cys PER1 protein and lines with reduced levels of AtPER1 due to antisensing or RNA interference. We found no correlation between Prx levels and the duration of the after-ripening period required before germination. Thus, Prxs are unlikely to contribute to maintenance of dormancy. RNA interference lines almost devoid of AtPER1 protein developed and germinated normally under standard growth room conditions. However, seeds from lines overexpressing PER1 were less inclined to germinate than wild-type seeds in the presence of NaCl, mannitol, and methyl viologen, suggesting that Prx can sense harsh environmental surroundings and play a part in the inhibition of germination under unfavorable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号