首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Detergents serve as means of solubilizing biological membranes and thus play an important role in purification and characterization of membrane proteins. We report here a simple method to estimate the amount of detergent bound to a protein or present in an aqueous solution. The method is based on the turbidity caused by the addition of a detergent to triolein. Detergent bound to an integral membrane protein, lysophosphatidic acid acyltransferase, was separated by native gel electrophoresis and the amount of detergent bound to the same was estimated. This method is applicable for Triton X-100, sodium dodecyl sulfate and zwitterionic detergent, and was validated in the presence of reagents commonly used in membrane protein solubilization and purification.  相似文献   

2.
The mechanism for the solubilization of isolated central-nervous-system myelin by sodium dodecyl sulphate was studied in detail. The release of protein and phospholipid to the 100000 g x 1 h supernatant fraction is dependent on the total amount of detergent relative to the amount of membrane present and on the ionic strength of the solubilization system. Gel-filtration analysis of supernatant fractions indicate that at suboptimal concentrations of detergent these contain lipid-protein complexes. The complete dissociation of the individual protein components from lipid is dependent on the total amount of sodium dodecyl sulphate present in the system. The results indicate that for the analysis of membrane components in sodium dodecyl sulphate it is essential that sufficient detergent is present.  相似文献   

3.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. The serotonin1A (5-HT1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to G-proteins. They appear to be involved in various behavioral and cognitive functions. 2. We report here, for the first time, the solubilization of 5-HT1A receptors stably expressed in Chinese Hamster Ovary (CHO) cells using the zwitterionic detergent CHAPS in presence of NaCl followed by polyethylene glycol (PEG) precipitation. We show by ligand-binding assay that the 5-HT1A receptor solubilized this way is functionally active. We have optimized the efficiency of solubilization with respect to total protein and NaCl concentration. 3. Our results show that careful control of salt and protein concentration is crucial in optimal solubilization of membrane receptors heterologously expressed in cells in culture. The effective solubilization of important neurotransmitter receptors such as 5-HT1A receptors which are present in very low amounts in the native tissue may represent an important step in characterizing membrane receptors expressed in mammalian cells in culture.  相似文献   

5.
The main objective of this laboratory practical class was to teach students how a detergent and the best experimental conditions are chosen to solubilize a given membrane protein. Kidney Na,K-ATPase was chosen as the protein of interest and anionic, neutral and zwitterionic detergents were tested. Simple laboratory experiments were designed to study the effect of the detergent on the activity of the enzyme, the effect of detergent concentration on solubilization, the effect of protein concentration on enzyme solubilization, and the effect of time and temperature of incubation during enzyme solubilization. This resulted in the selection of an appropriate detergent for the solubilization of the protein taking into account smaller inactivation factors, more effective solubilization (more effective solubilization with a better detergent-protein relationship), lower inactivation temperature and time of incubation of the membrane protein with the detergent. The results obtained showed that instantaneous incubation of Na,K-ATPase with C(12)E(8) (1:1 w/w) at 4 degrees C resulted in a more efficient solubilization and had a smaller denaturing effect on the solubilized enzyme.  相似文献   

6.
The use of detergents for the structural study of membrane proteins is discussed with an emphasis on practical issues relating to membrane solubilization, protein aggregation, detergent purity and detergent quantitation. Detergents are useful reagents as mimics of lipid bilayers because of their self-assembling properties, but as a result, they have complex properties in solution. It can be difficult to maintain a solubilized membrane protein in a native conformational state, and the non-specific aggregation of detergent-solubilized proteins is a common problem. Empirical "stability screens" can be helpful in choosing which detergents, and which detergent concentrations, may be optimal for a given system.  相似文献   

7.
Around 25% of proteins in living organisms are membrane proteins that perform many critical functions such as synthesis of biomolecules and signal transduction. Membrane proteins are extracted from the lipid bilayer and solubilized with a detergent for biochemical characterization; however, their solubilization is an empirical technique and sometimes insufficient quantities of proteins are solubilized in aqueous buffer to allow characterization. We found that addition of alkylamines and polyamines to solubilization buffer containing a detergent enhanced solubilization of membrane proteins from microsomes. The solubilization of polygalacturonic acid synthase localized at the plant Golgi membrane was enhanced by up to 9.9‐fold upon addition of spermidine to the solubilization buffer. These additives also enhanced the solubilization of other plant membrane proteins localized in other organelles such as the endoplasmic reticulum and plasma membrane as well as that of an animal Golgi‐localized membrane protein. Thus, addition of alkylamines and polyamines to solubilization buffer is a generally applicable method for effective solubilization of membrane proteins. The mechanism of the enhancement of solubilization is discussed.  相似文献   

8.
Methodology is presented for the isolation of integral membrane proteins and applied to the purification of the major myelin glycoprotein, P0. This isolation scheme depends on the detergent solubilization of an isoosmotically extracted membrane fraction from sciatic nerve endoneurium, followed by the removal of lipids and detergent by chloroform/methanol extraction. The resulting membrane proteins are readily dissolved in acetic acid/water (1/1) and directly analyzed by reversed-phase high-performance liquid chromatography. The hydrophobic nature of the intrinsic membrane protein mixture results in strong binding to a C8 stationary phase, leading to poor resolution and yields. These problems can be eliminated by employing a C3 alkylsilane column, thereby allowing separation of the protein components and the isolation of P0. The purified P0 has an amino-terminal sequence that matches that predicted from nucleotide sequencing, and the glycoprotein contains the expected amount of sialic acid. This latter finding indicates that the isolation procedure is not detrimental to the complex-type oligosaccharide structure of P0 and should make the methodology readily applicable to the purification of other integral membrane proteins and glycoproteins.  相似文献   

9.
Functional reconstitution of prokaryote and eukaryote membrane proteins   总被引:7,自引:0,他引:7  
A new strategy for the functional reconstitution of membrane proteins is described. This approach introduces a new class of protein stabilizing agents--osmolytes--whose presence at high concentration (10-20%) during detergent solubilization prevents the inactivations that normally occur when proteins are extracted from natural membranes. Osmolytes that act in this way include compounds such as glycerol and higher polyols (erythritol, xylitol, sorbitol), sugars (glucose, trehalose), and certain amino acids (glycine, proline, betaine). The beneficial effects of osmolytes are documented by reconstitution of a variety of prokaryote and eukaryote membrane proteins, including several proton- and calcium-motive ATPases, cation- and anion-linked solute carriers (symport and antiport), and a membrane-bound hydrolase from endoplasmic reticulum. In all cases, the presence of 20% glycerol or other osmolyte during detergent solubilization led to 10-fold or more increased specific activity in proteoliposomes. These positive effects did not depend on use of any specific detergent for protein solubilization, nor on any particular method of reconstitution, but for convenience most of the work reported here has used octylglucoside as the solubilizing agent, followed by detergent-dilution to form proteoliposomes. The overall approach outlined by these experiments is simple and flexible. It is now feasible to use reconstitution as an analytical tool to study the biochemical and physiological properties of membrane proteins.  相似文献   

10.
The potential use of liposomes as a delivery system is still limited by the poor understanding of their interaction mechanisms with biological media. In the present work, interaction between bovine albumin (BA) and liposomes was studied using phase transition and dielectric measurements as well as solubilization process using non-ionic detergent octylglucoside (OG). After liposomes were incubated with diluted and concentrated BA, phase transition, characterizing the liposome membrane exhibited a shift towards higher temperatures, together with initiation of multiple phase transitions. The relaxation time of liposome membrane molecules also increased in a concentration-dependent manner. The solubilization profiles of incubated samples also showed remarkable changes, especially in beginning of solubilization stages. Moreover, amount of detergent needed to completely solubilize membrane was also increased. It was concluded that BA significantly altered the physical state of liposome membrane, which may be attributed to BA interaction with liposomes surface and/or by its incorporation within the bilayer membrane.  相似文献   

11.
The flavivirus envelope protein E undergoes irreversible conformational changes at a mildly acidic pH which are believed to be necessary for membrane fusion in endosomes. In this study we used a combination of chemical cross-linking and sedimentation analysis to show that the envelope proteins of the flavivirus tick-borne encephalitis virus also change their oligomeric structure when exposed to a mildly acidic environment. Under neutral or slightly alkaline conditions, protein E on the surface of native virions exists as a homodimer which can be isolated by solubilization with the nonionic detergent Triton X-100. Solubilization with the same detergent after pretreatment at an acidic pH, however, yielded homotrimers rather than homodimers, suggesting that exposure to an acidic pH had induced a simultaneous weakening of dimeric contacts and a strengthening of trimeric ones. The pH threshold for the dimer-to-trimer transition was found to be 6.5. Because the pH dependence of this transition parallels that of previously observed changes in the conformation and hydrophobicity of protein E and that of virus-induced membrane fusion, it appears likely that the mechanism of fusion with endosomal membranes involves a specific rearrangement of the proteins in the viral envelope. Immature virions in which protein E is associated with the uncleaved precursor (prM) of the membrane protein M did not undergo a low-pH-induced rearrangement. This is consistent with a protective role of protein prM for protein E during intracellular transport of immature virions through acidic compartments of the trans-Golgi network.  相似文献   

12.
Membrane proteins, lipids and detergents: not just a soap opera   总被引:1,自引:0,他引:1  
Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.  相似文献   

13.
The solubilization of somatostatin receptors from guinea-pig pancreas by different non-denaturing detergents was investigated after stabilization of the receptors by prior binding of 125I-[Tyr11]somatostatin or its analogue 125I-[Leu8,DTrp22,Tyr25]somatostatin 28, to pancreatic plasma membranes. The somatostatin-receptor complexes were solubilized in a high yield by Zwittergent 3-14 (3-[tetradecyldimethylammonio]-1-propanesulfonate), a zwitterionic detergent. Other detergents, digitonin, Triton X-100, Chaps (3-[cholamidopropyldimethylammonio]-1-propanesulfonate) and octyl beta-D-glycopyranoside, achieved only partial solubilization. The recovery of receptor complexes was increased by glycerol. In order to characterize solubilized somatostatin-receptor complexes, membranes receptors were covalently labelled using N-5-azido-2-nitrobenzoyloxysuccinimide as cross-linking reagent before solubilization. Gel filtration chromatography analysis resulted in the identification of a major protein component of apparent Mr = 93,000 which interacted with the two radioligands. In addition, a similar component of Mr = 88,000 was characterized after analysis by SDS-PAGE of membrane receptors covalently cross-linked with 125I-[Leu8,DTrp22,Tyr25]somatostatin 28 by different heterobifunctional reagents: N-5-azido-2-nitrobenzoyloxysuccinimide, N-hydroxysuccinimidyl 4-azidobenzoate, N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate. Optimal cross-linking results were obtained with N-5-azido-2-nitrobenzoyloxysuccinimide. The solubilized somatostatin-receptor complex was adsorbed to wheat-germ agglutinin-agarose column and eluted by specific sugars. We concluded that the guinea-pig pancreatic somatostatin receptor in the membrane and in the non-denaturing detergent solution behaves as a protein monomer of apparent Mr approximately 85,000-90,000. The somatostatin receptor is a glycoprotein which contains complex-type carbohydrate chains.  相似文献   

14.
Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.  相似文献   

15.
In the present study, we defined experimental conditions that allowed the extraction of the integral membrane protein lysophospholipid:acyl-CoA acyltransferase (LAT, EC 2.3.1.23) from membranes while maintaining the full enzyme activity using the nonionic detergent n-octyl glucopyranoside (OGP) and solutions of high ionic strength. We found that the optimal OGP concentration depended on the ionic strength of the solubilization buffer. Fluorescence measurements with 1,6-diphenyl-1,3,5-hexatriene indicated that the critical micellar concentration (CMC) of OGP decreased with increasing salt concentrations. Analogous studies revealed that the zwitterionic detergent Chaps was ineffective in extracting LAT from membranes in the absence of salt, whereas its solubilization efficiency increased with increasing salt concentrations. Detailed lipid analysis of the different protein/lipid/detergent mixed micelles showed that the protein/lipid/OGP mixed micelles were relatively enriched with sphingomyelin (SPM) compared to protein/lipid/Chaps mixed micelles, indicating that the differences in the solubilization efficiency may be due to the ability to extract more SPM from membranes. When the protein/lipid/OGP mixed micelles were dissociated into protein/detergent and lipid/detergent complexes by the addition of increasing Chaps concentrations, one-tenth of the LAT enzyme activity was preserved making the enzyme accessible to protein purification. Analysis by native PAGE revealed that in the presence of excess Chaps a high molecular mass protein complex migrated into the gel which could be photolabeled by 125I-labelled-18-(4'-azido-2'-hydroxybenzoylamino)-oleyl-CoA. This fatty acid analogue has been shown to be a competitive inhibitor of LAT enzyme activity in the dark, and an irreversible inhibitor after photolysis. Therefore, this protein complex is assumed to contain the LAT enzyme.  相似文献   

16.
Time-dependent studies of membrane protein function are hindered by extensive light scattering that impedes application of fast optical absorbance methods. Detergent solubilization reduces light scattering but strongly perturbs rhodopsin activation kinetics. Nanodiscs may be a better alternative if they can be shown to be free from the serious kinetic perturbations associated with detergent solubilization. To resolve this, we monitored absorbance changes due to photointermediates formed on the microsecond to hundred millisecond time scale after excitation of bovine rhodopsin nanodiscs and compared them to photointermediates that form in hypotonically washed native membranes as well as to those that form in lauryl maltoside suspensions at 15 and 30 °C over a pH range from 6.5 to 8.7. Time-resolved difference spectra were collected from 300 to 700 nm at a series of time delays after photoexcitation and globally fit to a sum of time-decaying exponential terms, and the photointermediates present were determined from the spectral coefficients of the exponential terms. At the temperatures and pHs studied, photointermediates formed after photoexcitation of rhodopsin in nanodiscs are extremely similar to those that form in native membrane, in particular displaying the normal forward shift of the Meta I(480) ? Meta II equilibrium with increased temperature and reduced pH which occurs in native membrane but which is not observed in lauryl maltoside detergent suspensions. These results were obtained using the amount of rhodopsin in nanodiscs which is required for optical experiments with rhodopsin mutants. This work demonstrates that late, physiologically important rhodopsin photointermediates can be characterized in nanodiscs, which provide the superior optical properties of detergent without perturbing the activation sequence.  相似文献   

17.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

18.
Over 50 detergents were tested to establish which would be most effective in releasing proteins from membrane-bounded compartments without denaturating them. Various concentrations of each detergent were tested for two activities: (1) solubilization of egg phospholipid liposomes as measured by reduction of turbidity and (2) effect of detergent concentration on the activities of soluble, hydrolytic enzymes. Those detergents must effective in solubilizing 0.2% lipid and least detrimental to enzymes were five pure, synthetic compounds recently introduced: CHAPS, CHAPSO, Zwittergents 310 and 312, and octylglucoside. Industrial detergents were generally much inferior, insofar as they solubilized membranes inefficiently and/or inactivated certain hydrolytic enzymes readily. The five detergents were characterized by (a) an unusually high critical micelle concentration and (b) a preference for forming mixed micelles with lipids instead of forming pure micelles, as indicated by an ability to solubilize lipid at concentrations of detergent significantly below the critical micelle concentration. This characteristic permits solubilization of high concentrations of membrane below the critical micelle concentration of the detergent so that protein denaturation is minimized. A generally applicable guideline that emerged from this study is that detergents should be used at approximately their critical micelle concentration which should not be exceeded by the concentration of membrane. Similar considerations should apply to the use of detergents in purifying and reconstituting intrinsic membrane proteins.  相似文献   

19.
OxlT, the oxalate transporter of Oxalobacter formigenes, was studied to determine its oligomeric state in solution and in the membrane. Three independent approaches were used. First, we used triple-detector (SEC-LS) size exclusion chromatography to analyze purified OxlT in detergent/lipid micelles. These measurements evaluate protein mass in a manner independent of contributions from detergent and lipid; such work shows an average OxlT mass near 47 kDa for detergent-solubilized material, consistent with that expected for monomeric OxlT (46 kDa). A disulfide-linked OxlT mutant was used to verify that it was possible detect dimers under these conditions. A second approach used amino-reactive cross-linkers of varying spacer lengths to study OxlT in detergent/lipid micelles and in natural or artificial membranes, followed by analysis via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These tests, performed under conditions where the presence of dimers can be documented for either of two known dimeric transporters (AdiC or TetL), indicate that OxlT exists as a monomer in the membrane and retains this status upon detergent solubilization. In a final test, we showed that reconstitution of OxlT into lipid vesicles at variable protein/lipid ratios has no effect on the specific activity of subsequent oxalate transport, as the OxlT content varies between 0.027 and 5.4 OxlT monomers/proteoliposome. We conclude that OxlT is a functional monomer in the membrane and in detergent/lipid micelles.  相似文献   

20.
The TetL antiporter from the Bacillus subtilis inner membrane is a tetracycline-divalent cation efflux protein that is energized by the electrochemical proton gradient across the membrane. In this study, we expressed tetL in Escherichia coli and investigated the oligomeric state of TetL in the membrane and in detergent solution. Evidence for an oligomeric state of TetL emerged from SDS-PAGE and Western blot analysis of membrane samples as well as purified protein samples from cells that expressed two differently tagged TetL species. Furthermore, no formation or restoration of TetL oligomers occurred upon detergent solubilization of the membrane. Rather, oligomeric forms established in vivo persisted after solubilization. Mass spectrometry of the purified protein showed the absence of proteolysis and posttranslational modifications. Analytical size-exclusion chromatography of the purified protein revealed a dimeric TetL in dodecyl-maltoside solution. In addition, TetL dimers were found in a number of other detergents and over a wide pH range. It is therefore likely that the oligomeric form of the protein in the membrane is also a dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号