首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actinorhizal plants invade nitrogen-poor soils because of their ability to form root nodule symbioses with N2-fixing actinomycetes known as Frankia. Frankia strains are difficult to isolate, so the diversity of strains inhabiting nodules in nature is not known. To address this problem, we have used the variability in bacterial 16S rRNA gene sequences amplified from root nodules as a means to estimate molecular diversity. Nodules were collected from 96 sites primarily in northeastern North America; each site contained one of three species of the family Myricaceae. Plants in this family are considered to be promiscuous hosts because several species are effectively nodulated by most isolated strains of Frankia in the greenhouse. We found that strain evenness varies greatly between the plant species so that estimating total strain richness of Frankia within myricaceous nodules with the sample size used was problematical. Nevertheless, Myrica pensylvanica, the common bayberry, was found to have sufficient diversity to serve as a reservoir host for Frankia strains that infect plants from other actinorhizal families. Myrica gale, sweet gale, yielded a few dominant sequences, indicating either symbiont specialization or niche selection of particular ecotypes. Strains in Comptonia peregrina nodules had an intermediate level of diversity and were all from a single major group of Frankia.  相似文献   

2.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

3.
Frankia spp. strains typically induce N2-fixing root nodules on actinorhizal plants. The majority of host plant taxa associated with the uncultured Group 1 Frankia strains, i.e., Ceanothus of the Rhamnaceae, Datisca glomerata (Datiscaceae), and all actinorhizal members of the Rosaceae except Dryas, are found in California. A study was conducted to determine the distribution of Frankia strains among root nodules collected from both sympatric and solitary stands of hosts. Three DNA regions were examined, the 5' end of the 16S rRNA gene, the internal transcribed spacer region between the 16S and 23S rRNA genes, and a portion of the glutamine synthetase gene (glnA). The results suggest that a narrow range of Group 1 Frankia spp. strains dominate in root nodules collected over a large area of California west of the Sierra Nevada crest with no apparent host-specificity. Comparisons with Group 2 Frankia strain diversity from Alnus and Myrica within the study range suggest that the observed low diversity is peculiar to Group 1 Frankia strains only. Factors that may account for the observed lack of genetic variability and host specificity include strain dominance over a large geographical area, current environmental selection, and (or) a past evolutionary bottleneck.  相似文献   

4.
Myricaceae can be nodulated by a variety of Frankia strains isolated from other actinorhizal families. Consequently, the genus Myrica has been considered to have low specificity with respect to microsymbiont taxa. In contrast to controlled studies of Myrica infectious capacity, field studies in North America have indicated that M. gale symbionts belong to the genetic group of Alnus-infective strains. Myrica gale is the most widely distributed species in the genus so this study focused on describing the genetic diversity of M. gale-nodulating strains from 10 sites in Western Europe across a range of edaphic conditions. When possible, the specificity of M. gale-infective strains was compared with that of Alnus-infective strains from the same sites. Nodular strains from Belgium, France and Spain were characterized using PCR-RFLP of rrs gene and 16S-23S IGS. rrs-RFLP patterns showed a high level of homogeneity among European strains with one dominant genotype. IGS-RFLP patterns revealed the largest inter and intrasite diversity in France. In Belgium, Frankia strains were found to occur in two groups according to soil pH and organic matter characteristics of the sites. European M. gale-infective strains were genetically different from European Alnus and North American M. gale-infective strains indicating the possibility of different pathways of co-evolution among geographically isolated populations.  相似文献   

5.
6.
Little is known about Ceanothus-infective Frankia strains because no Frankia strains that can reinfect the host plants have been isolated from Ceonothus spp. Therefore, we studied the diversity of the Ceonothus-infective Frankia strains by using molecular techniques. Frankia strains inhabiting root nodules of nine Ceanothus species were characterized. The Ceanothus species used represent the taxonomic diversity and geographic range of the genus; therefore, the breadth of the diversity of Frankia strains that infect Ceanothus spp. was studied. DNA was amplified directly from nodular material by using the PCR. The amplified region included the 3' end of the 16S rRNA gene, the intergenic spacer, and a large portion of the 23S rRNA gene. A series of restriction enzyme digestions of the PCR product allowed us to identify PCR-restriction fragment length polymorphism (RFLP) groups among the Ceanothus-infective Frankia strains tested. Twelve different enzymes were used, which resulted in four different PCR-RFLP groups. The groups did not follow the taxonomic lines of the Ceanothus host species. Instead, the Frankia strains present were related to the sample collection locales.  相似文献   

7.
Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia   总被引:4,自引:0,他引:4  
The occurrence and diversity of Frankia nodulating Elaeagnus angustifolia in Tunisia were evaluated in 30 soils from different regions by a Frankia-capturing assay. Despite the absence of actinorhizal plants in 24 of the 30 soils, nodules were captured from all the samples. Eight pure strains were isolated from single colonies grown in agar medium. On the basis of 16S rRNA and GlnII sequences, seven strains were clustered with Frankia, colonizing Elaeagnaceae and Rhamnaceae in two different phylogenetic groups while one strain described a new lineage in the Frankia assemblage, indicating that Frankia strains genetically diverse from previously known Elaeagnus-infective strains are present in tunisian soils. Genomic fingerprinting determined by rep-PCR, and tDNA-PCR-SSCP, confirmed the wide genetic diversity of the strains.  相似文献   

8.
Endophyte sporulation in root nodules of actinorhizal plants   总被引:1,自引:0,他引:1  
All strains of isolated Frankia possess the genetic capacity to form sporangia since, when grown in vitro, they usually sporulate freely, depending on the physical and chemical environment in which they are cultured. Endophytic sporulation involving Frankia differentiation of sporangia within root nodules has been described in only 16 host species in 9 genera within six families of actinorhizal plants. From studies published to date, endophytic sporulation cannot be correlated with specific environmental conditions surrounding the host plants. Based on the literature and on previously unpublished observations from field and greenhouse studies, an account is given of the occurrence of sporulation in actinorhizal plants with emphasis on Alnus, Casuarina, Comptonia, Elaeagnus and Myrica . The possible role of the host plant in controlling Frankia sporulation as contrasted to the control exerted by the genetic constitution of the microbial symbiont is explored.  相似文献   

9.
The phylogeny of 13 species of Myricaceae, the most ancient actinorhizal family involved in a nitrogen-fixing symbiosis with the actinomycete Frankia, was established by the analysis of their rbcL gene and 18S-26S ITS. The phylogenetic position of those species was then compared to their specificity of association with Frankia in their natural habitat and to their nodulation potential determined on greenhouse-grown seedlings. The results showed that Genus Myrica, including M. gale and M. hartwegii, and Genus Comptonia, including C. peregrina, belong to a phylogenetic cluster distinct from the other Myrica species transferred in a new genus, Morella. This grouping parallels the natural specificity of each cluster with Comptonia-Myrica and Morella being nodulated by two phylogenetically divergent clusters of Frankia strains, the Alnus and Elaeagnaceae-infective strains clusters, respectively. Under laboratory conditions, Comptonia and Morella had a nodulation potential larger than under natural conditions. From this study it appears that the Myricaceae are split into two different specificity groups. It can be hypothesized that the early divergence of the genera led to the selection of genetically diverse Frankia strains which is contradictory to the earlier proposal that evolution has proceeded toward narrower promiscuity within the family.  相似文献   

10.
A critical review is given about the isolation and cultivation methods of Frankia species fromAlnus glutinosa root-nodules. The best results so far are obtained with a combination of sucrose (60% w/v)-sedimentation of root-nodule homogenate and subsequent suspension in the top-layer of a doubleagar layer system. The top-layer needs to contain a suitable C-source, in this study often a lipid factor from an alcoholic root-extract and an organic N-source.The isolation and cultivation of Sp(–) and Sp(+) strains fromAlnus glutinosa root nodules and a Frankia from the root-nodules ofMyrica gale is reported. The regular observation of growing colonies appears to be very important for the interpretation of results. The latter was illustrated by the remarkable diauxic growth of the strains isolated fromAlnus glutinosa Sp(+) root nodules.  相似文献   

11.
李志真 《微生物学报》2008,48(11):1432-1438
[目的]了解福建省放线菌结瘤植物共生固氮菌Frankia的遗传多样性.[方法]利用16S-23SrDNA间隔区(rrn)和nifD-K基因间隔区的PCR扩增和RFLP技术,分析了福建省木麻黄、杨梅、桤木、胡颓子等共生Frankia纯培养菌株的遗传差异.[结果]17个菌株获得rrn扩增片段,2个杨梅菌株和1个胡颓子菌株扩增未成功,酶切图谱经聚类分析表明6个地点的细枝木麻黄、短枝木麻黄、粗枝木麻黄12个共生Frankia菌株同源性高,属于一个类群,2个地点的4个杨梅菌株和1个四川桤木菌株亲缘关系近,为另一类群.25个Frankia菌株的,nifD-K基因间隔区PCR-RFLP分析结果显示,7个地点的3种木麻黄14个菌株聚类为一个类群,4个地点的7个杨梅菌株、2个地点的2个四川桤木菌株以及1个台湾桤木菌株聚类为另一个类群,胡颓子菌株则为独立的类群.[结论]研究结果表明福建省共生Frankia遗传多样性丰富.  相似文献   

12.
R A Bloom  B C Mullin    R L Tate  rd 《Applied microbiology》1989,55(9):2155-2160
Sixteen Frankia strains were isolated from Myrica pennsylvanica (bayberry) root nodules collected at diverse sites in New Jersey. Restriction pattern analysis of total genomic DNA was used to group the isolates into gel groups, and the genetic relatedness among the isolates was evaluated by DNA-DNA solution hybridization studies. Restriction pattern analysis provided a distinctive reproducible fingerprint for each isolate. Isolates fell into nine separate groups (strain types). More than one strain type was isolated from most sites. Isolates from two different gel groups were found in 3 of 10 nodules examined. Of the 16 isolates, 10 contained extrachromosomal DNA. Six different extrachromosomal DNA banding patterns were found. Genomically similar isolates carried related, but different, banding patterns. DNA hybridization studies indicated that isolates from a single plant species can be minimally related as determined by total genome homology. Homology ranged from 12 to 99%. Highly divergent strains were isolated from the same plant and found to cohabit the same nodule. Thus, this study demonstrated that Frankia strains which infect the same host plant are not only phenotypically different but also genetically diverse.  相似文献   

13.
Sixteen Frankia strains were isolated from Myrica pennsylvanica (bayberry) root nodules collected at diverse sites in New Jersey. Restriction pattern analysis of total genomic DNA was used to group the isolates into gel groups, and the genetic relatedness among the isolates was evaluated by DNA-DNA solution hybridization studies. Restriction pattern analysis provided a distinctive reproducible fingerprint for each isolate. Isolates fell into nine separate groups (strain types). More than one strain type was isolated from most sites. Isolates from two different gel groups were found in 3 of 10 nodules examined. Of the 16 isolates, 10 contained extrachromosomal DNA. Six different extrachromosomal DNA banding patterns were found. Genomically similar isolates carried related, but different, banding patterns. DNA hybridization studies indicated that isolates from a single plant species can be minimally related as determined by total genome homology. Homology ranged from 12 to 99%. Highly divergent strains were isolated from the same plant and found to cohabit the same nodule. Thus, this study demonstrated that Frankia strains which infect the same host plant are not only phenotypically different but also genetically diverse.  相似文献   

14.
Actinomycetes from the genus Frankia induce nitrogen-fixing root nodules on actinorhizal plants in the "core rosid" clade of eudicots. Reported here are nine partial Frankia 16S rRNA gene sequences including the first from host plants of the rosaceous genera Cercocarpus and Chamaebatia, 24 partial glutamine synthetase (GSI; glnA) sequences from Frankia in nodules of 17 of the 23 actinorhizal genera, and the partial glnA sequence of Acidothermus cellulolyticus. Phylogenetic analyses of combined Frankia 16S rDNA and glnA sequences indicate that infective strains belong to three major clades (I-III) and that Clade I strains consisting of unisolated symbionts from the Coriariaceae, Datiscaceae, Rosaceae, and Ceanothus of the Rhamnaceae are basal to the other clades. Clock-like mutation rates in glnA sequence alignments indicate that all three major Frankia clades diverged early during the emergence of eudicots in the Cretaceous period, and suggest that present-day symbioses are the result of an ancestral symbiosis that emerged before the divergence of extant actinorhizal plants.  相似文献   

15.
DNA extracted directly from nodules was used to assess the genetic diversity of Frankia strains symbiotically associated with two species of the genus Casuarina and two of the genus Allocasuarina naturally occurring in northeastern Australia. DNA from field-collected nodules or extracted from reference cultures of Casuarina-infective Frankia strains was used as the template in PCRs with primers targeting two DNA regions, one in the ribosomal operon and the other in the nif operon. PCR products were then analyzed by using a set of restriction endonucleases. Five distinct genetic groups were recognized on the basis of these restriction patterns. These groups were consistently associated with the host species from which the nodules originated. All isolated reference strains had similar patterns and were assigned to group 1 along with six of the eight unisolated Frankia strains from Casuarina equisetifolia in Australia. Group 2 consisted of two unisolated Frankia strains from C. equisetifolia, whereas groups 3 to 5 comprised all unisolated strains from Casuarina cunninghamiana, Allocasuarina torulosa, and Allocasuarina littoralis, respectively. These results demonstrate that, contrary to the results of previous molecular studies of isolated strains, there is genetic diversity among Frankia strains that infect members of the family Casuarinacaeae. The apparent high homogeneity of Frankia strains in these previous studies probably relates to the single host species from which the strains were obtained and the origin of these strains from areas outside the natural geographic range of members of the family Casuarinaceae, where genetic diversity could be lower than in Australia.  相似文献   

16.
In Myrica gale L. plants the assimilation of ammonia released by symbiotic Frankia was observed by 15N2 labelling and subsequent analysis of the isotopic enrichment of nodule amino acids over time by single ion monitoring gas chromatography-mass spectrometry. In detached nodules of Myrica , glutamine was the first amino acid labelled at 30 s and subsequently the amino acids glutamate, aspartate, alanine and γ-amino butyric acid (GABA) became labelled. This pattern of labelling is consistent with the incorporation of ammonium via glutamine synthetase [GS; EC 6.3.1.2]. No evidence for the ammonium assimilation via glutamate dehydrogenase [GDH; EC 1.4.1.2] was observed as glutamate became labelled only after glutamine. Using attached nodules and pulse-chase labelling, we observed synthesis of glutamine, glutamate, aspartate, alanine, GABA and asparagine, and followed the transport of fixed nitrogen in the xylem largely as glutamine and asparagine. Estimation of the cost of nitrogen fixation and asparagine synthesis in Myrica nodules suggests a minimum of one sucrose required per asparagine produced. Rapid translocation of recently fixed nitrogen was observed in Myrica gale nodules as 80% of the nitrogen fixed during a 1-h period was translocated out of the nodules within 9 h. The large pool of asparagine that is present in nodules may buffer the transport of nitrogen and thus act to regulate nitrogen fixation via a feedback mechanism.  相似文献   

17.
To study the global diversity of plant-symbiotic nitrogen-fixing Frankia strains, a rapid method was used to isolate DNA from these actinomycetes in root nodules. The procedure used involved dissecting the symbiont from nodule lobes; ascorbic acid was used to maintain plant phenolic compounds in the reduced state. Genes for the small-subunit rRNA (16S ribosomal DNA) were amplified by the PCR, and the amplicons were cycle sequenced. Less than 1 mg (fresh weight) of nodule tissue and fewer than 10 vesicle clusters could serve as the starting material for template preparation. Partial sequences were obtained from symbionts residing in nodules from Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata. The sequences obtained from Ceonothus griseus and P. tridentata nodules were identical to the sequence previously reported for the endophyte of Dryas drummondii. The sequences from Frankia strains in Coriaria arborea and Coriaria plumosa nodules were identical to one another and indicate a separate lineage for these strains. The Frankia strains in Discaria toumatou nodules yielded a unique sequence that places them in a lineage close to bacteria that infect members of the Elaeagnaceae.  相似文献   

18.
Symbioses between the root nodule-forming, nitrogen-fixing actinomycete Frankia and its angiospermous host plants are important in the nitrogen economies of numerous terrestrial ecosystems. Molecular characterization of Frankia strains using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses of the 16S rRNA-ITS gene and of the nifD-nifK spacer was conducted directly on root nodules collected worldwide from Casuarina and Allocasuarina trees. In their native habitats in Australia, host species contained seven distinctive sets of Frankia in seven different molecular phylogenetic groups. Where Casuarina and Allocasuarina trees are newly planted outside Australia, they do not normally nodulate unless Frankia is introduced with the host seedling. Nodules from Casuarina trees introduced outside Australia over the last two centuries were found to contain Frankia from only one of the seven phylogenetic groups associated with the host genus Casuarina in Australia. The phylogenetic group of Frankia found in Casuarina and Allocasuarina trees introduced outside Australia is the only group that has yielded isolates in pure culture, suggesting a greater ability to survive independently of a host. Furthermore, the Frankia species in this group are able to nodulate a wider range of host species than those in the other six groups. In baiting studies, Casuarina spp. are compatible with more Frankia microsymbiont groups than Allocasuarina host spp. adapted to drier soil conditions, and C. equisetifolia has broader microsymbiont compatibility than other Casuarina spp. Some Frankia associated with the nodular rhizosphere and rhizoplan, but not with the nodular tissue, of Australian hosts were able to nodulate cosmopolitan Myrica plants that have broad microsymbiont compatibility and, hence, are a potential host of Casuarinaceae-infective Frankia outside the hosts' native range. The results are consistent with the idea that Frankia symbiotic promiscuity and ease of isolation on organic substrates, suggesting saprophytic potential, are associated with increased microsymbiont ability to disperse and adapt to diverse new environments, and that both genetics and environment determine a host's nodular microsymbiont.  相似文献   

19.
Molecular phylogenetic approaches have begun to outline the origin, distribution and diversity of actinorhizal partners. Geographic isolation of Frankia and its host plants resulting from shifting continents and dispersal patterns have apparently led to the development of Frankia genotypes with differing affinities for host genera, even within the same plant family. Actinorhizal plant genera of widespread global distribution tend to nodulate readily even outside their native ranges. These taxa may maintain infective Frankia populations of considerable diversity on a broad scale. Arid environments seem to have distinctive actinorhizal partnerships, with smaller and more specific sets of Frankia symbionts. This has led to the hypothesis that some host families have taxa that are evolving towards narrow strain specificity, perhaps because of drier habitats where fewer Frankia strains would be able to survive. Harsh conditions such as water-saturated soils near lakes, swamps or bogs that are typically acidic and low in oxygen may similarly lessen the diversity of Frankia strains present in the soil, perhaps limiting the pool of frankiae available for infection locally and, at a larger scale, for natural selection of symbiotic partnerships with host plants. Recent molecular ecological studies have also provided examples of Frankia strain sorting by soil environment within higher order cluster groupings of Frankia host specificity. Future frontiers for ecological research on Frankia and actinorhizal plants include the soil ecosystem and the genome of Frankia and its hosts.  相似文献   

20.
The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号