首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dilution of protein–surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta‐galactosidase as model proteins. The fluorescent signature of protein–surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein–surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein–SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein–surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics.  相似文献   

2.
Single molecule fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy were used to investigate DNA looping by NgoMIV restriction endonuclease. Using a linear double-stranded DNA (dsDNA) molecule labeled with a fluorescence donor molecule, Cy3, and fluorescence acceptor molecule, Cy5, and by varying the concentration of NgoMIV endonuclease from 0 to 3 x 10(-6) M, it was possible to detect and determine diffusion properties of looped DNA/protein complexes. FRET efficiency distributions revealed a subpopulation of complexes with an energy transfer efficiency of 30%, which appeared upon addition of enzyme in the picomolar to nanomolar concentration range (using 10(-11) M dsDNA). The concentration dependence, fluorescence burst size analysis, and fluorescence correlation analysis were all consistent with this subpopulation arising from a sequence specific interaction between an individual enzyme and a DNA molecule. A 30% FRET efficiency corresponds to a distance of approximately 65 A, which correlates well with the distance between the ends of the dsDNA molecule when bound to NgoMIV according to the crystal structure of this complex. Formation of the looped complexes was also evident in measurements of the diffusion times of freely diffusing DNA molecules with and without NgoMIV. At very high protein concentrations compared to the DNA concentration, FRET and fluorescence correlation spectroscopy results revealed the formation of larger DNA/protein complexes.  相似文献   

3.
The dynamical fluorescence properties of the sole tryptophan residue (Trp-140) in Staphylococcus aureus nuclease (EC 3.1.31.1) have been investigated in aqueous solution and reversed micelles composed of either sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane or cetyltrimethylammonium chloride (CTAC) in isooctane/hexanol (12:1 by volume). The fluorescence decay of nuclease in the different environments can be described by a trimodal distribution of fluorescence lifetimes at approx. 0.5, 1.5 and 5.0 ns. The relative amplitudes depend on the environment. For pH 9.0 solutions the contribution of the two shortest lifetime components in the distribution is largest for AOT and smallest for CTAC reversed micelles. There is reasonable agreement between the average fluorescence lifetime and the fluorescence quantum efficiency confirming a significant fluorescence quenching in AOT reversed micelles. Fluorescence anisotropy decay revealed that the tryptophan environment in aqueous nuclease solutions is rigid on a nanosecond timescale. When nuclease was entrapped into reversed micelles the tryptophan gained some internal flexibility as judged from the distinct presence of a shorter correlation time. The longer correlation time reflected the rotational properties of the protein-micellar system. Modulation of the overall charge of nuclease (isoelectric point pH 9.6) by using buffer of pH 9.0 and pH 10.4, respectively, and of the size of empty micelles by selecting two values of the water to surfactant molar ratio, had only a minor effect on the rotational properties of nuclease in the positively charged reversed micelles. Encapsulation of nuclease in anionic reversed micelles resulted in the development of protein bound to aggregated structures which are immobilised on a nanosecond timescale. According to far UV vircular dichroism results the secondary structure of nuclease only followed the already published pH-dependent changes. Encapsulation had no major effect on the overall secondary structure.  相似文献   

4.
Single particle electron microscopy (EM) is an increasingly important tool for the structural analysis of macromolecular complexes. The main advantage of the technique over other methods is that it is not necessary to precede the analysis with the growth of crystals of the sample. This advantage is particularly important for membrane proteins and large protein complexes where generating crystals is often the main barrier to structure determination. Therefore, single particle EM can be employed with great utility in the study of large membrane protein complexes. Although the construction of atomic resolution models by single particle EM is possible in theory, currently the highest resolution maps are still limited to approximately 7-10A resolution and 15-30 A resolution is more typical. However, by combining single particle EM maps with high-resolution models of subunits or subcomplexes from X-ray crystallography and NMR spectroscopy it is possible to build up an atomic model of a macromolecular assembly. Image analysis procedures are almost identical for micrographs of soluble protein complexes and detergent solubilized membrane protein complexes. However, electron microscopists attempting to prepare specimens of a membrane protein complex for imaging may find that these complexes require different handling than soluble protein complexes. This paper seeks to explain how high-quality specimen grids of membrane protein complexes may be prepared to allow for the determination of their structure by EM and image analysis.  相似文献   

5.
Cellular signal transduction is dynamic, with signaling proteins continually associating and dissociating into and from protein complexes. Here we present a fluorescence recovery after photobleaching technique to determine the lifetime of protein complexes on intracellular vesicles. We use Bayesian inference based on a model that includes the diffusion of cytosolic proteins and their interaction with membrane-bound receptors. Our analysis is general: we incorporate prior information on protein diffusion, measurement error in determining fluorescence intensities, corrections for photobleaching, and variation in the concentration of receptors between vesicles. We apply our method to the complexes formed on endosomes by G-protein-coupled receptors and the protein β-arrestin. The lifetime of these complexes determines the recycling rate of the receptors. We find in mammalian cells that the bradykinin type 2 receptor and β-arrestin2 complex has a lifetime of ∼2 min, while the angiotensin II type 1A receptor and β-arrestin2 complex has a lifetime of ∼6 min. As well as allowing quantitative comparisons between experiments, our method provides in vivo parameters for systems biology simulations of signaling networks.  相似文献   

6.
Ligand-induced conformational changes in cytosolic protein kinase C   总被引:1,自引:0,他引:1  
The changes in intrinsic spectral properties of protein kinase C were monitored upon association with its divalent cation and lipid activators in a model membrane system. The enzyme demonstrated changes in both its intrinsic fluorescence and far ultraviolet circular dichroism spectra upon association with lipid vesicles in the absence of calcium. The acidic phospholipid, phosphatidylserine, significantly quenched the intrinsic tryptophan fluorescence and was also the most potent lipid support for the phosphorylating activity of the enzyme. The enzyme was fully activated by a number of Ca2(+)-lipid combinations which correlated with maximal fluorescence quenching (40-50%) of available tryptophan residues in hydrophobic domains. The circular dichroism structure of the associated active-protein Ca2(+)-lipid complexes suggested different active enzyme secondary structures. However, the Ca2(+)-dependent changes in fluorescence and circular dichroism spectra were observed only after the enzyme associated with the lipid vesicles. These data suggest that protein kinase C has the properties of a complex multidomain protein and provides an additional perspective into the mechanism of protein kinase C activation.  相似文献   

7.
Chloroperoxidase from Caldariomyces fumago, a peroxidase that performs P450-like chemistry, was immobilized via covalent attachment into polyurethane foam as well as conjugated with a surfactant or polymer via colyophilization. The resulting preparations catalyzed enantio- and regioselective oxidations in hydrophobic organic media with tert-butyl hydroperoxide as the oxidant.Dried PUR-foam immobilized CPO mediated the selective oxidation of indole to 2-oxindole (regioselectivity: 99%) in water-saturated isooctane or 1-octanol. Thioanisole was converted into the corresponding (R)-sulfoxide (ee > 99%) in isooctane medium.The complexes of CPO with sodium octadecylsulphate or ethyl cellulose mediated the oxidation of thioanisole in water-immiscible organic media with variable enantioselectivity due to radical side-reactions. In the presence of alpha-tocopherol, acting as radical scavenger, the (R)-sulfoxide was formed with ee > 90%. The effect of the water activity on the catalytic activity of the complexes was investigated.The CPO complexes likewise mediated the regioselective oxidation of indole into 2-oxindole in water-saturated isooctane or 1-octanol and its kinetics were investigated. The reaction suffered from substrate inhibition when carried out in isooctane.  相似文献   

8.
L C Kurz  D LaZard  C Frieden 《Biochemistry》1985,24(6):1342-1346
The accessibility of protein tryptophan fluorescence to the quenching agent acrylamide has been studied in adenosine deaminase and in binary complexes of the enzyme with ground-state or transition-state analogues. Although the enzyme contains three tryptophan residues, Stern-Volmer plots are linear with all the fluorescence quenchable at high acrylamide concentrations. Tryptophan fluorescence is less easily quenched in the binary complexes than in the free enzyme, indicating a decrease in the accessibility of these residues. The greatest decrease in accessibility is found for the transition-state analogue complexes. Although the affinities of the transition-state analogues studied span a range of 10(6), the Stern-Volmer constants of the complexes are the same within experimental error. Thus, as measured by this technique, changes in enzyme conformation accompanying formation of these complexes are similar for all transition-state analogues. Resonance energy transfer from tryptophan as donor to ligand as acceptor successfully explains the differing abilities of ligands to quench the enzyme's intrinsic fluorescence upon formation of complexes in the absence of acrylamide. On the basis of Forster distance calculations, it is likely that the residues partially quenched upon formation of transition-state analogue complexes are distant from the active site.  相似文献   

9.
Reverse micelles can be used to mimic biological processes occurring at interfaces. To investigate antigen-antibody binding in a membrane-like environment, we first obtained Fab fragments from monoclonal antibodies against bovine myelin basic protein (MBP), an encephalitogenic protein. The binding of the fragments to a dansylated synthetic human MBP peptide gly(119)-gly(131), presenting sequence homologies with a viral protein, was measured in buffer and for the first time in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate, in isooctane. Analysis of the fluorescence polarisation titration curves discloses that the Fab fragments in reverse micelles have retained the high affinity for the peptide found in buffer, and similar to that for intact MBP.  相似文献   

10.
After more than a decade of method development, cross-linking in combination with mass spectrometry and bioinformatics is finally coming of age. This technology now provides improved opportunities for modelling by mapping structural details of functional complexes in solution. The structure of proteins or protein complexes is ascertained by identifying amino acid pairs that are positioned in close proximity to each other. The validity of this technique has recently been benchmarked for large multi-protein complexes, by comparing cross-link data with that from a crystal structure of RNA polymerase II. Here, the specific nature of this cross-linking data will be discussed to assess the technical challenges and opportunities for model building. We believe that once remaining technological challenges of cross-linking/mass spectrometry have been addressed and cross-linking/mass spectrometry data has been incorporated into modelling algorithms it will quickly become an indispensable companion of protein and protein complex modelling and a corner-stone of integrated structural biology.  相似文献   

11.
Lecithin based microemulsions were used as model systems for enzymic studies. The phase behavior of the system: purified soya bean lecithin/propan-1-ol/isooctane/water was examined. It was found that the ability of the system to solubilize water was strongly affected by the lecithin and alcohol concentrations. Trypsin was entrapped in lecithin microemulsion systems of different composition and tested for proteolytic activity on the hydrolysis of lysine-p-nitroanilide (LNA). The kinetic constants were determined and in most cases the ratio kcat/Km was higher than that observed in aqueous solution. The optimum enzyme activity was found at pH 9 for the system formulated with 5% w/w lecithin in isooctane, while increasing wo, where wo = [H2o]/[Lecithin], the enzyme activity followed a bell-shaped pattern with a maximum at wo= 20. The stability of trypsin in microemulsions was higher in the low water containing systems. Using the fluorescence quenching technique it was found that the system compartmentalization depended on the water content and the presence of the enzyme. Time-resolved luminescence decay studies were carried out to clarify the effect of the water content and the presence of the enzyme molecules on the micro-emulsion structure. The analysis of the luminescence data was done with a “percolation” model of stretched exponential. A dramatic variation of the water/oil interface occurred above the percolation threshold, while the addition of the enzyme induced a more restricted microenvironment.  相似文献   

12.
Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV?CVis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenic-binding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising.  相似文献   

13.
14.
Mu-mediated polymerase chain reaction footprinting was used to investigate the protein-DNA structure of human immunodeficiency virus type I (HIV-I) preintegration complexes. Preintegration complexes were partially purified from cells after using an established coculture infection technique as well as a novel technique using cell-free supernatant from transfected cells as the source of virus. Footprinting revealed that bound proteins protected the terminal 200-250 base pairs of each viral end from nuclease attack. Bound proteins also caused strong transpositional enhancements near each end of HIV-I. In contrast, regions of viral DNA internal to the ends did not show evidence of strong protein binding. The end regions of preintegrative HIV-I apparently form a unique nucleoprotein structure, which we term the intasome to distinguish it from the greater preintegration complex. Our novel system also allowed us to analyze the structure and function of preintegration complexes isolated from cells infected with integrase mutant viruses. Complexes were derived from viruses defective for either integrase catalysis, integrase binding to the viral DNA substrate, or an unknown function in the carboxyl-terminal domain of the integrase protein. None of these mutant complexes supported detectable integration activity. Despite the presence of the mutant integrase proteins in purified samples, none of these nucleoprotein complexes displayed the native intasome structure detected in wild-type preintegration complexes. We conclude that multiple integrase functions are required to form the native structure of the HIV-I intasome in infected cells.  相似文献   

15.
Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar light conditions, harmful excitation energy is safely dissipated as heat. To prevent self-aggregation and probe the conformations of LHCs in a lipid environment devoid from detergent interactions, we assembled LHCII trimer complexes into lipid nanodiscs consisting of a bilayer lipid matrix surrounded by a membrane scaffold protein (MSP). The LHCII nanodiscs were characterized by fluorescence spectroscopy and found to be in an unquenched, fluorescent state. Remarkably, the absorbance spectra of LHCII in lipid nanodiscs show fine structure in the carotenoid and Qy region that is different from unquenched, detergent-solubilized LHCII but similar to that of self-aggregated, quenched LHCII in low-detergent buffer without magnesium ions. The nanodisc data presented here suggest that 1), LHCII pigment-protein complexes undergo conformational changes upon assembly in nanodiscs that are not correlated with downregulation of its light-harvesting function; and 2), these effects can be separated from quenching and aggregation-related phenomena. This will expand our present view of the conformational flexibility of LHCII in different microenvironments.  相似文献   

16.
Several techniques were examined for the solubilization of bacteriophage MS2 in organic solvents. Direct extraction of the MS2 from an aqueous phase into isooctane containing 2 mM AOT, a proven approach for the organic solubilization of many proteins, was not successful. However, predried samples of MS2 were solubilized through the direct addition of organic solvents containing 500 mM AOT. As an alternative procedure, reverse micelles containing aqueous solutions of MS2 were prepared in isooctane using AOT, dehydrated through solvent evaporation and azeotropic drying, and resolubilized in a solvent of choice. The structure and microenvironment of organic-solubilized MS2 were investigated by UV absorbance, the fluorescence emission of an attached solvatochromatic dye, tryptophan fluorescence, and atomic force microscopy, all of which contributed evidence for a fully assembled capsid in the organic solvent. The solubilized MS2 was derivatized with stearic acid in chloroform, illustrating that bioconjugation reactions can be performed on organic-solubilized capsids using reagents that are completely insoluble in water. Furthermore, the organic-solubilized phage remained infectious after heating at 90 degrees C for 20 min, whereas phage in aqueous buffer or dried with nitrogen were nonviable following the heat treatment protocol. The extended range of available chemical modifications and the enhanced thermal stability of the organic-solubilized capsids bodes well for the formulation of storage-stable vaccines predicated on reactions in or exposure to organic media.  相似文献   

17.
The acidic, partly folded states of bovine carbonic anhydrase II (BCAII) were used as an experimental system to study the interactions of partly denatured proteins with lipid membranes. The pH dependence of their interactions with palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidylglycerol (POPG) membranes was studied. A filtration binding assay shows that acidic partly folded states of BCAII bind to POPC membranes. Fluorescence emission spectra from Trp residues of the bound protein are slightly shifted to shorter wavelength and can be quenched by a water-soluble quencher of fluorescence, indicating that the binding occurs without deep penetration of Trp residues into the membrane. The content of beta-structures of the protein in solution, as revealed by FT-IR spectroscopy, decreases in the partly folded states and the binding to POPC membrane occurs without further changes of secondary structure. In the presence of 0.1 M NaCl, a partly folded state self-aggregates and does not bind to POPC membrane. At acidic pH, BCAII binds to POPG membranes both at high and low ionic strength. The binding to the anionic lipid occurs with protein self-aggregation within the lipid-protein complexes and with changes in the secondary structure; large blue shifts in the fluorescence emission spectra and the decrease in the exposure to water-soluble acrylamide quencher of Trp fluorescence strongly suggest that BCAII penetrates the hydrocarbon domain in the POPG-protein complexes.  相似文献   

18.
A combination of intrinsic fluorescence and circular dichroic (CD) spectroscopy has been used to characterize the complexes formed between bovine retinal arrestin and heparin or phytic acid, two ligands that are known to mimic the structural changes in arrestin attending receptor binding. No changes in the CD spectra were observed upon ligand binding, nor did the degree of tryptophan fluorescence quenching change significantly in the complexes. These data argue against any large-scale changes in protein secondary or tertiary structure accompanying ligand binding. The change in tyrosine fluorescence intensity was used to determine the dissociation constants for the heparin and phytic acid complexes of arrestin. The only change observed was a saturable diminution of tyrosine fluorescence signal from the protein. For both ligands, the data suggest two distinct binding interactions with the protein—a high-affinity interaction with K d between 200 and 300 nM, and a lower affinity interaction with K d between 2 and 8 M. Study of collisional quenching of tyrosine fluorescence in free arrestin and the ligand-replete complexes indicates that 10 of the 14 tyrosine residues of the protein are solvent-exposed in the free protein; this value drops to between 5 and 6 solvent-exposed residues in the high-affinity complexes of the two ligands. These data suggest that ligand binding leads to direct occlusion of between 4 and 5 tyrosine residues on the solvent-exposed surface of the protein, but not to any large-scale changes in protein structure. The large activation energy previously reported to be associated with arrestin–receptor interactions may therefore reflect localized movements of the N- and C-termini of arrestin, which are proposed to interact in the free protein through electrostatic interactions. Binding of the anionic ligands heparin, phytic acid, or phosphorylated rhodopsin may compete with the C-terminus of arrestin for these electrostatic interactions, thus allowing the C-terminus to swing out of the binding region.  相似文献   

19.
本文综述了近二十年来褐藻色素蛋白质复合物的研究进展,包括色素蛋白质复合物分离技术、褐藻的光系统I、光系统II及捕光色素蛋白质复合物研究进展。并就褐藻色素蛋白质复合物分离技术中存在的问题、褐藻的特点、褐藻与其它光合生物的色素蛋白质复合物的同源性以及褐藻PSI复合物77K荧光发射的特点等进行了讨论  相似文献   

20.
Macromolecular assemblies play an important role in all cellular processes. While there has recently been significant progress in protein structure prediction based on deep learning, large protein complexes cannot be predicted with these approaches. The integrative structure modeling approach characterizes multi-subunit complexes by computational integration of data from fast and accessible experimental techniques. Crosslinking mass spectrometry is one such technique that provides spatial information about the proximity of crosslinked residues. One of the challenges in interpreting crosslinking datasets is designing a scoring function that, given a structure, can quantify how well it fits the data. Most approaches set an upper bound on the distance between Cα atoms of crosslinked residues and calculate a fraction of satisfied crosslinks. However, the distance spanned by the crosslinker greatly depends on the neighborhood of the crosslinked residues. Here, we design a deep learning model for predicting the optimal distance range for a crosslinked residue pair based on the structures of their neighborhoods. We find that our model can predict the distance range with the area under the receiver-operator curve of 0.86 and 0.7 for intra- and inter-protein crosslinks, respectively. Our deep scoring function can be used in a range of structure modeling applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号