首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray structure of a neuronal complexin-SNARE complex from squid   总被引:2,自引:0,他引:2  
Nerve terminals release neurotransmitters from vesicles into the synaptic cleft upon transient increases in intracellular Ca(2+). This exocytotic process requires the formation of trans SNARE complexes and is regulated by accessory proteins including the complexins. Here we report the crystal structure of a squid core complexin-SNARE complex at 2.95-A resolution. A helical segment of complexin binds in anti-parallel fashion to the four-helix bundle of the core SNARE complex and interacts at its C terminus with syntaxin and synaptobrevin around the ionic zero layer of the SNARE complex. We propose that this structure is part of a multiprotein fusion machinery that regulates vesicle fusion at a late pre-fusion stage. Accordingly, Ca(2+) may initiate membrane fusion by acting directly or indirectly on complexin, thus allowing the conformational transitions of the trans SNARE complex that are thought to drive membrane fusion.  相似文献   

2.
Heme oxygenase (HO) catalyzes the degradation of heme to biliverdin. The crystal structure of human HO-1 in complex with heme reveals a novel helical structure with conserved glycines in the distal helix, providing flexibility to accommodate substrate binding and product release (Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. (1999) Nat. Struct. Biol. 6, 860-867). To structurally understand the HO catalytic pathway in more detail, we have determined the crystal structure of human apo-HO-1 at 2.1 A and a higher resolution structure of human HO-1 in complex with heme at 1.5 A. Although the 1.5-A heme.HO-1 model confirms our initial analysis based on the 2.08-A model, the higher resolution structure has revealed important new details such as a solvent H-bonded network in the active site that may be important for catalysis. Because of the absence of the heme, the distal and proximal helices that bracket the heme plane in the holo structure move farther apart in the apo structure, thus increasing the size of the active-site pocket. Nevertheless, the relative positioning and conformation of critical catalytic residues remain unchanged in the apo structure compared with the holo structure, but an important solvent H-bonded network is missing in the apoenzyme. It thus appears that the binding of heme and a tightening of the structure around the heme stabilize the solvent H-bonded network required for proper catalysis.  相似文献   

3.
Upon Ca2+ influx synaptic vesicles fuse with the plasma membrane and release their neurotransmitter cargo into the synaptic cleft. Key players during this process are the Q-SNAREs syntaxin 1a and SNAP-25 and the R-SNARE synaptobrevin 2. It is thought that these membrane proteins gradually assemble into a tight trans-SNARE complex between vesicular and plasma membrane, ultimately leading to membrane fusion. Tomosyn is a soluble protein of 130 kDa that contains a COOH-terminal R-SNARE motif but lacks a transmembrane anchor. Its R-SNARE motif forms a stable core SNARE complex with syntaxin 1a and SNAP-25. Here we present the crystal structure of this core tomosyn SNARE complex at 2.0-A resolution. It consists of a four-helical bundle very similar to that of the SNARE complex containing synaptobrevin. Most differences are found on the surface, where they prevented tight binding of complexin. Both complexes form with similar rates as assessed by CD spectroscopy. In addition, synaptobrevin cannot displace the tomosyn helix from the tight complex and vice versa, indicating that both SNARE complexes represent end products. Moreover, data bank searches revealed that the R-SNARE motif of tomosyn is highly conserved throughout all eukaryotic kingdoms. This suggests that the formation of a tight SNARE complex is important for the function of tomosyn.  相似文献   

4.
Assembly of the SNARE complex is an essential step for membrane fusion and neurotransmitter release in neurons. The plasma membrane SNAREs syntaxin 1A and SNAP-25 (t-SNAREs) and the delivery-vesicle SNARE VAMP2 (or v-SNARE) contain the "SNARE regions" that essentially mediate SNARE pairing. Using site-directed spin labeling and EPR distance measurement we show that two identical copies of the SNARE region from syntaxin 1A intertwine as a coiled coil near the "ionic layer" region. The structure of the t-SNARE complex appears to be virtually identical to that of the ternary SNARE complex, except that VAMP2 is substituted to the second copy of syntaxin 1A. Furthermore, it appears that the coiled coil structure is maintained up to residue 259 of syntaxin 1A, identical to that of the ternary complex. These results are somewhat contradictory to the previous reports, suggesting that the t-SNARE complex has the disordered midsection (Xiao, W. Z., Poirier, M. A., Bennett, M. K., and Shin, Y. K. (2001) Nat. Struc. Biol. 8, 308-311) and the uncoiled C-terminal region (Margittai, M., Fasshauer, D., Pabst, S., Jahn, R., and Langen, R. (2001) J. Biol. Chem. 276, 13169-13177). The newly refined structure of the t-SNARE complex provides a basis for the better understanding of the SNARE assembly process. It also provides possible structural-functional clues to the membrane fusion in the v-SNARE deleted fusion models.  相似文献   

5.
Single-crystal X-ray structure determinations of the complex between the minor-groove binder distamycin and d(GGCCAATTGG) reveal two 1 : 1 binding modes which differ in the orientation of the drug molecule in the minor groove. The two crystals were grown from different crystallization conditions and found to diffract to 2.38 and 1.85 A, respectively. The structures were refined to completion using SHELXL-93, resulting in a residual R factor of 20.30% for the 2.38-A resolution structure (including 46 water molecules) and 19.74% for the 1.85-A resolution structure (including 74 water molecules). In both orientations, bifurcated hydrogen bonds are formed between the amide nitrogen atoms of the drug and AT base pairs. With a binding site of at least five base pairs, close contacts between the terminal distamycin atoms and guanine amino groups are inevitable. The detailed nature of several of these interactions was further investigated by ab initio quantum chemical methods.  相似文献   

6.
The crystal structure of mandelate racemase (MR) has been solved at 3.0-A resolution by multiple isomorphous replacement and subsequently refined against X-ray diffraction data to 2.5-A resolution by use of both molecular dynamics refinement (XPLOR) and restrained least-squares refinement (PROLSQ). The current crystallographic R-factor for this structure is 18.3%. MR is composed of two major structural domains and a third, smaller, C-terminal domain. The N-terminal domain has an alpha + beta topology consisting of a three-stranded antiparallel beta-sheet followed by an antiparallel four alpha-helix bundle. The central domain is a singly wound parallel alpha/beta-barrel composed of eight central strands of beta-sheet and seven alpha-helices. The C-terminal domain consists of an irregular L-shaped loop with several short sections of antiparallel beta-sheet and two short alpha-helices. This C-terminal domain partially covers the junction between the major domains and occupies a region of the central domain that is filled by an eight alpha-helix in all other known parallel alpha/beta-barrels except for the barrel domain in muconate lactonizing enzyme (MLE) [Goldman, A., Ollis, D. L., & Steitz, T. A. (1987) J. Mol. Biol. 194, 143] whose overall polypeptide fold and amino acid sequence are strikingly similar to those of MR [Neidhart, D. J., Kenyon, G. L., Gerlt, J. A., & Petsko, G. A. (1990) Nature 347, 692]. In addition, the crystal structure reveals that, like MLE, MR is tightly packed as an octamer of identical subunits. The active site of MR is located between the two major domains, at the C-terminal ends of the beta-strands in the alpha/beta-barrel domain. The catalytically essential divalent metal ion is ligated by three side-chain carboxyl groups contributed by residues of the central beta-sheet. A model of a productive substrate complex of MR has been constructed on the basis of difference Fourier analysis at 3.5-A resolution of a complex between MR and (R,S)-p-iodomandelate, permitting identification of residues that may participate in substrate binding and catalysis. The ionizable groups of both Lys 166 and His 297 are positioned to interact with the chiral center of substrate, suggesting that both of these residues may function as acid/base catalysts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The crystal structure of the complex between an N-terminally truncated G129R human prolactin (PRL) variant and the extracellular domain of the human prolactin receptor (PRLR) was determined at 2.5A resolution by x-ray crystallography. This structure represents the first experimental structure reported for a PRL variant bound to its cognate receptor. The binding of PRL variants to the PRLR extracellular domain was furthermore characterized by the solution state techniques, hydrogen exchange mass spectrometry, and NMR spectroscopy. Compared with the binding interface derived from mutagenesis studies, the structural data imply that the definition of PRL binding site 1 should be extended to include residues situated in the N-terminal part of loop 1 and in the C terminus. Comparison of the structure of the receptor-bound PRL variant with the structure reported for the unbound form of a similar analogue ( Jomain, J. B., Tallet, E., Broutin, I., Hoos, S., van Agthoven, J., Ducruix, A., Kelly, P. A., Kragelund, B. B., England, P., and Goffin, V. (2007) J. Biol. Chem. 282, 33118-33131 ) demonstrates that receptor-induced changes in the backbone of the four-helix bundle are subtle, whereas large scale rearrangements and structuring occur in the flexible N-terminal part of loop 1. Hydrogen exchange mass spectrometry data imply that the dynamics of the four-helix bundle in solution generally become stabilized upon receptor interaction at binding site 1.  相似文献   

8.
CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca2+-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis.  相似文献   

9.
F(1) is the water-soluble portion of the ubiquitous F(1)F(0) ATP synthase. Its structure includes three alpha- and three beta-subunits, arranged as a hexameric disc, plus a gamma-subunit that penetrates the center of the disc akin to an axle. Recently Hausrath et al. (Hausrath, A. C., Grüber, G., Matthews, B. W., and Capaldi, R. A. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 13697-13702) obtained an electron density map of E. coli F(1) at 4.4-A resolution in which the coiled-coil alpha-helices of the gamma-subunit could be seen to extend 45 A from the base of the alpha(3)beta(3) hexamer. Subsequently the structure of a truncated form of the E. coli gamma-subunit in complex with epsilon has been described (Rodgers, A. J. W., and Wilce, M. C. J. (2000) Nat. Struct. Biol. 7, 1051-1054). In the present study the 4.4-A resolution electron density map of E. coli F(1) is re-evaluated in light of the newly available data on the gamma- and epsilon-subunits. It is shown that the map of the F(1) complex is consistent with the structure of the isolated subunits. When E. coli F(1) is compared with that from beef heart, the structures of the E. coli gamma- and epsilon-subunits are seen to be generally similar to their counterparts in the bovine enzyme but to undergo major shifts in position. In particular, the two long, coiled-coil alpha-helices that lie along the axis of F(1) both unwind and rotate. Also the epsilon-subunit rotates around the axis by 81 degrees and undergoes a net translation of about 23 A. It is argued that these large-scale changes in conformation reflect distinct functional states that occur during the rotation of the gamma-subunit within the alpha(3)beta(3) hexamer.  相似文献   

10.
The universal sesquiterpene precursor, farnesyl diphosphate (FPP), is cyclized in an Mg(2+)-dependent reaction catalyzed by the tetrameric aristolochene synthase from Aspergillus terreus to form the bicyclic hydrocarbon aristolochene and a pyrophosphate anion (PP(i)) coproduct. The 2.1-A resolution crystal structure determined from crystals soaked with FPP reveals the binding of intact FPP to monomers A-C, and the binding of PP(i) and Mg(2+)(B) to monomer D. The 1.89-A resolution structure of the complex with 2-fluorofarnesyl diphosphate (2F-FPP) reveals 2F-FPP binding to all subunits of the tetramer, with Mg(2+)(B)accompanying the binding of this analogue only in monomer D. All monomers adopt open activesite conformations in these complexes, but slight structural changes in monomers C and D of each complex reflect the very initial stages of a conformational transition to the closed state. Finally, the 2.4-A resolution structure of the complex with 12,13-difluorofarnesyl diphosphate (DF-FPP) reveals the binding of intact DF-FPP to monomers A-C in the open conformation and the binding of PP(i), Mg(2+)(B), and Mg(2+)(C) to monomer D in a predominantly closed conformation. Taken together, these structures provide 12 independent "snapshots" of substrate or product complexes that suggest a possible sequence for metal ion binding and conformational changes required for catalysis.  相似文献   

11.
The three-dimensional structures of the truncated myosin head from Dictyostelium discoideum myosin II complexed with dinitrophenylaminoethyl-, dinitrophenylaminopropyl-, o-nitrophenylaminoethyl-, m-nitrophenylaminoethyl-, p-nitrophenylaminoethyl-, and o-nitrophenyl-N-methyl-aminoethyl-diphosphate.beryllium fluoride have been determined to better than 2.3-A resolution. The structure of the protein and nucleotide binding pocket in these complexes is very similar to that of S1dC.ADP.BeF(x) (Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M., and Rayment, I. (1995) Biochemistry 34, 8960-8972). The position of the triphosphate-like moiety is essentially identical in all complexes. Furthermore, the alkyl-amino group plays the same role as the ribose by linking the triphosphate to the adenine binding pocket; however, none of the phenyl groups lie in the same position as adenine in S1dC.MgADP.BeF(x), even though several of these nucleotide analogs are functionally equivalent to ATP. Rather the former location of adenine is occupied by water in the nanolog complexes, and the phenyl groups are organized in a manner that attempts to optimize their hydrogen bonding interactions with this constellation of solvent molecules. A comparison of the kinetic and structural properties of the nanologs relative to ATP suggests that the ability of a substrate to sustain tension and to generate movement correlates with a well defined interaction with the active site water structure observed in S1dC.MgADP.BeF(x).  相似文献   

12.
Infectious pancreatic necrosis virus (IPNV), an aquatic birnavirus that infects salmonid fish, encodes a large polyprotein (NH(2)-pVP2-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease, VP4, to release the proteins pVP2 and VP3. pVP2 is further processed to give rise to the capsid protein VP2 and three peptides that are incorporated into the virion. Reported here are two crystal structures of the IPNV VP4 protease solved from two different crystal symmetries. The electron density at the active site in the triclinic crystal form, refined to 2.2-A resolution, reveals the acyl-enzyme complex formed with an internal VP4 cleavage site. The complex was generated using a truncated enzyme in which the general base lysine was substituted. Inside the complex, the nucleophilic Ser(633)Ogamma forms an ester bond with the main-chain carbonyl of the C-terminal residue, Ala(716), of a neighboring VP4. The structure of this substrate-VP4 complex allows us to identify the S1, S3, S5, and S6 substrate binding pockets as well as other substrate-VP4 interactions and therefore provides structural insights into the substrate specificity of this enzyme. The structure from the hexagonal crystal form, refined to 2.3-A resolution, reveals the free-binding site of the protease. Three-dimensional alignment with the VP4 of blotched snakehead virus, another birnavirus, shows that the overall structure of VP4 is conserved despite a low level of sequence identity ( approximately 19%). The structure determinations of IPNV VP4, the first of an acyl-enzyme complex for a Ser/Lys dyad protease, provide insights into the catalytic mechanism and substrate recognition of this type of protease.  相似文献   

13.
A wide variety of sugars, amino acids, peptides, and inorganic ions are transported into bacteria by periplasmic transport systems consisting of substrate-specific receptors (binding proteins) and membrane-bound protein complexes. The crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) at 2.7-A resolution shows that the molecule has a bi-lobal structure and that its topological structure is different from other amino acid-binding proteins but is similar to the sulfate-binding protein and maltose-binding protein. High sequence homology between LAO and the histidine-binding protein (HisJ) and the fact that LAO and HisJ share the same membrane-bound protein complex allow one to define functional regions responsible for the ligand binding and for the interaction with the membrane complex.  相似文献   

14.
Refined x-ray structure of papain.E-64-c complex at 2.1-A resolution.   总被引:2,自引:0,他引:2  
E-64-c, a synthetic cysteine protease inhibitor designed from E-64, binds to papain through a thioether covalent bond. The x-ray diffraction data for 2.1-A resolution were used to determine the three-dimensional structure of this complex and refined it to R = 0.159. 0.159. In the complex structure, the configurational conversion from S to R took place on the epoxy carbon of E-64-c, implying that the nucleophilic attack of the Cys-25 thiol group occurs at the opposite side of the epoxy oxygen atom. The leucyl and isoamylamide groups of E-64-c were strongly fixed to papain S subsites by specific interactions, including hydrogen bonding to the Gly-66 residue. The carboxyl-terminal anion of E-64-c formed an electrostatic interaction with the protonated His-159 imidazole ring (O-...HN+ = 3.76 A) and consequently prevented the participation of this residue in the hydrolytic charge-relay system. No significant distortion caused by the binding of E-64-c was shown in the secondary structure of papain. It is important to note that inhibitor and substrate have opposite binding modes for the peptide groups. The possible relationship between the binding mode and inhibitory activity is discussed on the basis of the crystal structure of this complex.  相似文献   

15.
16.
The structure of the trimeric, manganese metalloenzyme, rat liver arginase, has been previously determined at 2.1-A resolution (Kanyo, Z. F., Scolnick, L. R., Ash, D. E., and Christianson, D. W., (1996) Nature 383, 554-557). A key feature of this structure is a novel S-shaped oligomerization motif at the carboxyl terminus of the protein that mediates approximately 54% of the intermonomer contacts. Arg-308, located within this oligomerization motif, nucleates a series of intramonomer and intermonomer salt links. In contrast to the trimeric wild-type enzyme, the R308A, R308E, and R308K variants of arginase exist as monomeric species, as determined by gel filtration and analytical ultracentrifugation, indicating that mutation of Arg-308 shifts the equilibrium for trimer dissociation by at least a factor of 10(5). These monomeric arginase variants are catalytically active, with k(cat)/K(m) values that are 13-17% of the value for wild-type enzyme. The arginase variants are characterized by decreased temperature stability relative to the wild-type enzyme. Differential scanning calorimetry shows that the midpoint temperature for unfolding of the Arg-308 variants is in the range of 63.6-65.5 degrees C, while the corresponding value for the wild-type enzyme is 70 degrees C. The three-dimensional structure of the R308K variant has been determined at 3-A resolution. At the high protein concentrations utilized in the crystallizations, this variant exists as a trimer, but weakened salt link interactions are observed for Lys-308.  相似文献   

17.
Phosphorylation of both small molecules and proteins plays a central role in many biological processes. In proteins, phosphorylation most commonly targets the oxygen atoms of Ser, Thr, and Tyr. In contrast, stably phosphorylated His residues are rarely found, due to the lability of the N-P bond, and histidine phosphorylation features most often in transient processes. Here we present the crystal structure of a protein of previously unknown function, which proves to contain a stably phosphorylated histidine residue. The protein is the product of open reading frame PAE2307, from the hyperthermophilic archaeon Pyrobaculum aerophilum, and is representative of a highly conserved protein family found in archaea and bacteria. The crystal structure of PAE2307, solved at 1.45-A resolution (R = 0.208, R(free) = 0.227), forms a remarkably tightly associated hexamer. The phosphorylated histidine at the proposed active site, pHis85, occupies a cavity that is at the interface between two subunits and contains a number of fully conserved residues. Stable phosphorylation is attributed to favorable hydrogen bonding of the phosphoryl group and a salt bridge with pHis85 that provides electronic stabilization. In silico modeling suggested that the protein may function as an adenosine kinase, a conclusion that is supported by in vitro assays of adenosine binding, using fluorescence spectroscopy, and crystallographic visualization of an adenosine complex of PAE2307 at 2.25-A resolution.  相似文献   

18.
Intracellular membrane fusion requires the regulated assembly of SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor) proteins anchored in the apposed membranes. To exert the force required to drive fusion between lipid bilayers, juxtamembrane SNARE motifs zipper into four-helix bundles. Importantly, SNARE function is regulated by additional factors, none more extensively studied than the SM (Sec1/Munc18-like) proteins. SM proteins interact with both individual SNAREs and SNARE complexes, likely chaperoning SNARE complex formation and protecting assembly intermediates from premature disassembly by NSF. Four families of SM proteins have been identified, and representative members of two of these families (Sec1/Munc18 and Sly1) have been structurally characterized. We report here the 2.6 Å resolution crystal structure of an SM protein from the third family, Vps33. Although Vps33 shares with the first two families the same basic three-domain architecture, domain 1 is displaced by 15 Å, accompanied by a 40° rotation. A unique feature of the Vps33 family of SM proteins is that its members function as stable subunits within a multi-subunit tethering complex called HOPS (homotypic fusion and vacuolar protein sorting). Integration into the HOPS complex depends on the interaction between Vps33 and a second HOPS subunit, Vps16. The crystal structure of Vps33 bound to a C-terminal portion of Vps16, also at 2.6 Å resolution, reveals the structural basis for this interaction. Despite the extensive interface between the two HOPS subunits, the conformation of Vps33 is only subtly affected by binding to Vps16.  相似文献   

19.
The enzyme ribonuclease T1 cleaves single-stranded RNA at the 3'-side of guanosine. The structure of the complex with two guanosines has been analyzed at 1.8-A resolution and refined to a crystallographic R value of 14.0%. One guanosine occupies the guanosine recognition site as observed in previously analyzed complexes of ribonuclease T1 with guanosine phosphates. The other is bound to a base-unspecific subsite marking the binding locus of the nucleoside 3'-proximal to guanosine in a cleavable RNA chain. The positions of the guanosine bound to the recognition site and of the guanine base at the subsite were used to guide model building of the substrate guanylyl-3',5'-guanosine bound to the active site of ribonuclease T1. After energy minimization and a 7-ps stochastic dynamics simulation, a plausible model of the enzyme-substrate complex was obtained which may serve as a reference point in consideration of the mechanisms of RNA hydrolysis by ribonuclease T1.  相似文献   

20.
The crystal structure of the binary complex of non-activated ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and its product 3-phospho-D-glycerate has been determined to 2.9-A resolution. This structure determination confirms the proposed location of the active site (Schneider, G., Lindqvist, Y., Br?ndén, C.-I., and Lorimer, G. (1986) EMBO J. 5, 3409-3415) at the carboxyl end of the beta-strands of the alpha/beta-barrel in the carboxyl-terminal domain. One molecule of 3-phosphoglycerate is bound per active site. All oxygen atoms of 3-phosphoglycerate form hydrogen bonds to groups of the enzyme. The phosphate group interacts with the sidechains of residues Arg-288, His-321, and Ser-368, which are conserved between enzymes from different species as well as with the main chain nitrogens from residues Thr-322 and Gly-323. These amino acid residues constitute one of the two phosphate binding sites of the active site. The carboxyl group interacts with the side chains of His-287, Lys-191, and Asn-111. Implications of the activation process for the binding of 3-phosphoglycerate are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号