首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nuclear and cytoplasmic staining methods were used to study natural senescence of the root cortex and coleoptile of wheat and barley seedlings grown in glasshouse conditions. Coleoptiles of barley senesced more slowly than those of wheat, paralleling the known difference in rates of root cortex senescence in these cereals. The coleoptiles and root cortices of both cereals senesced more slowly in shaded than in unshaded conditions, but infection of the shoots of barley byErysiphe graminis had little effect on root cortex senescence. The results are discussed in relation to infection by root- and foot-rot fungi. Previous reports on the effects of illumination on take-all infection (Gaeumannomyces graminis) are explained. It is suggested that natural senescence of the coleoptile might affect establishment of infection by the eyespot fungus,Pseudocercosporella herpotrichoides, either directly or through the activities of competing microorganisms.  相似文献   

2.
Summary Genetic maps of the homoeologous group-2 chromosomes were constructed, comprising 114 loci in wheat and 34 loci in rye. These include the genes coding for sucrose synthase, sedoheptulose-1,7-bisphosphatase, a bZIP protein (EmBP-1), a peroxidase and an abscisic acid-induced protein (#7). Overall, gene orders are highly conserved in the genomes of wheat, barley and rye, except for the distal ends of chromosome arms 2BS and 2RS, which are involved in interchromosomal, probably evolutionary, translocations. Clustering of loci in the centromeric regions of the maps, resulting from the concentration of recombination events in the distal chromosomal regions, is observed in wheat and rye, but not in barley. Furthermore, loci for which homoeoloci can be detected in rye and barley tend to lie in the centromeric regions of the maps, while non-homoeologous and wheat-specific loci tend to be more evenly distributed over the genetic maps. Mapping of the group-2 chromosomes in the intervarietal Timgalen x RL4137 cross revealed that the T. timopheevi chromosome segment introgressed into chromosome 2B in Timgalen is preferentially transmitted. Recombination is also greatly reduced in that segment.  相似文献   

3.
Summary Nuclear staining with acridine orange was used to assess cell viability in the cortex of wheat and barley seminal roots from glasshouse and field experiments. Results from this method correlated well with nuclear assessments made in unstained or Feulgen-stained roots, and other evidence is presented to support the validity of the method. The pattern of root cortex death (RCD) was similar in wheat and barley and consistent over a wide range of conditions. Behind the extending root tip and zone of nucleate root hairs, nuclei disappeared progressively from the outer five (of six) cortical cell layers of the root axes, starting in the epidermis. Stainable nuclei remained in the sixth cell layer, next to the endodermis, and in most cell layers around the bases of root laterals and in a small region immediately below the grain. The onset of cell death was apparently related more to the age of a root region than to its distance behind the root tip, and it was not closely correlated with endodermal or stelar development assessed by staining with phloroglucinol/HCl. The rate of RCD was much faster in wheat than barley in both glasshouse and field conditions, and faster in some spring wheat cultivars than in others in the glasshouse. RCD occurred in sterile vermiculite and perlite and was not enhanced by the presence of soil microorganisms; nor was it enhanced in soil by the addition of the non-pathogenic fungal parasitesPhialophora radicicola var..graminicola orMicrodochium bolleyi. RCD is suggested to be endogenously controlled by the amount of photosynthate reaching the cortex. Its implications for growth of soil microorganisms and especially for growth and biological control of root-infecting fungi are discussed.  相似文献   

4.
Summary Four hybrids were obtained between three Australian Elymus taxa and three cereal grains: wheat, rye, and barley. Mean meiotic metaphase-I configurations were 41.14 I, 0.42 rod II, 0.003 ring II, and 0.01 III for E. scabrus var plurinervis x Triticum aestivum (1 hybrid plant), 22.27 I, 2.63 rod II, 0.06 ring II, and 0.12 III for E. scabrus var scabrus x Secale cereale (4 hybrid plants), and 26.65 I, 0.66 rod II, 0.00 ring II, and 0.01 III for E. scabrus var plurinervis x Hordeum vulgare (13 hybrid plants). The I genome of barley also paired very little in a BIII hybrid of apomictic E. rectisetus x H. vulgare (2 hybrid plants). Megasporogenesis in this BIII hybrid was at least facultatively apomeiotic, with the same sort of nuclear elongation, apomeiotic division, and dyad formation seen previously in E. rectisetus itself. All four hybrid combinations were sterile. While spike morphology in the E. scabrus x T. aestivum and E. scabrus x H. vulgare hybrids were intermediate to their parents, E. scabrus x S. cereale and E. rectisetus x H. vulgare looked like their maternal parents.  相似文献   

5.
We analysed pathogenesis-related expression of genes, that are assumed to be involved in ubiquitous plant defence mechanisms like the oxidative burst, the hypersensitive cell death reaction (HR) and formation of localized cell wall appositions (papillae). We carried out comparative northern blot and RT-PCR studies with near-isogenic barley (Hordeum vulgareL. cv. Pallas) lines (NILs) resistant or susceptible to the powdery mildew fungus race A6 (Blumeria graminis f.sp. hordei, BghA6). The NILs carrying one of the R-genes Mla12, Mlg or the mlo mutant allele mlo5 arrest fungal development by cell wall appositions (mlo5) or a HR (Mla12) or both (Mlg). Expression of an aspartate protease gene, an ascorbate peroxidase gene and a newly identified cysteine protease gene was up-regulated after inoculation with BghA6, whereas the constitutive expression-level of a BAS gene, that encodes an alkyl hydroperoxide reductase, was reduced. Expression of a newly identified barley homologue of a mammalian cell death regulator, Bax inhibitor 1, was enhanced after powdery mildew inoculation. An oxalate oxidase-like protein was stronger expressed in NILS expressing penetration resistance. A so far unknown gene that putatively encodes the large subunit of a superoxide generating NADPH oxidases was constitutively expressed in barley leaves and its expression pattern did not change after inoculation. A newly identified barley Rac1 homologue was expressed constitutively, such as the functionally linked NADPH oxidase gene. Gene expression patterns are discussed with regard to defence mechanisms and signal transduction.  相似文献   

6.
Summary Homologous high molecular weight storage prolamins were purified from grain of wheat, rye and barley using combinations of gel filtration, ion-exchange chromatography and preparative isoelectric focusing. Sodium dodecylsulphate polyacrylamide gel electrophoresis showed that the components were single bands with apparent mol.wts. of above 100,000. Molecular weights determined by sedimentation equilibrium ultracentrifugation were considerably lower; 54,700, 67,600 and 69,600 for the components from barley, rye and wheat respectively. Amino acid analysis showed the presence of 13.6 to 16.5 mol% glycine, 29.6 to 34.0 mol% glutamate + glutamine, 11.4 to 13.7 mol% proline and a total of 4.0 to 5.7 mol% basic amino acids. Automated N-terminal amino acid sequencing of the component from wheat showed the presence of cysteine residues at positions 5 and 10, and this is discussed in relation to the possible role of these proteins in the visco-elastic gluten network.  相似文献   

7.
A root assessment tray was designed for the meticulous assessment of take-all on wheat seedling roots from soil bioassays. Subsequently, the detection of lateral root infections (in addition to the more obvious infections on main axes of seminal roots) resulted in increased estimates of propagule numbers of the take-all fungus (Gaeumannomyces graminis var.tritici) for 196 of the 368 soil samples bioassayed in a field study conducted in Western Australia between 1984 and 1986.  相似文献   

8.
Summary In the powdery mildew disease of barley,Erysiphe graminis f. sp.hordei forms an intimate relationship with compatible hosts, in which haustoria form in epidermal cells with no obvious detrimental effects on the host until late in the infection sequence. In incompatible interactions, by contrast, the deposition of papillae and localized host cell death have been correlated with the cessation of growth byE. g. hordei. With the advent of improved, low temperature methods of sample preparation, we felt that it was useful to reevaluate the structural details of interactions between barley andE. g. hordei by transmission electron microscopy. The haustoria that develop in susceptible barley lines appear highly metabolically active based on the occurrrence of abundant endoplasmic reticulum, Golgi-like cisternae, and vesicles. In comparison, haustoria found in the resistant barley line exhibited varying signs of degradation. A striking clearing of the matrix and loss of cristae were typical early changes in the haustorial mitochondria in incompatible interactions. The absence of distinct endoplasmic reticulum and Golgi-like cisternae, the formation of vacuoles, and the occurrence of a distended sheath were characteristic of intermediate stages of haustorial degeneration. At more advanced stages of degeneration, haustoria were dominated by large vacuoles containing membrane fragments. This process of degeneration was not observed in haustoria ofE. g. hordei developing in the susceptible barley line.Abbreviations b endoplasmic reticulum extension, blebbing - er endoplasmic reticulum - f fibrillar material - g Golgi-like structure - h haustorium - hb haustorial body - hcw haustorial cell wall - hcy haustorial cytoplasm - hf haustorial finger - hocw host cell wall - hocy host cytoplasm - 1 lipid-like droplet - m mitochondrion - mt microtubule - mve multivesicular body - n nucleus - p papilla - ph penetration site of an infection peg - pl plasma membrane - s sheath - sm extrahaustorial membrane - v vacuole - ve vesicle  相似文献   

9.
The Russian wheat aphid Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae) is a global pest of wheat and barley. This arthropod is difficult to manage with pesticides or biological control agents due to the aphid’s ability to seek shelter in rolled leaves and also to develop virulent biotypes. During the past 20 years, the use of aphid-resistant cereal cultivars has proven to be an economically and ecologically beneficial method of protecting crops from D. noxia damage. Our research reports the results of experiments to determine the categories of D. noxia biotype 2 resistance present in Cereal Introduction Triticeae (CItr) 2401, and a barley genotype (IBRWAGP4-7), compared to control resistant and susceptible wheat and barley genotypes. CItr2401 and IBRWAGP4-7 exhibit no antixenosis, but both genotypes demonstrated antibiosis to D. noxia in the form of reduced aphid populations. Reduced leaf dry weight change, a measure of plant tolerance of D. noxia feeding, was significantly less in CItr2401 and IBRWAGP4-7 plants than in plants of susceptible control varieties. However, tolerance was negated when a tolerance index was calculated to correct for differences in aphid populations. Barley IBRWAGP4-7 is a new source of D. noxia biotype 2 resistance. D. noxia foliar leaf damage and population growth were significantly less on IBRWAGP4-7 plants than on plants of the susceptible barley variety Morex. IBRWAGP4-7 plants were equal in resistance to plants of the resistant barley STARS 9301 and wheat genotype CItr2401. Handling editor: Heikki Hokkanen  相似文献   

10.
A suppressor of resistance to powdery mildew conferred by Pm8 showed complete association with the presence of a storage-protein marker resolved by electrophoresis on SDS-PAGE gels. This marker was identified as the product of the gliadin allele Gli-A1a. The mildewresponse phenotypes of wheats possessing the 1BL.1RS translocation were completely predictable from electrophoretograms. The suppressor, designated SuPm8, was located on chromosome 1AS. It was specific in its suppression of Pm8, and did not affect the rye-derived resistance phenotypes of wheat lines with Pm17, also located in 1RS, or of lines with Pm7.  相似文献   

11.
Health status of winter wheat roots and thecomposition of wheat root fungi were studiedover 1996-1999 following the cultivation ofoats in a pure stand and mixed with otherplants as forecrops. The infection of wheatroots by >Gaeumannomyces graminis wasobserved to be largely dependent on the kind offorecrop; the best being oats in a pure stand,and then oats with pea or lupin mixtures. Inthe emergence and shooting phases, saprophyticfungi were dominant, while in the stage of harddough stage mainly pathogenic fungi, especially>G. graminis were common. The pathogenicfungi were mostly represented by >G.graminis and >Fusarium spp., while >Rhizoctonia spp. were much less frequent.The composition of the fungal communitydepended considerably on the forecrop anddevelopment phase of the plant. The kind offorecrop significantly affected the frequencyof infection by >G. graminis. The highestnumber of isolates was obtained from wheat rootsof crops grown after a mixture of oats andbarley.  相似文献   

12.
Summary The powdery mildew disease resistance gene Ml(La) was found to belong to a locus on barely chromosome 2. We suggest that this locus be designated MlLa. Linkage analysis was carried out on 72 chromosome-doubled, spring-type progeny lines from a cross between the winter var Vogelsanger Gold and the spring var Alf. A map of chromosome 2 spanning 119cM and flanked by two peroxidase gene loci was constructed. In addition to the Laevigatum resistance locus the map includes nine RFLP markers, the two peroxidase gene loci and the six-row locus in barley.  相似文献   

13.
Summary Natural senescence of the root cortex was assessed by nuclear staining, for cultivars and chromosome substitution lines of spring wheat known to differ in (1) susceptibility to common root rot, (2) total rhizosphere populations and (3) ability to support growth of a free-living nitrogen-fixing bacterium.Together, three root rot susceptible wheat lines showed significantly more cortical senescence than did three resistant lines; the susceptible lines also support larger rhizosphere populations. The wheat line that supports growth of a nitrogen-fixing bacterium showed significantly less cortical death than did any other line. Substitution of chromosome pairs 5B or 5D between the parent cultivars Rescue and Cadet substantially altered the amount of root cortex death, which is thus genetically determined. It is suggested thatCochliobolus sativus and other weak parasites benefit from early natural senescence of the root cortex, and that the degree of susceptibility or resistance of wheat lines to common root rot is at least partly determined by differences in cortical senescence.  相似文献   

14.
Summary Genome organization of the biotrophic barley powdery mildew fungus was studied using restriction fragment length polymorphism (RFLP). Genomic DNA clones containing either low-or multiple-copy sequences appeared to be the best RFLP markers, as they frequently revealed polymorphisms that could be readily detected. A total of 31 loci were identified using 11 genomic DNA clones as probes. Linkage analysis of the 31 RFLP loci and five virulence loci resulted in the construction of seven groups of linked loci. Two of these contained both RFLP markers and virulence genes. RFLP markers were found to be very efficient in characterizing mildew isolates, as only three markers were necessary to differentiate 28 isolates. The DNA of the barley powdery mildew fungus appeared to contain a considerable number of repetitive sequences dispersed throughout the genome.  相似文献   

15.
Summary In glasshouse experiments,Microdochium bolleyi (Mb) significantly reduced infection of wheat roots by the take-all fungus,Gaeumannomyces graminis vartritici (Ggt), when inocula were dispersed in soil at ratios of 10∶1 (Mb:Ggt) or more. Spread of take-all lesions up roots from a layer of inoculum also was reduced when Mb was inoculated immediately below the crown. In contrast,Periconia macrospinosa did not control take-all even at an inoculum ratio of 100∶1. M. bolleyi interfered with growth on roots byPhialophora graminicola, a known biocontrol agent of take-all. It is suggested that this phenomenon and control of take-all by these fungi occur by competition for cortical cells that senesce in the normal course of root development.  相似文献   

16.
Summary Pm10 and Pm15, resistance genes to Erysiphe graminis f. sp. agropyri, are located on the D genome of common wheat. It was determined whether or not they were carried by existing lines of the D genome donor, Aegilops squarrosa, using the gene-for-gene relationship. Two lines of Ae. squarrosa tested (one was var. meyeri and the other was var. anathera) were susceptible to culture Tk-1 of E. graminis f. sp. tritici and were highly resistant to culture Ak-1 of E. graminis f. sp. agropyri. The two lines were inoculated with an F1 population derived from the cross Ak-1 × Tk-1. Comparative analyses of the segregation patterns revealed that Ppm10 and Ppm15, avirulence genes corresponding to Pm10 and Pm15, respectively, are involved in the avirulence of Ak-1 on var. meyeri and var. anathera, respectively. According to the gene-for-gene relationship, var. meyeri and var. anathera were inferred to carry Pm10 and Pm15, respectively. Analysis with a synthetic hexaploid confirmed the inference.  相似文献   

17.
Summary Pairs of susceptible and resistant, near-isogenic cultivars ofHordeum vulgare which differ for the Mla, Mlk and Mlp genes for resistance toErysiphe graminis f. sp.hordei were inoculated with race 3 of this pathogen and patterns of protein synthesis associated with primary infection mapped using pulse-labelling with L-[35S]methionine and 2-dimensional electrophoresis. Extraction of proteins with buffer containing detergent revealed the enhanced synthesis of 5 and 8 polypeptides at 25 and 30 h respectively after inoculation of barley carrying the Mla gene (cvMla). The enhanced synthesis of these same polypeptides together with 11 additional polypeptides was observed at 48 h and 72 h after inoculation of barley carrying either the Mlp (cvMlp) or Mlk (cvMlk) genes. The labelling of several major constitutive polypeptides was suppressed in cvMla at 24 h after inoculation; the labelling of six of these polypeptides was also suppressed in both cvMlp and cvMlk but not until 48 and 72 h after inoculation. These results indicate that changes occur in the synthesis of some common polypeptides following infection of cultivars carrying different resistance genes but the timing and extent of these changes varies with the resistance gene in the host.  相似文献   

18.
Summary Resistance to powdery mildew, caused by the fungus Erysiphe graminis f.sp. tritici, has been transferred from Aegilops ventricosa (genomes DvMv) to hexaploid wheat (Triticum aestivum, ABD). In two transfer lines, H-93-8 and H-93-35, the resistance gene was linked to a gene encoding protein U-1, whereas one line, H-93-33, was resistant but lacked the molecular marker, and another line, H-93-1, was susceptible but carried the gene for U-1, indicating that the original Mv chromosome from Ae. ventricosa, carrying the two genes, had undergone recombination with a wheat chromosome in the last two lines.  相似文献   

19.
Oligonucleotide primers were developed to detect the presence of four rye sequences using a PCR assay. These assays give a rye-specific signal from wheat DNA template which contains various rye chromosomes or chromosome segments. The sequences identified were associated with the nucleolar organiser region, the 5S-Rrna-R1 locus, the telomere, and a widely dispersed, rye-specific repetitive element Ris-1. The primers amplified from the well-established loci Nor-R1 and 5S-Rrna-R1 on rye chromosome arm 1RS, and also located a 5s-Rrna locus on chromosome 3R. The telomere-associated sequence was present on every rye chromosome, and was also present, at a low copy number, in both wheat and barley. These assays will be particularly useful for introgression programmes aimed at reducing the rye content of the 1BL.1RS wheat-rye translocation. When multiplexed, the primers will enable a rapid, simultaneous assay for a number of distinct rye loci, which can be derived from a small portion of mature endosperm tissue.  相似文献   

20.
During primary infection by conidia ofErysiphe graminis f. sp.tritici, three mechanisms of resistance operate in first leaves of 8-day-old seedlings of both resistant and susceptible wheats. The first mechanism, operating at the penetration site, is responsible for the failure of penetrations attempted by primary germ tubes (PGT). The second mechanism is concerned with the abortion of haustoria in normal-appearing host cells. The third mechanism relates to the abortion of haustoria and the hypersensitivity of the penetrated host cells.With the inoculum-level of 19–24 conidia/mm2, the three mechanisms together prevented 89.3 % of the attempted penetrations by PGT from producing normal haustoria in resistant wheat Purdue 5752C1-7-5-1 and 37.4 % in the susceptible wheat Vermillion. The first mechanism accounted for the prevention of 73.3 % of the attempted PGT penetrations on Purdue 5752C1-7-5-1 and 36 % on Vermillion. The second mechanism was responsible for stopping 19 % of all the successful penetrations in Purdue 5752C1-7-5-1 and 0.8 % in Vermillion. The third mechanism accounted for the failure of 41 % of all the successful penetrations in Purdue 5752C1-7-5-1 and 1.4% in Vermillion. Thirty-six hours after inoculation, 10.7% of all the attempted PGT penetrations appeared to be developing normally in first leaves of 8-day-old seedlings of resistant wheat Purdue 5752C1-7-5-1 as compared to 62.6 % in the susceptible wheat Vermillion.This appears to be the first report showing the relative effectiveness of various mechanisms of resistance concerning any powdery mildew fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号