首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choline acetyltransferase (ChAT; EC 2.3.1.6) was separated from human caudate/putamen into three fractions by successive extractions into apotassium phosphate buffer, a high salt (NaCl) buffer and a buffer containing 0.6% Triton X-100. The Triton-X-solubilized fraction is the membrane-bound ChAT (mChAT) and represents about 40% of the total ChAT. After centrifugation, mChAT was precipitated by ammonium sulfate at 35–65% saturation. The crude enzyme preparation was fractionated in turn on a DEAE-Sepharose, a hydroxylapatite and a phosphocellulose columns. Finally, mChAT was applied to a CoA-Sepharose column equilibrated with buffer containing 100 mM choline chloride and was specifically eluted with buffer containing acetyl-CoA. The presence of both substrates greatly stabilized the enzyme and ChAT was recovered almost quantitatively. The final preparation of mChAT has a specific activity of 37.2 mol of acetylcholine synthesized per min-mg protein. The purified mChAT has a pH optimum of 8.3. It migrated as two bands on SDS-PAGE with molecular weights of 67,000 and 62,000 daltons, respectively. Immunoblot autoradiography showed that an antiserum prepared previously against soluble ChAT also cross-reacted with both bands of mChAT, indicating that both forms of this enzyme are related. Furthermore, as previously reported for soluble ChAT, Fab-Sepharose chromatography could be used for the purification of mChAT and this preparation also resolved into two bands of 10% SDS gel.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

2.
Choline acetyltransferase (ChAT; EC 2.3.1.6) was purified from the heads of Schistocerca gregaria to a final specific activity of 1.61 mumol acetylcholine (ACh) formed min-1 mg-1 protein. The molecular mass of the enzyme as determined by gel filtration is 66,800 daltons. The final enzyme preparation showed one major band at 65,000 daltons on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, which corresponds with the native molecular mass of the enzyme, a band at 56,000 daltons, and two bands at 40,500 and 38,000 daltons. Antibodies raised against ChAT in rabbit react only with the active band on native gel after Western blotting. They strongly react with the 65,000-dalton polypeptide band on Western blots of SDS gel separation of pure preparation of enzyme and with both the 65,000- and 56,000-dalton bands after SDS gel separation of crude extract.  相似文献   

3.
Abstract— Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine in nervous tissue, has been purified to apparent homogeneity from the electric organ of the electric fish Torpedo californica using ion-exchange, gel filtration, and hydroxyapatite chromatography. The final preparation had been purified 8570-fold to a specific activity of 30μmol ACh formed/min/mg protein. The purified protein has a pH optimum of 6.8 (phosphate buffer), is activated by low concentrations (ca. 10 m m ) of ammonium or alkylammonium ions, and is strongly inhibited by a sulfhydryl blocking reagent (DTNB). ChAT has a mol. wt. of 63000 when measured by SDS-polyacrylamide gel electrophoresis or gel filtration.
A new method for the rapid assay of ChAT activity is described in which unreacted substrate ([3H]acetyl-CoA) is removed from reaction mixtures by adsorption to charcoal: some advantages of this technique are discussed.  相似文献   

4.
The preceding paper showed that IMP dehydrogenase [IMP:NAD+ oxidoreductase, EC 1.2.1.14] tended to form a precipitable complex(es) through ionic and hydrophobic interactions. On the basis of these observations, a method was developed for purification of IMP dehydrogenase from Yoshida sarcoma ascites cells. On SDS-polyacrylamide gel electrophoresis, the purified preparation (1.19 U/mg protein) appeared homogeneous and its minimum molecular weight was estimated to be 68K daltons. Amino acid analyses indicated a subunit molecular weight of 68,042. Molecular sieve chromatography in the presence of 10% (NH4)2SO4 showed that the molecular weight of the native enzyme was 127K daltons. These values indicate that the native enzyme is composed of two identical subunits. However, the purified enzyme gave 4 protein bands on polyacrylamide gel electrophoresis under non-denaturing conditions, and appeared as a single fraction in the vicinity of the void volume on Ultrogel AcA 34 column chromatography at low salt concentration, indicating that its molecular weight exceeded 200K daltons. These findings indicate that the enzyme tends to aggregate owing to its own physicochemical characteristics. The Km values for IMP and NAD were calculated to be 12 and 25 microM, respectively, and the Ki values for XMP, GMP, and AMP to be 109, 130, and 854 microM, respectively. The purified enzyme showed full activity in the presence of K+, and K+ could be partially replaced by Na+. PCMB inactivated the enzyme, but the activity was completely restored by the addition of DTT. Cl-IMP also inactivated the enzyme and IMP prevented this inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Human liver alpha-L-fucosidase has been purified 6300-fold to apparent homogeneity with 66% yield by a two-step affinity chromatographic procedure utilizing agarose epsilon-aminocaproyl-fucosamine. Isoelectric focusing revealed that all six isoelectric forms of the enzyme were purified. Polyacrylamide gel electrophoresis of the purified alpha-L-fucosidase demonstrated the presence of six bands of protein which all contained fucosidase activity. The purified enzyme preparation was found to contain only trace amounts of seven glycosidases. Quantitative amino acid analysis was performed on the purified fucosidase. Preliminary carbohydrate analysis indicated that only about 1% of the molecule is carbohydrate. Gel filtration on Sepharose 4B indicated an approximate molecular weight for alpha-L-fucosidase of 175,000 +/- 18,000. High speed sedimentation equilibrium yielded a molecular weight of 230,000 +/- 10,000. Sodium dodecyl sulfate polyacrylamide gels indicated the presence of a single subunit of molecular weight, 50,100 +/- 2,500. The enzyme had a pH optimum of 4.6 with a suggested second optimum of 6.5. Apparent Michaelis constants and maximal velocities were determined on the purified enzyme with respect to the 4-methylumbelliferyl and the p-nitrophenyl substrates and were found to be 0.22 mM and 14.1 mumol/mg of protein/min and 0.43 mM and 19.6 mumol/mg of protein/min, respectively. Several salts had little or no effect on fucosidase activity although Ag+ and Hg2+ completely inactivated the enzyme. Antibodies made against the purified fucosidase were dound to be monospecific against crude human liver supernatant fluids and the pure antigen. No cross-reacting material was detected in the crude liver supernatant fluid from a patient who died with fucosidosis.  相似文献   

6.
A procedure is described for the use of immunoadsorption chromatography of hydroxyindole O-methyltransferase (HIOMT). HIOMT was purified from bovine pineal extract by affinity chromatography on immunoglobulins (Ig)-Sepharose. The overall purification was about 45-fold; the yield was 84%. This enzyme constitutes about 2.0% of the soluble proteins in the pineal gland. The enzyme represented a single precipitin line on Ouchterlony double diffusion plate and immunoelectrophoresis. Ultracentrifugation analysis indicated the existence of molecular aggregates of enzyme and disc gel electrophoresis showed one main protein band and several minor bands. However sodium dodecyl sulphate (SDS) gel electrophoresis showed a single protein band with subunit molecular weight 38,000 demonstrating bovine pineal HIOMT to be polymer enzyme of a single subunit. The properties of the purified enzyme including disc gel electrophoretic pattern, the effect of pH, chemicals and substrates and immunological properties were identical with those of the crude enzyme.  相似文献   

7.
Human placental sphingomyelinase activity was eluted as a single symmetrical peak from Sephadex G-200 with a molecular weight of 290000; however, the enzyme behaved heterogeneously on ion exchange chromatography. A specific species of sphingomyelinase was purified approx. 10 000-fold to a constant specific activity of 274 000 nanomol of sphingomyelin hydrolyzed per mg protein per h. When the purified enzyme was examined on sodium dodecyl sulfate disc gel electrophoresis, two distinct protein bands in approximately equal proportions with molecular weights of 36 800 and 28 300 were found. The specificity of the enzyme is directed towards both the hydrophilic phosphocholine and the hydrophobic ceramide moieties of sphingomyelin. Possible interrelationships between the heterogenous forms of placental sphingomyelinases are discussed.  相似文献   

8.
Calmodulin-dependent NAD kinase has been purified more than 70fold from a crude plant (zucchini squash) homogenate by calmodulin-Sepharose affinity chromatography to a specific activity of 80 munits/mg protein. The enzyme could be activated about 8fold by calmodulin. Half-maximal activation was obtained with 6 ng of purified calmodulin from bovine brain. Together with NAD kinase other soluble plant proteins were retained specifically on the column. NaDodSo4 polyacrylamide gel electrophoresis of the proteins which were retained by the calmodulin-Sepharose column revealed at least 7 to 8 bands. Most of the intensively stained bands on the gels obtained from the crude homogenate had disappeared.  相似文献   

9.
ADPglucose pyrophosphorylase from potato (Solanum tuberosum L.) tubers has been purified by hydrophobic chromatography on 3 aminopropyl-sepharose (Seph-C3-NH2). The purified preparation showed two closely associated protein-staining bands that coincided with enzyme activity stains. Only one major protein staining band was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The subunit molecular weight was determined to be 50,000. The molecular weight of the native enzyme was determined to be 200,000. The enzyme appeared to be a tetramer consisting of subunits of the same molecular weight. The subunit molecular weight of the enzyme is compared with previously reported subunit molecular weights of ADPglucose pyrophosphorylases from spinach leaf, maize endosperm, and various bacteria. ADPglucose synthesis from ATP and glucose 1-P is almost completely dependent on the presence of 3-P-glycerate and is inhibited by inorganic phosphate. The kinetic constants for the substrates and Mg2+ are reported. The enzyme Vmax is stimulated about 1.5- to 3-fold by 3 millimolar DTT. The significance of the activation by 3-P-glycerate and inhibition by inorganic phosphate ADPglucose synthesis catalyzed by the potato tuber enzyme is discussed.  相似文献   

10.
An antibody to a highly pure enzyme preparation was developed to facilitate detailed studies of rat adipose tissue lipoprotein lipase regulation. Lipoprotein lipase was purified by heparin-Sepharose affinity chromatography followed by preparative isoelectric focusing. The enzyme migrated as a single broad band on SDS disc gel and two-dimensional gel electrophoresis with an apparent molecular mass of 67 000 and 62 000 Da, respectively. The amino acid composition of the purified rat enzyme was virtually identical to that of bovine milk. A major protein component with no lipase activity co-eluted with the enzyme from the affinity column, but was separated by the isoelectric focusing step. The molecular mass was slightly lower (58 000 Da) but the amino acid composition of this protein was similar to that of the enzyme. An antibody raised against the purified rat enzyme was highly potent and was effective in inhibiting rat heart lipoprotein lipase, but not the salt-resistant hepatic lipase. Analysis of crude acetone-ether adipose tissue preparation on SDS slab polyacrylamide gel coupled to Western blotting revealed five protein bands = (62 000, 56 000, 41 700, 22 500, 20 000 Da). Similarly, following affinity purification by immunoadsorption, the purified antibody reacted with five equivalent protein bands. Fluorescent concanavalin A binding data indicated that the 56 kDa band is a glycosylated form of lipoprotein lipase. Pretreatment of adipose tissue with proteinase inhibitors revealed that the lower molecular mass proteins (41 700 and 20 000 Da) were degradation products of lipoprotein lipase, and the 22 500 Da band could be accounted for by non-specific binding.  相似文献   

11.
《Phytochemistry》1986,25(5):1067-1071
Acetyl-CoA carboxylase from two lines of soybean (Glycine max) seeds has been purified to apparent homogeneity. The procedure included affinity chromatography of the enzyme on avidin-monomer-Sepharose 4B. The enzyme from both lines showed a single band on polyacrylamide gel electrophoresis. On sodium dodecyl sulphatepolyacrylamide gel electrophoresis, the enzyme from experimental line 9686 showed a single protein band having the M, 240 000. The enzyme from the commercial line Wayne, however, showed three protein bands having the M, s 240 000, 65 000 and 58 000, respectively. High concentrations of the enzyme were required for stability as well as the presence of dithiothreitol, glycerol and Triton X-100. The enzyme was active over a wide pH range, with an optimum at 8.2 for 9686 and 7.5 for Wayne. The enzyme from both 9686 and Wayne showed absolute specificity for acetyl-CoA as a substrate and this could not be replaced by propionyl-CoA, butyryl-CoA, hexanoyl-CoA or S-methylerotonyl-CoA. At the optimum pH the apparent Km values for the substrates were: bicarbonate, 1.13 mM; acetyl-CoA, 0.32 mM; ATP, 0.46 mM for the Wayne carboxylase and bicarbonate, 1.56 mM; acetyl-CoA, 0.17 mM; ATP, 0.14 mM for the 9686 enzyme. Citrate, at higher concentrations, was strongly inhibitory. Both ADP and AMP inhibited the enzyme from 9686 and Wayne. The enzyme from both 9686 and Wayne did not appear to be highly regulated by cellular metabolites.  相似文献   

12.
Acetyl-CoA carboxylase (EC 6.4.1.2) has been isolated from rat liver by an avidin-affinity chromatography technique. This preparation has a specific activity of 1.17 +/- 0.06 U/mg and appears as a major (240,000 dalton) and minor (140,000 dalton) band on SDS-polyacrylamide gel electrophoresis. Enzyme isolated by this technique can incorporate 1.09 +/- 0.07 mol phosphate per mol enzyme (Mr = 480,000) when incubated with the catalytic subunit of the cyclic AMP-dependent protein kinase at 30 degrees C for 1 h. The associated activity loss under these conditions is 57 +/- 4.0% when the enzyme is assayed in the presence of 2.0 mM citrate. Less inactivation is observed when the enzyme is assayed in the presence of 5.0 mM citrate. The specific protein inhibitor of the cyclic AMP-dependent protein kinase blocks both the protein kinase stimulated phosphorylation and inactivation of acetyl-CoA carboxylase. The phosphorylated, inactivated rat liver carboxylase can be partially dephosphorylated and reactivated by incubation with a partially purified protein phosphatase. Preparations of acetyl-CoA carboxylase also contained an endogenous protein kinase(s) which incorporated 0.26 +/- 0.11 mol phosphate per mol carboxylase (Mr = 480,000) accompanied by a 26 +/- 9% decline in activity. We have additionally confirmed that the rat mammary gland enzyme, also isolated by avidin affinity chromatography, can be both phosphorylated and inactivated upon incubation with the cyclic AMP-dependent kinase.  相似文献   

13.
Human brain α-L-fucosidase has been extracted and the soluble portion has been purified 9388-fold with 25% yield by a two-step affinity chromatographic procedure utilizing agarose-epsilon-aminocaproyl-fucosamine. Isoelectric focusing revealed that all seven isoelectric forms of the enzyme were purified. Trace amounts of eight glycosidases, with hexosaminidase being the largest contaminant (1% by activity) were found in the purified α-L-fucosidase preparation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a single subunit of molecular weight 51,000 ± 2500. The purified enzyme has a pH optimum of 4.7 with a suggested second optimum of 6.6. The apparent Michaelis constant and maximal velocity of the purified enzyme with respect to the p-nitrophenyl substrate are 0.44 mM and 10.7 μmol/min/mg protein, respectively. Ag2+ and Hg2+ completely inactivated the enzyme at concentrations of 0.1-0.3 mM. Antibodies made previously against purified human liver α-L-fucosidase cross-reacted with the purified brain α-L-fucosidase and gave a single precipitin line coincident with that from purified liver α-L-fucosidase. From all our studies it appears that at least the soluble portion of brain α-L-fucosidase is identical to human liver α-L-fucosidase.  相似文献   

14.
Kanamycin acetyltransferase acylates aminoglycoside antibiotics using acetyl-CoA, and thereby conveys bacterial resistance to several clinically important antibiotics, notably amikacin. The enzyme was quantitatively and reproducibly released from Escherichia coli W677 harboring plasmid pMH67 by a modified osmotic shock procedure (bacterial cells are incubated overnight in sucrose and again without sucrose before onset of osmotic shock). The enzyme was purified by dye-ligand chromatography on Affi-Gel Blue in addition to antibiotic affinity chromatography on neomycin-Sepharose-4B. The activity did not increase with subsequent chromatography on ion-exchange, hydrophobic, or molecular-exclusion gels. However, both dye-ligand and molecular-exclusion chromatography, as well as disc-gel electrophoresis, separated the purified enzyme equally into two active protein fractions. Based on the more active of the two forms, the purification was 112-fold with a specific activity of 1.9 IU/mg. The less-active form has an unusual absorbance spectrum, with a maximum near 255 nm, which cannot be explained by the amino acid composition. Chromatography of this form alone regenerated both forms, suggesting that the enzyme is noncovalently conjugated to an uncharged chromophore, such as a lipid. The purified enzyme has a very sharp pH optimum at 5.5 with a plateau on the alkaline side, but is most stable between pH 8.5 and 9.5. Data from electrophoresis in the presence of sodium dodecyl sulfate and gel-filtration on Ultrogel AcA 44 are consistent with a tetrameric protein of 60-70,000 Da.  相似文献   

15.
Alkaline phosphatase from chicken intestine was purified from the crude preparation employing three-phase partitioning and by the use of phenyl Sepharose-6B in the batch mode. TPP uses a combination of ammonium sulphate and t-butanol to precipitate proteins from crude aqueous extracts. The precipitated protein forms interface between lower aqueous phase and upper organic solvent phase. The fold purification of the finally purified enzyme was 80 and the activity recovery was 61%. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of enzyme showed considerable purification and its molecular weight was found to be around 67 kDa.  相似文献   

16.
Maike Petersen 《Planta》1993,191(1):18-22
Rosmarinic acid synthase from cell cultures of Coleus blumei Benth. was purified to apparent homogeneity by fractionated ammonium sulfate precipitation (60–80% saturation), hydrophobic interaction chromatography, affinity chromatography and gel filtration. This purification procedure resulted in a 225-fold-enriched specific enzyme activity with a yield of 9%. The protein preparation was apparently pure according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis. The apparent molecular mass determined by gel filtration and SDS-PAGE was 77 kDa, indicating that rosmarinic acid synthase is a monomeric enzyme.Abbreviations DTT dithiothreitol - HIC hydrophobic interaction chromatography - RA rosmarinic acid - RAS rosmarinic acid synthase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis The financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged. Two-dimensional gel electrophoresis was done with the help of Dr. Guy Bauw, University of Gent, Belgium.  相似文献   

17.
1. Human erythrocyte acetylcholinesterase was solubilized by Triton X-100 and purified by affinity chromatography to a specific activity of 3800 IU/mg of protein. The yield of the purified enzyme was 25--45%. 2. Gel filtration on Sepharose 4-B in the presence of Triton X-100 revealed one peak of enzyme activity with a Stokes' radius of 8.7 nm. Density gradient centrifugation in 0.1% Triton X-100 showed one peak of enzyme activity with an S4 value of 6.3S. 3. Isoelectric focusing in Triton X-100 resolved the enzyme into five molecular forms with isoelectric points of 4.55, 4.68, 4.81, 4.98 and 5.18. Upon incubation with neuraminidase the enzyme activity in the first four forms was decreased with a concommitant increase in activity in the form with the higher isoelectric point. 4. After removal of excess Triton X-100 on Bio-Gel HTP, polyacrylamide gel electrophoresis showed seven bands of protein and corresponding bands of enzyme activity. Density gradient centrifugation of the detergent-depleted enzyme at high ionic strength revealed five multiple molecular forms with S4 values of 6.3 S, 10.2 S, 12.2 S, 14.2 S and 16.3 S. At low ionic strength, higher aggregates were observed in addition to the other forms. Dodecylsulfate-polyacrylamide gel electrophoresis gave one subunit only with an apparent molecular weight of 80 000. 5. These results suggest that human erythrocyte acetylcholinesterase, solubilized by Triton X-100, exists in various forms differing in net charge but of apparently similar molecular dimensions. After removal of the detergent, forms with different molecular sizes are observed.  相似文献   

18.
Acetyl-CoA synthetase, utilized in a coupled reaction system, has been shown to be applicable to the spectrophotometric determination of propionic and methylmalonic acids in biological fluids. The isolation of acetyl-CoA synthetase from yeast is simpler than the purification from mammalian sources. This study also presents some properties of the yeast enzyme and compares it to the more extensively studied enzyme isolated from ammmalian tissue. Isolation and purification yielded a preparation with a specific activity of 44 units/mg at 25 degrees. The purified acetyl-CoA synthetase was apparently homogeneous by sodium dodecyl sulfate-poly-acrylamide gel electrophoresis with an estimated subunit molecular weight of 78,000. Polyacrylamide gel electrophoresis in the presence of ATP revealed a single protein band which contained all of the enzyme activity. Analytical ultra-centrifuge studies indicated the presence of a single protein with a molecular wright of 151,000 and sedimentation velocity analysis revealed a single peak with a sedimentation coefficient of 8.65 So20,w. Similar to the enzyme from mammalian sources, yeast acetyl-CoA synthetase has a high degree of substrate specificity and is active only on acetate and propionate. In addition, the reaction mechanism, as demonstrated by initial velocity patterns obtained from substrate pairs, appeared to be identical to the enzyme from bovine heart. However, the apparent Michaelis constants for the substrates were significantly different from the mammalian enzyme. The yeast-derived enzyme also differed from the mammalian in terms of molecular weight, amino acid composition, pH optimum, effect of monovalent cations, and stability characteristics. Thus, yeast acetyl-CoA synthetase is more easily purified than the mammalian enzyme and provides an excellent preparation for the assay of propionic and methylmalonic acids.  相似文献   

19.
Purification and some properties of ornithine decarboxylase from rat liver   总被引:1,自引:0,他引:1  
Ornithine decarboxylase (EC 4.1.1.17) was purified to near homogeniety from livers of thioacetamide- and dl-α-hydrazino-δ-aminovaleric acid-treated rats by using three types of affinity chromatography with pyridoxamine phosphate-Sepharose, pyridoxamine phosphate-dipropylenetriamine-Sepharose and heparin-Sepharose. This procedure gave a purification of about 3.5·105-fold with an 8% yield; the specific activity of the final enzyme preparation was 1,1·106 nmol CO2/h per mg protein. The purified enzyme gave a single band of protein which coincided with activity peak on polyacrylamide gel electrophoresis and also gave a single major band on SDS-polyacrylamide gel electrophoresis. A single precipitin line was formed between the purified enzyme and an antiserum raised against a partially purified enzyme, on Ouchterlony immunodiffusion. The molecular weight of the enzyme was estimated to be 105 000 by polyacrylamide gel electrophoresis at several different gel concentrations; the dissociated subunits had molecular weights of 50 000 on SDS-polyacrylmide gels. The isoelectric point of the enzyme was pH 4.1.  相似文献   

20.
A simple and rapid affinity chromatographic method for the isolation of aspartate transcarbamylase from germinated seedlings of mung bean (Phaseolus aureus) was developed. A partially purified preparation of the enzyme was chromatographed on an affinity column containing aspartate linked to CNBr-activated Sepharose 4B. Aspartate transcarbamylase was specifically eluted from the column with 10 mm aspartate or 0.5 m KCl. The enzyme migrated as a single sharp band during disc electrophoresis at pH 8.6 on polyacrylamide gels. Electrophoresis of the sodium dodecyl sulfate-treated enzyme showed two distinct protein bands, suggesting that the mung bean aspartate transcarbamylase was made up of nonidentical subunits. Like the enzyme purified by conventional procedures, this enzyme preparation also exhibited positive homotropic interactions with carbamyl phosphate and negative heterotropic interactions with UMP. This method was extended to the purification of aspartate transcarbamylase from Lathyrus sativus, Eleucine coracona, and Trigonella foenum graecum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号