首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reversed-phase gradient high-performance liquid chromatographic (HPLC) procedure, which utilizes gradient elution and detection by a photodiode-array detector, has been developed to analyze simultaneously very polar retinoids, such as 4-oxo-retinoyl-β-glucuronide, retinoyl β-glucuronide and 4-oxo-retinoic acid; polar retinoids, such as retinoic acid and retinol; nonpolar retinoids, such as retinyl esters; along with xanthophylls, monohydroxy carotenoids, hydrocarbon carotenoids, and tocopherols. The procedure has been applied to the simultaneous analysis of retinoids, carotenoids, and tocopherols present in human serum and liver, rat serum and tissues, and for carotenoids in a number of fruits and vegetables. Bilirubin present in human serum can also be simultaneously analyzed. By this gradient HPLC procedure, 3,4-didehydroretinyl ester (vitamin A2 ester) has been identified as a minor constituent in a human liver sample. Lycopene was identified as a major carotenoid in one specimen of papaya fruit, and 5,6,5′,6′-diepoxy-β-carotene was characterized as a major carotenoid in one specimen of mango fruit.  相似文献   

2.
This paper presents a simple reversed-phase high-performance liquid chromatographic method for the simultaneous determination of retinol, and α- and γ-tocopherols in human serum using a fluorescence detector. For chromatographic separation a binary gradient was used: phase A; acetonitrile–butanol (95:5); phase B; water, at a flow-rate of 1.5 ml/min. Serum retinol, and α- and γ-tocopherol levels were measured in patients with non-insulin-dependent diabetes mellitus. Small sample requirement, good reproducibility and sensitivity make this method useful for the determination of the serum levels of these compounds in patients with diabetes mellitus.  相似文献   

3.
A new rapid and sensitive high-performance liquid chromatographic method using 0.5 ml of plasma has been developed for the simultaneous determination of retinol (vitamin A), α-tocopherol (vitamin E), 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. The eluate was monitored with a photodiode-array detector with two fixed wavelengths (267 nm for vitamin D, 292 nm for α-tocopherol and retinol). For all compounds, including internal standards, the method provides extraction recoveries greater than 81%. Detection limits were equal to or lower than 1.5 μg/l for the 4 vitamins. Linearity of standards was excellent (r>0.999 in all cases). Intra-day and inter-day precision were generally acceptable; the intra-day-assay C.V. was 7.7 for all compounds and the inter-day-assay C.V. was <9.2% except for the lower concentrations of 25-hydroxyvitamin D3, 25-hydroxyvitamin D2 and α-tocopherol (10.8, 11.8 and 11.9, respectively). The important properties of the present method are its ease of use, its rapidity, since sample preparation was achieved in 15 min and all the compounds were eluted in less than 15 min, and its small sample volume required (=0.5 ml), which enables it to be used in pediatric practice.  相似文献   

4.
Concentrations of retinol, retinyl palmitate, β-carotene, α-carotene, cryptoxanthin, lutein, lycopene, α-tocopherol, and γ-tocopherol were measured in blood samples collected from 15 captive and 55 free-ranging bottlenose dolphins (Tursiops truncatus). From June 1991 to June 1994, blood samples were collected from captive animals residing at two locations; at Seven Seas (Brookfield Zoo, Brookfield, IL) and Hawk’s Cay (Marathon Key, FL). Blood samples were collected from free-ranging animals from June 1991 to June 1996. Retinol levels were not significantly different between captive dolphin groups. However, Seven Seas animals had higher (P<0.01) serum retinol concentrations compared to free-ranging animals (0.061 vs 0.041 μg/ml). Retinyl palmitate was not detected in the serum of captive or free-ranging dolphins. Alpha-tocopherol levels were significantly (P<0.05) higher for Seven Seas dolphins (16.4 μg/ml) than for Hawk’s Cay (13.0 μg/ml) and free-ranging dolphins (12.5 μg/ml). Gamma-tocopherol concentrations were similar among captive and free-ranging dolphins. Free-ranging dolphins showed levels of circulating carotenoids (lutein and β-carotene) while the captive animals did not. Additional carotenoids (lycopene, α-carotene and cryptoxanthin) were analyzed but not detected in any samples. Serum vitamin differences between captive and free-ranging dolphins may reflect the natural diet or indicate some potential biological or nutritional status significance.  相似文献   

5.
A method is described for evaluation of fat-soluble vitamin in human adipose tissue with the aim to obtain, accurately and within the shortest analysis time, a time-integrated measure of exposure to vitamins from the diet. Fat tissue was deproteinized with ethanol and extracted with n-hexane. Normal-phase HPLC was performed in a Lichrosorb Si60 column with a gradient of n-hexane–2-propanol at 1 ml/min. Detection was accomplished using a diode-array system (for retinol and β-carotene) in series with a fluorescence detector (α-tocopherol). The method was validated and applied to human adipose tissue in a total of 140 subjects. The mean contents found were 0.43, 0.84, 240.3 μg/g for retinol, β-carotene and α-tocopherol, respectively. The method is sensitive enough for detecting the compounds in 1.6 mg of adipose tissue considering the lowest concentration found.  相似文献   

6.
A reversed-phase high-performance liquid chromatographic method for the determination of α-tocopherol in plasma or erythrocytes with photodiode-array detection is described. Using this detector, information about the spectrum, absorption maxima and purity of the peak is obtained. Tocopherol was separated on a 5-μm Spherisorb ODS-2 column with methanol as element at a flow-rate of 1.0 ml/min. As little as 100 μl of plasma or 150 μl of erythrocytes can be used for accurate analysis with direct extraction without saponification. The speed, specificity, sensitivity and reproducibility of this technique make it particularly suitable for the routine determination of α-tocopherol in plasma or erythrocytes.  相似文献   

7.
Retinol-binding protein (RBP), retinol, and modified-relative-dose response (MRDR) are used to assess vitamin A status. We describe vitamin A status in Ugandan children and women using dried blood spot (DBS) RBP, serum RBP, plasma retinol, and MRDR and compare DBS-RBP, serum RBP, and plasma retinol. Blood was collected from 39 children aged 12–23 months and 28 non-pregnant mothers aged 15–49 years as a subsample from a survey in Amuria district, Uganda, in 2016. DBS RBP was assessed using a commercial enzyme immunoassay kit, serum RBP using an in-house sandwich enzyme-linked immunosorbent assay, and plasma retinol/MRDR test using high-performance liquid chromatography. We examined (a) median concentration or value (Q1, Q3); (b) R2 between DBS-RBP, serum RBP, and plasma retinol; and (c) Bland-Altman plots. Median (Q1, Q3) for children and mothers, respectively, were as follows: DBS-RBP 1.15 µmol/L (0.97, 1.42) and 1.73 (1.52, 1.96), serum RBP 0.95 µmol/L (0.78, 1.18) and 1.47 µmol/L (1.30, 1.79), plasma retinol 0.82 µmol/L (0.67, 0.99) and 1.33 µmol/L (1.22, 1.58), and MRDR 0.025 (0.014, 0.042) and 0.014 (0.009, 0.019). DBS RBP-serum RBP R2 was 0.09 for both children and mothers. The mean biases were −0.19 µmol/L (95% limits of agreement [LOA] 0.62, −0.99) for children and −0.01 µmol/L (95% LOA −1.11, −1.31) for mothers. DBS RBP-plasma retinol R2 was 0.11 for children and 0.13 for mothers. Mean biases were 0.33 µmol/L (95% LOA −0.37, 1.03) for children, and 0.29 µmol/L (95% LOA −0.69, 1.27) for mothers. Serum RBP-plasma retinol R2 was 0.75 for children and 0.55 for mothers, with mean biases of 0.13 µmol/L (95% LOA −0.23, 0.49) for children and 0.18 µmol/L (95% LOA −0.61, 0.96) for mothers. Results varied by indicator and matrix. The serum RBP-retinol R2 for children was moderate (0.75), but poor for other comparisons. Understanding the relationships among vitamin A indicators across contexts and population groups is needed.  相似文献   

8.
An isocratic high-performance liquid chromatography method for the simultaneous determination of various fat-soluble vitamins and carotenoids is reported. The method utilizes a Radial-Pak C-18, 5-microns column and an elution solvent composed of methanol:acetonitrile:chloroform (25:60:15). Only 100 microliters of plasma sample is required for one determination. Retinol, alpha-tocopherol, alpha-carotene, beta-carotene, lycopene, zeaxanthin, and two other unidentified carotenoids can be clearly separated and quantified in one HPLC run using alpha-tocopheryl acetate or tocol as the internal standard. The eluted peaks are quantified by either a photodiode-array detector at preprogrammed wavelengths at the absorption maxima of the compounds or a dual-wavelength detector at 280 and 436 nm. The total run time is 16 min. With an automatic injector and a programmable detector, the system allows unattended operation. The within-run and day-to-day coefficients of variation range from 1 to 8%. The lower limits of determination are 2, 40, and 2 ng for retinol, alpha-tocopherol, and carotenes, respectively. In addition, the system monitors the absorption spectra of the eluant during the HPLC run; this allows the spectral identification of various compounds separated in the same run.  相似文献   

9.
A selected-ion monitoring (SIM) determination of serum lycopene, α-carotene and β-carotene by an atmospheric pressure chemical ionization mass spectrometry (APCI–MS) was developed. A large amount of serum cholesterols disturbed the SIM determination of carotenoids by contaminating the segment of interface with the LC–MS. Therefore, separation of carotenoids from the cholesterols was performed using a mixed solution of methanol and acetonitrile (70:30) as the mobile phase on a C18 column of mightsil ODS-5 (75 mm×4.6 mm I.D.). The SIM determination was carried out by introducing only the peak portions of carotenoids and I.S. (squalene) by means of an auto switching valve. In the positive mode of APCI–MS, lycopene, α-carotene and β-carotene were monitored at m/z 537 and I.S. was monitored at m/z 411. This method was linear for all analytes in the range of 15–150 ng for lycopene, 7–70 ng for α-carotene and 25–50 ng for β-carotene. The detection limit of LC–APCI–MS-SIM for carotenoids was about 3 ng per 1 ml of serum (S/N=3). The repeatabilities, expressed as C.V.s, were 10%, 8.4% and 5.3% for lycopene, α-carotene and β-carotene, respectively. The intermediate precisions, expressed as C.V.s, were 11. 2%, 8.8% and 6.5% for lycopene, α-carotene and β-carotene, respectively.  相似文献   

10.

Introduction

Recent epidemiological studies show that high intakes of carotenoids might be useful to maintain bone health, but little is known about the association of serum carotenoids with change of bone mineral density (BMD). The objective of this study was to investigate longitudinally whether serum carotenoids are associated with bone loss.

Methods

We conducted a follow-up on 146 male and 99 pre- and 212 post-menopausal female subjects from the Mikkabi study. Those who participated in previous BMD surveys and completed four years of follow-up were examined longitudinally.

Results

During a 4-year follow-up, 15 of the post-menopausal female subjects developed new-onset osteoporosis. In contrast, none of the male and pre-menopausal female subjects did. In male and pre-menopausal female subjects, the six serum carotenoids at the baseline were not associated with bone loss. On the other hand, in post-menopausal female subjects, the 4-year bone loss of radius was inversely associated with the serum carotenoid concentrations, especially in β-carotene. After adjustments for confounders, the odds ratios (OR) for osteoporosis in the highest tertiles of serum β-carotene and β-cryptoxanthin against the lowest tertiles were 0.24 (95% confidence interval 0.05–1.21) and 0.07 (CI: 0.01–0.88), respectively. Serum β-cryptoxanthin was also inversely associated with the risk for osteopenia and/or osteoporosis (P for trend, 0.037). In addition, our retrospective analysis revealed that subjects who developed osteoporosis and/or osteopenia during the survey period had significantly lower serum concentrations of β-cryptoxanthin and β-carotene at the baseline than those in the normal group.

Conclusions

Antioxidant carotenoids, especially β-cryptoxanthin and β-carotene, are inversely associated with the change of radial BMD in post-menopausal female subjects.  相似文献   

11.

Background

The associations between nutritional biomarkers and measures of sleep quantity and quality remain unclear.

Methods

Cross-sectional data from the National Health and Nutrition Examination Surveys (NHANES) 2005–2006 were used. We selected 2,459 adults aged 20–85, with complete data on key variables. Five sleep measures were constructed as primary outcomes: (A) Sleep duration; (B) Sleep disorder; (C) Three factors obtained from factor analysis of 15 items and labeled as “Poor sleep-related daytime dysfunction” (Factor 1), “Sleepiness” (Factor 2) and “Sleep disturbance” (Factor 3). Main exposures were serum concentrations of key nutrients, namely retinol, retinyl esters, carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein+zeaxanthin, lycopene), folate, vitamin B-12, total homocysteine (tHcy), vitamin C, 25-hydroxyvitamin D (25(OH)D) and vitamin E. Main analyses consisted of multiple linear, logistic and multinomial logit models.

Results

Among key findings, independent inverse associations were found between serum vitamin B-12 and sleep duration, 25(OH)D and sleepiness (as well as insomnia), and between folate and sleep disturbance. Serum total carotenoids concentration was linked to higher odds of short sleep duration (i.e. 5–6 h per night) compared to normal sleep duration (7–8 h per night).

Conclusions

A few of the selected serum nutritional biomarkers were associated with sleep quantity and quality. Longitudinal studies are needed to ascertain temporality and assess putative causal relationships.  相似文献   

12.
Emerging evidence indicates that carotenoids may have particular roles in infant nutrition and development, yet data on the profile and bioavailability of carotenoids from human milk remain sparse. Milk was longitudinally collected at 2, 4, 13, and 26 weeks postpartum from twenty mothers each in China, Mexico, and the USA in the Global Exploration of Human Milk Study (n = 60 donors, n = 240 samples). Maternal and neonatal plasma was analyzed for carotenoids from the USA cohort at 4 weeks postpartum. Carotenoids were analyzed by HPLC and total lipids by Creamatocrit. Across all countries and lactation stages, the top four carotenoids were lutein (median 114.4 nmol/L), β-carotene (49.4 nmol/L), β-cryptoxanthin (33.8 nmol/L), and lycopene (33.7 nmol/L). Non-provitamin A carotenoids (nmol/L) and total lipids (g/L) decreased (p<0.05) with increasing lactation stage, except the provitamin A carotenoids α- and β-cryptoxanthin and β-carotene did not significantly change (p>0.05) with lactation stage. Total carotenoid content and lutein content were greatest from China, yet lycopene was lowest from China (p<0.0001). Lutein, β-cryptoxanthin, and β-carotene, and lycopene concentrations in milk were significantly correlated to maternal plasma and neonatal plasma concentrations (p<0.05), with the exception that lycopene was not significantly associated between human milk and neonatal plasma (p>0.3). This enhanced understanding of neonatal exposure to carotenoids during development may help guide dietary recommendations and design of human milk mimetics.  相似文献   

13.
An improved isocratic and rapid HPLC method was developed for the measurement of carotenoids, retinol and tocopherols in human serum. Vitamins were extracted with hexane. Mobile phase consisted of a mixture acetonitrile:methylene chloride:methanol with 20 mM ammonium acetate. This method used a small bead size (3 μm) Spherisorb ODS2 column with titane frits. Diode array and fluorescence detectors were used respectively for the detection of carotenoids and retinol/tocopherols. Chromatographic separation was complete in 13 min for β-cryptoxanthin, cis–trans-lycopene, α-carotene, β-carotene, cis-β-carotene, retinol, δ-tocopherol, γ-tocopherol and α-tocopherol. Echinenone and tocol were employed as internal standards for diode array and fluorescence detection. Accuracy was validated using standard reference material (SRM) 968C. Intra-assay and inter-assay precision were respectively 0.2–7.3% and 3.6–12.6%. Sensitivity was verified using the ICH recommendations and the limit of detection (LOD) obtained was sufficient for routine clinical application.  相似文献   

14.
The culture and demonstration of putative nanobacteria (NB) and calcifying nanoparticles (CNP) from human and animal tissues has relied primarily on the use of a culture supplement consisting of FBS that had been γ-irradiated at a dose of 30 kGy (γ-FBS). The use of γ-FBS is based on the assumption that this sterilized fluid has been rid entirely of any residual NB/CNP, while it continues to promote the slow growth in culture of NB/CNP from human/animal tissues. We show here that γ-irradiation (5–50 kGy) produces extensive dose-dependent serum protein breakdown as demonstrated through UV and visible light spectrophotometry, fluorometry, Fourier-transformed infrared spectroscopy, and gel electrophoresis. Yet, both γ-FBS and γ-irradiated human serum (γ-HS) produce NB/CNP in cell culture conditions that are morphologically and chemically indistinguishable from their normal serum counterparts. Contrary to earlier claims, γ-FBS does not enhance the formation of NB/CNP from several human body fluids (saliva, urine, ascites, and synovial fluid) tested. In the presence of additional precipitating ions, both γ-irradiated serum (FBS and HS) and γ-irradiated proteins (albumin and fetuin-A) retain the inherent dual NB inhibitory and seeding capabilities seen also with their untreated counterparts. By gel electrophoresis, the particles formed from both γ-FBS and γ-HS are seen to have assimilated into their scaffold the same smeared protein profiles found in the γ-irradiated sera. However, their protein compositions as identified by proteomics are virtually identical to those seen with particles formed from untreated serum. Moreover, particles derived from human fluids and cultured in the presence of γ-FBS contain proteins derived from both γ-FBS and the human fluid under investigation—a confusing and unprecedented scenario indicating that these particles harbor proteins from both the host tissue and the FBS used as feeder. Thus, the NB/CNP described in the literature clearly bear hybrid protein compositions belonging to different species. We conclude that there is no basis to justify the use of γ-FBS as a feeder for the growth and demonstration of NB/CNP or any NB-like particles in culture. Moreover, our results call into question the validity of the entire body of literature accumulated to date on NB and CNP.  相似文献   

15.
We previously developed an in vitro model to estimate the relative bioavailability of carotenoids from a meal prepared using commercial baby foods. The general applicability of this model was tested using a stir-fried meal consisting of fresh spinach, fresh carrots, tomato paste, and vegetable oil. After in vitro digestion of the cooked meal, the aqueous fraction was separated from residual oil droplet and solids by centrifugation to quantify micellarized carotenoids. The percentages of lutein, lycopene, α-carotene, and β-carotene transferred from the meal to the micellar fraction were 29.0 ± 0.6, 3.2 ± 0.1, 14.7 ± 0.3, and 16.0 ± 0.4, respectively. Carotenoid transfer from the meal to the aqueous fraction was inhibited when bile extract was omitted from the intestinal phase of digestion. The bioavailability of the micellarized carotenoids was validated using differentiated cultures of Caco-2 human intestinal cells. All four carotenoids were accumulated in a linear manner throughout a 6-hr incubation period. Metabolic integrity was not compromised by exposure of cultures to the diluted aqueous fraction from the digested meal. The addition of 500 μmol/L α-tocopherol to test medium significantly improved the stability of the micellar carotenoids within the tissue culture environment. These results support the utility of the in vitro digestion procedure for estimating the bioavailability of carotenoids from foods and meals.  相似文献   

16.
Many birds acquire carotenoid pigments from the diet that they deposit into feathers and bare parts to develop extravagant sexual coloration. Although biologists have shown interest in both the mechanisms and function of these colorful displays, the carotenoids ingested and processed by these birds are poorly described. Here we document the carotenoid-pigment profile in the diet, blood and tissue of captive male and female zebra finches (Taeniopygia guttata). Dietary carotenoids including: lutein; zeaxanthin; and β-cryptoxanthin were also present in the plasma, liver, adipose tissue and egg-yolk. These were accompanied in the blood and tissues by a fourth pigment, 2′,3′-anhydrolutein, that was absent from the diet. To our knowledge, this is the first reported documentation of anhydrolutein in any avian species; among animals, it has been previously described only in human skin and serum and in fish liver. We also identified anhydrolutein in the plasma of two closely related estrildid finch species (Estrilda astrild and Sporaeginthus subflavus). Anhydrolutein was the major carotenoid found in zebra finch serum and liver, but did not exceed the concentration of lutein and zeaxanthin in adipose tissue or egg yolk. Whereas the percent composition of zeaxanthin and β-cryptoxanthin were similar between diet and plasma, lutein was comparatively less abundant in plasma than in the diet. Lutein also was proportionally deficient in plasma from birds that circulated a higher percentage of anhydrolutein. These results suggest that zebra finches metabolically derive anhydrolutein from dietary sources of lutein. The production site and physiological function of anhydrolutein have yet to be determined.  相似文献   

17.
MethodsLiver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies.ResultsTreatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs.ConclusionsBased on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.  相似文献   

18.
N-Nitroso- -arginine was described as one of the products of -arginine metabolism in biological media. A simple and rapid method to determine its concentration in rat brain was developed. Capillary electrophoresis with a photodiode-array detector was used at 254 nm, permitting the quantification of N-nitroso- -arginine. The detection limit in biological solution was 1 μg/ml.  相似文献   

19.
High-performance liquid chromatographic methods using reversed-phase chromatography and electrochemical detection have been developed for the quantitation of azithromycin in serum and tissues of laboratory animals and humans. Serum sample preparation involved addition of internal standard, alkalinization, and solvent extraction. Tissue sample preparation involved Polytron homogenization in acetonitrile containing internal standard, evaporation of the supernatant, alkalinization of the residue, and solvent extraction. Serum samples were chromatographed on an alkylphenyl-bonded silica column eluted with pH 6.8–7.2 mobile phase with a dual-electrode coulometric detector operated in the oxidative screen mode. Serum and tissue samples were chromatographed on a γRP-1 alumina column with pH 11 mobile phase with a glassy carbon amperometric detector. Recovery of azithromycin was 87% from serum and 85% from tissues. Linear standard curves were prepared in serum over two concentration ranges (0.01–0.20 and 0.20–2.0 μg/ml) and in tissues over several concentration ranges (0.1–2, 1–10, 10–100, and 100–1000 μg/g). In serum and tissues, intra- and inter-assay precision ranged from 1 to 8% and 4 to 11%, respectively. The tissue assay has been applied to liver, kidney, lung, spleen, muscle, fat, brain, tonsil, lymph nodes, eye, prostate and other urological tissues, and gynecological tissues.  相似文献   

20.
Isotope dilution is currently the most accurate technique in humans to determine vitamin A status and bioavailability/bioconversion of provitamin A carotenoids such as β-carotene. However, limits of MS detection, coupled with extensive isolation procedures, have hindered investigations of physiologically-relevant doses of stable isotopes in large intervention trials. Here, a sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) analytical method was developed to study the plasma response from coadministered oral doses of 2 mg [13C10]β-carotene and 1 mg [13C10]retinyl acetate in human subjects over a 2 week period. A reverse phase C18 column and binary mobile phase solvent system separated β-carotene, retinol, retinyl acetate, retinyl linoleate, retinyl palmitate/retinyl oleate, and retinyl stearate within a 7 min run time. Selected reaction monitoring of analytes was performed under atmospheric pressure chemical ionization in positive mode at m/z 537→321 and m/z 269→93 for respective [12C]β-carotene and [12C] retinoids; m/z 547→330 and m/z 274→98 for [13C10]β-carotene and [13C5] cleavage products; and m/z 279→100 for metabolites of [13C10]retinyl acetate. A single one-phase solvent extraction, with no saponification or purification steps, left retinyl esters intact for determination of intestinally-derived retinol in chylomicrons versus retinol from the liver bound to retinol binding protein. Coadministration of [13C10]retinyl acetate with [13C10]β-carotene not only acts as a reference dose for inter-individual variations in absorption and chylomicron clearance rates, but also allows for simultaneous determination of an individual''s vitamin A status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号