首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we used the 5'-trnL(UAA)-trnF(GAA) region of the chloroplast DNA for phylogeographic reconstructions and phylogenetic analysis among the genera Arabidopsis, Boechera, Rorippa, Nasturtium, and Cardamine. Despite the fact that extensive gene duplications are rare among the chloroplast genome of higher plants, within these taxa the anticodon domain of the trnF(GAA) gene exhibit extensive gene duplications with one to eight tandemly repeated copies in close 5' proximity of the functional gene. Interestingly, even in Arabidopsis thaliana we found six putative pseudogenic copies of the functional trnF gene within the 5'-intergenic trnL-trnF spacer. A reexamination of trnL(UAA)-trnF(GAA) regions from numerous published phylogenetic studies among halimolobine, cardaminoid, and other cruciferous taxa revealed not only extensive trnF gene duplications but also favor the hypothesis about a single origin of trnF pseudogene formation during evolution of the Brassicaceae family 16-21 MYA. Conserved sequence motifs from this tandemly repeated region are codistributed nonrandomly throughout the plastome, and we found some similarities with a DNA sequence duplication in the rps7 gene and its adjacent spacer. Our results demonstrate the potential evolutionary dynamics of a plastidic region generally regarded as highly conserved and probably cotranscribed and, as shown here for several genera among cruciferous plants, greatly characterized by parallel gains and losses of duplicated trnF copies.  相似文献   

2.
We sequenced the first ca. 900 bp of the 5'-trnL(UAA)-trnV(UAC)/ndhJ region of the chloroplast DNA of different Microseris accessions in order to resolve homoplasious length variation detected in the trnL(UAA)-trnF(GAA) region. We found two to four tandemly repeated trnF genes in the species of Microseris (Asteraceae, Lactuceae) and two in their sister genus Uropappus. Sequences indicated nonhomologous transitions between two, three, and four trnF genes in different Microseris taxa. Independent origins of similar trnF copy numbers were inferred from a chloroplast phylogeny of Microseris. The taxa involved grow on separate continents, supporting parallel origins of similar length variants. The changes in trnF copy numbers were best explained by interchromosomal recombination with unequal crossing over. The 5' copies of the repeats showed the highest sequence conservation, suggesting that these copies are likely to be functional trnF genes, whereas the other ones probably represent pseudogenes. Our results show that length polymorphisms accumulate once a duplicated sequence has become incorporated. Due to parallel gains of similar trnF copy numbers, homoplasious length variation was introduced into the data matrix. The data demonstrate that length polymorphisms cannot be used as indicators for phylogenetic distance unless they can be analyzed at the sequence level.  相似文献   

3.
The Chloroplast DNA trnL- trnF region sequences from a natural hybrid species Meconopsis× cookei and its parents M. punicea and M. quintuplinervia were obtained by using direct sequencing method. The sequence length of trnL- trnF region is 960 bp for M. × cookei, 961 bp for M. punicea, and 957 bp for M. quintuplinervia. The sequences were aligned by the software Clustal X, and then the bases per locus were compared by using the software with manual method. The aligned sequence length is 964 bp, of which trnL intron is 512 bp, the 3′exon of trnL is 50 bp, trnL- trnF intergenic spacer ( IGS) is 361 bp, and the 5′end segment of trnF is 41 bp. Total 25 variable loci were detected from the aligned sequence, of which 21 (84% ) sites are same between M. × cookei and M. punicea, and only one (4%) is same between M. × cookei and M. quintuplinervia , the remaining three loci (12% ) are different among M. × cookei, M. punicea, and M. quintuplinervia. The results show that the cpDNA trnL- trnF region of the natural hybrid species M. ×cookei was inherited from its parent M. punicea. Therefore, according to the plastid inheritance law, our molecular evidences indicate that M. punicea is the mother of hybrid species M. × cookei and M. quintuplinervia is its father.  相似文献   

4.
对自然杂交种Meconopsis× cookei 及其亲本红花绿绒蒿M. punicea 和五脉绿绒蒿M. quintuplinervia 的叶绿体DNA trnL- trnF 区进行了序列测定, 所得序列的长度为957~961 bp , 其中M. × cookei 的序列长度为960bp , 红花绿绒蒿为961 bp , 五脉绿绒蒿为957 bp。利用软件Clustal X 对所得序列进行排序和碱基比较, 排序后的序列长度为964 bp , 其中trnL intron 为512 bp , trnL 3′exon 为50 bp , trnL- trnF intergenic spacer ( IGS) 为361 bp , 还包括41 bp 的trnF 5′端片段。整个trnL- trnF 区序列共有25 个变异位点, 其中杂交种M. × cookei与红花绿绒蒿具有相同碱基的位点有21 个( 占84% ) , M. × cookei 与五脉绿绒蒿具有相同碱基的位点仅有1 个(占4% ) , 余下3 个位点( 占12%) 中, M. × cookei 的碱基与两个亲本均不相同。分析结果表明, 杂交种M. × cookei 的叶绿体基因trnL- trnF 来自红花绿绒蒿, 根据质体细胞质遗传的规律, 从而推测红花绿绒蒿为该杂交种的母本, 五脉绿绒蒿为其父本。  相似文献   

5.
Structure, variability, and molecular evolution of the trnT-F region in the Bryophyta (mosses and liverworts) is analyzed based on about 200 sequences of the trnT-L spacer and trnL 5' exon, 1000 sequences of the trnL intron, and 800 sequences of the trnL 3' exon and trnL-F spacer, including comparisons of lengths, GC contents, sequence similarities, and functional elements. Mutations occurring in the trnL 5' and 3' exons, including compensatory base pair changes, and a transition in the trnL anticodon in Takakia lepidozioides, are discussed. All three non-coding regions display a mosaic structure of highly variable elements (V1 - V3 in the trnT-L spacer, V4/V5 corresponding to stem-loop regions P6/P8 in the trnL intron, and V6/V7 in the trnL-F spacer) and more conserved elements. In the trnL intron this structure is a consequence of the defined secondary structure necessary for correct splicing, whereas in both spacers conserved regions are restricted to promoter elements. At least the highly variable regions in the trnT-L spacer and stem-loop region P8 of the trnL intron seem to evolve independently in the major bryophyte lineages and are therefore not suitable for high taxonomic level phylogenetic reconstructions. In mosses, a trend of length reduction towards the more derived lineages is observed in all three non-coding regions. GC contents are mostly linked to sequence variability, with the conserved regions being more GC rich and the more variable AT rich. The lowest GC values (< 10 %) are found in the trnT-L spacer of mosses. In addition to two putative sigma (70)-type promoters in the trnT-L spacer, a third putative promoter is present in the trnL-F spacer, although trnL and trnF are assumed to be co-transcribed. Consensus sequences are provided for the -35 and -10 sequences of the major bryophyte lineages. The third promoter is part of a hairpin secondary structure, whose loop region is highly homoplastic in mosses due to an inversion occurring independently in non-related taxa, even at the intraspecific level.  相似文献   

6.
Duplicated pseudogenes in the human genome are disabled copies of functioning parent genes. They result from block duplication events occurring throughout evolutionary history. Relatively recent duplications (with sequence similarity ≥90% and length ≥1 kb) are termed segmental duplications (SDs); here, we analyze the interrelationship of SDs and pseudogenes. We present a decision-tree approach to classify pseudogenes based on their (and their parents’) characteristics in relation to SDs. The classification identifies 140 novel pseudogenes and makes possible improved annotation for the 3172 pseudogenes located in SDs. In particular, it reveals that many pseudogenes in SDs likely did not arise directly from parent genes, but are the result of a multi-step process. In these cases, the initial duplication or retrotransposition of a parent gene gives rise to a ‘parent pseudogene’, followed by further duplication creating duplicated–duplicated or duplicated–processed pseudogenes, respectively. Moreover, we can precisely identify these parent pseudogenes by overlap with ancestral SD loci. Finally, a comparison of nucleotide substitutions per site in a pseudogene with its surrounding SD region allows us to estimate the time difference between duplication and disablement events, and this suggests that most duplicated pseudogenes in SDs were likely disabled around the time of the original duplication.  相似文献   

7.
Loci for human U1 RNA: structural and evolutionary implications   总被引:9,自引:0,他引:9  
Three clones U1-1, U1-6, and U1-8 containing sequences related to human U1 RNA have been studied by sequence analysis. The results show that each of the three clones represents a distinct locus. The U1-6 locus is closely related to the HU1-1 locus, which is believed to represent a functional U1 gene. The U1-1 and U1-8 loci are pseudogenes by definition, since they contain sequences that are closely related to but not identical with the human U1 RNA sequence. The U1-6 locus contains the sequence T-A-T-A-T close to the 5'-end of the U1 sequence but it is unclear if this represents the promoter. When the U1-8 locus was compared to the U1-6 locus, it was observed that the 5'-flanking sequences, except in the immediate vicinity of the pseudogene, are as well-conserved as the U1-related sequence itself, at least up to position -220. The high degree of homology in the 5'-flanking region suggests that U1 genes have a much more strict sequence requirement with regard to 5'-flanking sequences than most other eukaryotic genes. The U1-6 and U1-8 loci contain the sequence T-A-T-G-T-A-G-A-T-G-A between positions -211 and -221. An identical sequence is present in the equivalent position in the HU1-1 locus, and may represent the promoter. The high degree of conservation in the postulated promoter region indicates that pseudogenes like U1-8 possibly could be expressed. A truncated U1-related sequence is present between 106 to 150 nucleotides upstream from the U1 gene/pseudogene in the U1-6, the U1-8 and the HU1-1 loci, suggesting that the U1 genes may have been clustered early in evolution. The U1-1 locus has a strikingly different structure from the U1-8 locus; the pseudogene itself is as closely related to the U1 RNA sequence as is the U1-8 pseudogene but the flanking sequences, both on the 5' and the 3' side, share no detectable homology with the corresponding regions in the U1-6 or U1-8 loci. It may therefore be postulated that small nuclear RNA pseudogenes are created by several different mechanisms.  相似文献   

8.
Satoh H  Inokuchi N  Nagae Y  Okazaki T 《Gene》1999,230(1):91-99
The highly heterogeneous rat hemoglobin system was investigated at the gene level. Two regions of the alpha-like globin gene cluster from a Wistar rat were isolated. Four lambda Dash recombinant clones carrying rat alpha-like globin genes were localized on two distinct gene regions. A region of approximately 16kb was found to contain the 5'-IIalpha1-psi theta 1-3' loci, and another of approximately 24kb the 5'-IIalpha2-psi theta2-psiI alpha3-3' loci. Both IIalpha1 and IIalpha2 are considered to be active, coding the IIalpha-globin chain. The nt sequences of IIalpha1 and IIalpha2 are identical except for six nt in the non-coding region. The psiI alpha3 locus is a truncated pseudogene. The putative promoter region of an alpha-like globin gene is joined directly to the third exon, homologous to that of Ialpha-globin cDNA. psi theta1 and psi theta2 are also pseudogenes, as evidenced by several deletions located in the protein-coding regions of these loci. The psi theta1 and psi theta2 loci exhibit extensive homology, but the restriction maps of these genes and their flanking regions differ considerably. Genomic Southern blot analyses of the total liver DNA from six rats showed the existence of three theta-globin-related genes, including psi theta1 and psi theta2. These results indicate that the two gene regions investigated are not allelic variants, but may be generated by block duplication. This is the first report of the existence of rodent theta-globin genes.  相似文献   

9.
10.
11.
核糖体DNA的内转录间隔区(ITS)一直被作为一种重要的分子标记,却很难用于山茶物种中。通过对1个疑似香港红山茶(Camellia hongkongensis)的样本进行ITS区域的扩增、克隆和测序,从中获得74种不同序列。研究结果表明,其ITS区域具有高度的多态性,其中76%的序列为假基因。系统发育分析显示,超过半数的假基因源自同一祖先。这些假基因在经历多次基因重复后分化成至少5个谱系,且每个谱系中的序列非常相似,这表明一些假基因不但未被剔除,反而通过快速复制事件幸存下来。由于山茶物种个体内ITS的高度多态,使用这个区域区分山茶物种可能导致错误。然而,通过比较香港红山茶中的1个种间特异性r DNA假基因,确定该样本属于香港红山茶。  相似文献   

12.
We present a new likelihood method for detecting constrained evolution at synonymous sites and other forms of nonneutral evolution in putative pseudogenes. The model is applicable whenever the DNA sequence is available from a protein-coding functional gene, a pseudogene derived from the protein-coding gene, and an orthologous functional copy of the gene. Two nested likelihood ratio tests are developed to test the hypotheses that (1) the putative pseudogene has equal rates of silent and replacement substitutions; and (2) the rate of synonymous substitution in the functional gene equals the rate of substitution in the pseudogene. The method is applied to a data set containing 74 human processed-pseudogene loci, 25 mouse processed-pseudogene loci, and 22 rat processed-pseudogene loci. Using the informatics resources of the Human Genome Project, we localized 67 of the human-pseudogene pairs in the genome and estimated the GC content of a large surrounding genomic region for each. We find that, for pseudogenes deposited in GC regions similar to those of their paralogs, the assumption of equal rates of silent and replacement site evolution in the pseudogene is upheld; in these cases, the rate of silent site evolution in the functional genes is approximately 70% the rate of evolution in the pseudogene. On the other hand, for pseudogenes located in genomic regions of much lower GC than their functional gene, we see a sharp increase in the rate of silent site substitutions, leading to a large rate of rejection for the pseudogene equality likelihood ratio test.  相似文献   

13.
Human U1 small nuclear RNA is encoded by approximately 30 gene copies. All of the U1 genes share several kilobases of essentially perfect flanking homology both upstream and downstream from the U1 coding region, but remarkably, for many U1 genes excellent flanking homology extends at least 24 kilobases upstream and 20 kilobases downstream. Class I U1 RNA pseudogenes are abundant in the human genome. These pseudogenes contain a complete but imperfect U1 coding region and possess extensive flanking homology to the true U1 genes. We mapped four class I pseudogenes by in situ hybridization to the long arm of chromosome 1, bands q12-q22, a region distinct from the site on the distal short arm of chromosome 1 to which the U1 genes have been previously mapped (Lund et al., Mol. Cell. Biol. 3:2211-2220, 1983; Naylor et al., Somat. Cell Mol. Genet. 10:307-313, 1984). We confirmed our in situ hybridization results by genomic blotting experiments with somatic cell hybrid lines with translocation products of human chromosome 1. These experiments provide further evidence that class I U1 pseudogenes and the true U1 genes are not interspersed. The results, along with those published elsewhere (Bernstein et al., Mol. Cell. Biol. 5:2159-2171, 1985), suggest that gene amplification may be responsible for the sequence homogeneity of the human U1 gene family.  相似文献   

14.
Classification and nomenclature of all human homeobox genes   总被引:2,自引:0,他引:2  

Background

The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.

Results

We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive DUX1 to DUX5 homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.

Conclusion

We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.  相似文献   

15.
Structural and functional analysis of the goat epsilon-globin genes   总被引:2,自引:0,他引:2  
A G Menon  J B Lingrel 《Gene》1986,42(2):141-150
Since none of the vertebrate beta-globin loci studied to date has more than two functional embryonic beta-like globin genes, it would be unique if all six goat embryonic beta-globin genes were required for its survival. In this study we have asked whether all six embryonic genes in the goat are functional. This question has been addressed by examining the transient expression of these genes in HeLa cells and correlating these results with the sequence information obtained to date. Our studies show that only epsilon I and epsilon II are functional while the remaining four epsilon-globin genes are nonfunctional, i.e., pseudogenes. Interestingly, the two active epsilon-globin genes are located at the 5' end of the locus. While this unusual inactivation pattern may be the result of chance, it could also have resulted because the two duplication events, of the ancestral gene set epsilon-epsilon-psi beta-beta, did not include distally located regulatory region(s) essential for epsilon-globin gene expression. Once separated from the 5'-regulatory sequences the remaining four embryonic genes (epsilon III, epsilon IV, epsilon V and epsilon VI) accumulated mutations and became pseudogenes.  相似文献   

16.
Analysis of cloned human genomic loci homologous to the small nuclear RNA U1 established that such sequences are abundant and dispersed in the human genome and that only a fraction represent bona fide genes. The majority of genomic loci bear defective gene copies, or pseudogenes, which contain scattered base mismatches and in some cases lack the sequence corresponding to the 3' end of U1 RNA. Although all of the U1 genes examined to date are flanked by essentially identical sequences and therefore appear to comprise a single multigene family, we present evidence for the existence of at least three structurally distinct classes of U1 pseudogenes. Class I pseudogenes had considerable flanking sequence homology with the U1 gene family and were probably derived from it by a DNA-mediated event such as gene duplication. In contrast, the U1 sequence in class II and III U1 pseudogenes was flanked by single-copy genomic sequences completely unrelated to those flanking the U1 gene family; in addition, short direct repeats flanked the class III but not the class II pseudogenes. We therefore propose that both class II and III U1 pseudogenes were generated by an RNA-mediated mechanism involving the insertion of U1 sequence information into a new chromosomal locus. We also noted that two other types of repetitive DNA sequences in eucaryotes, the Alu family in vertebrates and the ribosomal DNA insertions in Drosophila, bore a striking structural resemblance to the classes of U1 pseudogenes described here and may have been created by an RNA-mediated insertion event.  相似文献   

17.
Nucleotide sequence of the PR-1 gene of Nicotiana tabacum   总被引:7,自引:0,他引:7  
A gene encoding one of the pathogenesis-related proteins, PR1a, and two related pseudogenes were isolated from Nicotiana tabacum. The cloned PR1a gene (pPR-gamma) and one of the pseudogenes (pPR-alpha) were sequenced and found to have similar structures. The sequence of pPR-gamma was quite similar to that of the cDNA clone of PR1a. The plasmid pPR-gamma did not contain an intron and had a typical promoter sequence in the 5'-flanking region.  相似文献   

18.
We have isolated cDNA clones that code for human cytochrome b5. Owing to the high degree of evolutionary conservation of cytochrome b5 sequences and the existence of human and rodent cytochrome b5 processed pseudogenes, we were unable to map unambiguously the chromosomal localization of the human gene(s) by Southern blot hybridization of DNA from human-rodent somatic cell hybrids. An alternative approach, based on restriction enzyme digestion of PCR-amplified DNA, enabled us to map the human cytochrome b5 gene(s) to chromosome 18 and one of its processed pseudogenes to the X chromosome. We propose the designations CYB5 and CYB5P1 for the gene and pseudogene loci, respectively.  相似文献   

19.
A substantial proportion of human genes contain tissue-specifically DNA-methylated regions (TDMRs). However, little is known about the evolutionary conservation of differentially methylated loci, how they evolve, and the signals that regulate them. We have studied TDMR conservation in the PLG and TBX gene families and in 32 pseudogene–parental gene pairs. Among the members of the recently evolved PLG gene family, 5′-UTR methylation is conserved and inversely correlated with the cognate gene expression, indicating as well a conserved regulatory role of DNA methylation. Conversely, many genes of the much older TBX family display complementary tissue-specific methylation, suggesting an epigenetic complementation in the evolution of this gene family. Similar to gene families, unprocessed pseudogenes arose from gene duplications and we found TDMR conservation in some pseudogene–parental gene pairs displaying short evolutionary distances. However, for the majority of unprocessed pseudogenes and for all processed pseudogenes examined, we found that tissue-specific methylation arose de novo after gene duplication.  相似文献   

20.
本实验对齿叶白刺(Nitraria roborowiskii Kom.)和唐古特白刺(N.tangutorum Bobr.)以及疑似杂交个体共48个个体的叶绿体trnL-F序列和核糖体ITS序列进行分析.trnL-F结果显示,齿叶白刺和唐古特白刺在15个位点上存在差异,杂交个体在其中11个位点上与齿叶白刺相同,4个位点...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号