首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This protocol details a method for the identification of proteins that have been separated by gel electrophoresis. In-gel digestion of the protein bands with trypsin followed by quadrupole ion-trap or other triple quadrupole mass spectrometry techniques is described. The proteins can be identified by database searching of the mass fingerprint of the intact peptides and of the characteristic fragment masses produced by tandem mass spectrometry.  相似文献   

2.
Peptides, such as many hormones, cytokines and growth factors play a central role in biological processes. Furthermore, as degradation products and processed forms of larger proteins they are part of the protein turnover. Thus, they can reflect disease-related changes in an organism's homeostasis in several ways. Since two-dimensional gel electrophoresis is restricted to analysis and display of proteins with relative molecular masses above 5000, we developed Differential Peptide Display (DPD), a new technology for analysis and visualization of peptides. Here we describe its application to cerebrospinal fluid of three subjects without a disease of the central nervous system (CNS) undergoing routine myelography and of two patients suffering from a primary CNS lymphoma. Peptides with a relative molecular mass below 20000 were extracted and analysed by a combination of chromatography and mass spectrometry. The peptide pattern of a sample was depicted as a multi-dimensional peptide mass fingerprint with each peptide's position being characterized by its molecular mass and chromatographic behaviour. Such a fingerprint of a CNS sample consists of more than 6000 different signals. Data analysis of peptide patterns from patients with CNS lymphoma compared to controls revealed obvious differences regarding the peptide content of the samples. By analysing peptides within a mass range of 750-20000, DPD extends 2D gel electrophoresis, thus offering the chance to investigate CNS diseases on the level of peptides. This represents a new approach for diagnosis and possible therapy.  相似文献   

3.
The study of changes in protein levels between samples derived from cells representing different biological conditions is a key to the understanding of cellular function. There are two main methods available that allow both for global scanning for significantly varying proteins and targeted profiling of proteins of interest. One method is based on 2-D gel electrophoresis and image analysis of labelled proteins. The other method is based on LC-MS/MS analysis of either unlabelled peptides or peptides derived from isotopically labelled proteins or peptides. In this study, the non-labelling approach was used involving a new software, DeCyder MS Differential Analysis Software (DeCyder MS) intended for automated detection and relative quantitation of unlabelled peptides in LC-MS/MS data.Total protein extracts of E. coli strains expressing varying levels of dihydrofolate reductase and integron integrase were digested with trypsin and analyzed using a nanoscale liquid chromatography system, Ettan MDLC, online connected to an LTQTM linear ion-trap mass spectrometer fitted with a nanospray interface. Acquired MS data were subjected to DeCyder MS analysis where 2-D representations of the peptide patterns from individual LC-MS/MS analyses were matched and compared.This approach to unlabelled quantitative analysis of the E. coli proteome resulted in relative protein abundances that were in good agreement with results obtained from traditional methods for measuring protein levels.  相似文献   

4.
Yan JX  Devenish AT  Wait R  Stone T  Lewis S  Fowler S 《Proteomics》2002,2(12):1682-1698
Separation and relative quantitation of complex protein mixtures remain two of the most challenging aspects of proteomics. Here an advanced technique called fluorescence difference 2-D gel electrophoresis technology (2D-DIGE) has been applied to a model system study of the Escherichia coli proteome after benzoic acid treatment. The molecular weight and charge matched cyanine dyes enable pre-electrophoretic labelling of control and treated samples which are then mixed and run in the same gel. Pooled control and treated samples labelled with Cy trade mark 3 were used as an internal standard for both Cy5 labelled control and treated E. coli samples. Together with DeCyder trade mark imaging analysis software, more accurate quantitative analysis than conventional two-dimensional polyacrylamide gel electrophoresis was achieved. Using matrix-assisted laser desorption/ionization-time of flight and quadrupole-time of flight mass spectrometry a total of 179 differentially expressed protein spots were identified. These included enzymes, stress related and substrate (e.g. amino acids, maltose, ribose and TRP repressor) binding proteins. Of the spots analysed, 77% contained only one protein species per spot, hence the change in protein expression measured was solely attributed to the identified protein. Many membrane proteins and protein isoforms were identified indicating both adequate solubilization of E. coli samples and potential post-translational modification. The results indicate that the regulatory mechanisms following benzoic acid treatment of E. coli are far more complicated than hitherto expected.  相似文献   

5.
蛋白质定量是探索疾病发生发展状况和寻找新药靶标的重要手段.该领域最常用的技术是比较染色后的二维凝胶上蛋白点的光密度值或综合同位素标记后的质谱峰强度方法.但此二者的样品处理方法都比较麻烦,不利于进行大规模蛋白质组的定量研究.最近几年出现了利用质谱数据进行无标记定量的方法, 根据数据类型这些方法可以分为2类:基于鉴定蛋白的肽段数的方法和基于质谱峰强度的方法,在高通量大规模蛋白组定量研究中有很大优势.本综述主要介绍了这2类无标记定量方法的模型及优缺点,并比较了2类方法的灵敏度和准确度.肽段计数方法在检测蛋白丰度变化时更灵敏,而峰面积强度在评估蛋白比率时更准确.  相似文献   

6.
Comparing different proteomes by classical two-dimensional electrophoresis is challenging and often complicated by substantial gel-to-gel variation. Separating two or more protein samples labelled with different fluorescent dyes in one single gel, as in two-dimensional difference gel electrophoresis, reduces this variability considerably. Recent technological innovations, specifically the introduction of a pooled internal standard, even further improve the quantification accuracy and statistical confidence of this method. In addition, decreasing the sample complexity by one of several protein or organelle fractionation procedures increases the number of spots investigated by this protein differential display methodology.  相似文献   

7.
To determine the protein content of formula, gel electrophoresis was performed on the infant formula samples and the entire protein patterns were analyzed by nano-high performance liquid chromatography-electrospray tandem mass spectrometry (nano-HPLC/ESI/MS/MS). From the commercial infant formula profiled in this study, a total of 154 peptides, corresponding to 31 unique proteins were identified by nano-HPLC/ESI/MS/MS. Each of the identified peptides was reconfirmed by a strict integrated approach using tandem mass spectra. This protein profiling method using gel electrophoresis coupled with nano-HPLC/ESI/MS/MS and manual evaluation is a sensitive and accurate method for protein identification as well as a powerful tool for monitoring various types of food products.  相似文献   

8.
Although differences in protein staining intensity can often be visualized by difference gel electrophoresis, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. We present a protocol for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using in-gel stable isotope labeling. In this protocol protein extracts from any source treated under two experimental conditions are resolved in two separate lanes by gel electrophoresis. Parallel gel regions of interest are reacted separately with either light or heavy isotope-labeled reagents, and the gel slices are then combined and digested with proteases. The resulting peptides are then analyzed by liquid chromatography/mass spectrometry (LC/MS) to determine relative abundance of light- and heavy-isotope lysine-containing peptide pairs and analyzed by LC/MS/MS for identification of sequence and modifications. This protocol should take approximately 24-26 h to complete, including the incubation time for proteolytic digestion. Additional time will be needed for data analysis and interpretation.  相似文献   

9.
A new general method for sequencing fluorescently labelled DNA by chemical degradation has been developed. It is based on the observation that fluorescein attached via a mercaptopropyl or aminopropyl linker arm to the 5'-phosphate of an oligonucleotide is stable during the reactions commonly used in chemical cleavage procedures. DNA to be degraded is first enzymatically synthesized in vitro by annealing and extending a fluorescently labelled primer thereby introducing the fluorescent label at the 5'-end of the fragment. The newly synthesized fluorescently labelled DNA is then chemically degraded using: (a) a set of four different cleavage reactions; or (b) only one reaction comprising methylation of G-residues followed by a partial cleavage with piperidine in the presence of sodium chloride. The fluorescent degradation products are loaded on either four lanes or one lane of the gel, respectively, and the emitted fluorescence detected online during electrophoresis. In the 'four reactions/four lanes' method 200-350 bp (base pairs) can be read from the labelled end. The 'one reaction/one lane' method, in which the nucleotide sequence is determined by measuring different signal intensities following the rule G greater than A greater than C greater than T, currently yields around 100-200 bp of sequence per sample.  相似文献   

10.

Background

Shotgun proteomics represents an attractive technical framework for the study of membrane proteins that are generally difficult to resolve using two-dimensional gel electrophoresis. The use of iTRAQ, a set of amine-specific isobaric tags, is currently the labelling method of choice allowing multiplexing of up to eight samples and the relative quantification of multiple peptides for each protein. Recently the hyphenation of different separation techniques with mass spectrometry was used in the analysis of iTRAQ labelled samples. OFFGEL electrophoresis has proved its effectiveness in isoelectric point-based peptide and protein separation in solution. Here we describe the first application of iTRAQ-OFFGEL-LC-MS/MS on microsomal proteins from plant material. The investigation of the iTRAQ labelling effect on peptide electrofocusing in OFFGEL fractionator was carried out on Medicago truncatula membrane protein digests.

Results

In-filter protein digestion, with easy recovery of a peptide fraction compatible with iTRAQ labelling, was successfully used in this study. The focusing quality in OFFGEL electrophoresis was maintained for iTRAQ labelled peptides with a higher than expected number of identified peptides in basic OFFGEL-fractions. We furthermore observed, by comparing the isoelectric point (pI) fractionation of unlabelled versus labelled samples, a non-negligible pI shifts mainly to higher values.

Conclusions

The present work describes a feasible and novel protocol for in-solution protein digestion in which the filter unit permits protein retention and buffer removal. The data demonstrates an impact of iTRAQ labelling on peptide electrofocusing behaviour in OFFGEL fractionation compared to their native counterpart by the induction of a substantial, generally basic pI shift. Explanations for the occasionally observed acidic shifts are likewise presented.  相似文献   

11.
The comparison of two-dimensional (2-D) gel images from different samples is an established method used to study differences in protein expression. Conventional methods rely on comparing images from at least 2 different gels. Due to the high variation between gels, detection and quantification of protein differences can be problematic. Two-dimensional difference gel electrophoresis (Ettan trade mark DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. In the application of DIGE different samples are labelled with mass and charge matched spectrally resolvable fluorescent dyes and are then separated on the same 2-D gel. Using an Escherichia coli lysate "spiked" with varying amounts of four different known proteins, we have tested a novel experimental design that exploits the sample multiplexing capabilities of DIGE, by including a standard sample in each gel. The standard sample comprises equal amounts of each sample to be compared and was found to improve the accuracy of protein quantification between samples from different gels allowing accurate detection of small differences in protein levels between samples.  相似文献   

12.
Measurements of mass spectral peak intensities and spectral counts are promising methods for quantifying protein abundance changes in shotgun proteomic analyses. We describe Serac, software developed to evaluate the ability of each method to quantify relative changes in protein abundance. Dynamic range and linearity using a three-dimensional ion trap were tested using standard proteins spiked into a complex sample. Linearity and good agreement between observed versus expected protein ratios were obtained after normalization and background subtraction of peak area intensity measurements and correction of spectral counts to eliminate discontinuity in ratio estimates. Peak intensity values useful for protein quantitation ranged from 10(7) to 10(11) counts with no obvious saturation effect, and proteins in replicate samples showed variations of less than 2-fold within the 95% range (+/-2sigma) when >or=3 peptides/protein were shared between samples. Protein ratios were determined with high confidence from spectral counts when maximum spectral counts were >or=4 spectra/protein, and replicates showed equivalent measurements well within 95% confidence limits. In further tests, complex samples were separated by gel exclusion chromatography, quantifying changes in protein abundance between different fractions. Linear behavior of peak area intensity measurements was obtained for peptides from proteins in different fractions. Protein ratios determined by spectral counting agreed well with those determined from peak area intensity measurements, and both agreed with independent measurements based on gel staining intensities. Overall spectral counting proved to be a more sensitive method for detecting proteins that undergo changes in abundance, whereas peak area intensity measurements yielded more accurate estimates of protein ratios. Finally these methods were used to analyze differential changes in protein expression in human erythroleukemia K562 cells stimulated under conditions that promote cell differentiation by mitogen-activated protein kinase pathway activation. Protein changes identified with p<0.1 showed good correlations with parallel measurements of changes in mRNA expression.  相似文献   

13.
Zymography detects and characterizes proteolytic enzymes by electrophoresis of protease-containing samples into a nonreducing sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) gel containing a copolymerized protein substrate. The usefulness of zymography for molecular weight determination and proteomic analysis is hampered by the fact that some proteases exhibit slower migration through a gel that contains substrate protein. This article introduces electrophoretic transfer protein zymography as one solution to this problem. In this technique, samples containing proteolytic enzymes are first resolved in nonreducing SDS–PAGE on a gel without protein substrate. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel previously prepared with a copolymerized protein substrate. The receiving gel is then developed as a zymogram to visualize clear or lightly stained bands in a dark background. Band intensities are linearly related to the amount of protease, extending the usefulness of the technique so long as conditions for transfer and development of the zymogram are kept constant. Conditions of transfer, such as the pore sizes of resolving and receiving gels and the transfer time relative to the molecular weight of the protease, are explored.  相似文献   

14.
Krah A  Wessel R  Pleissner KP 《Proteomics》2004,4(10):2982-2986
Proteins separated by two-dimensional gel electrophoresis (2-DE) may be distributed over several spots. Otherwise, one spot may contain more than one component. The same protein occurring in several spots supposedly represents differently modified protein species that might be of biological relevance. Identification of spots with peptide mass fingerprinting and database searching leads only to the detection of the major spot components. If a spot also contains additional minor protein components, quantitation of spots with protein staining techniques or antibody detection becomes misleading. In order to find spots containing minor components we applied correspondence analysis, a multivariate data exploration method, to peptide mass fingerprint data. Correspondence analysis using peak lists revealed groups of spots containing the same protein with their characteristic mass-to-charge ratio (m/z) values. In order to detect different protein spot components an interactive threshold setting and removal of m/z values with subsequent recalculation of the correspondence analysis using our software tool CorrAn are performed. The usefulness of this methodical approach was shown by a data set of peptide mass fingerprints of 284 spots of Helicobacter pylori 26695 separated by 2-DE.  相似文献   

15.
Although recent advances in gel electrophoresis and mass spectrometry have greatly facilitated separation, purification, and identification of proteins, significant challenges remain in relation to phosphoprotein analysis. Here we introduce a powerful method for analysis of protein phosphorylation in which phosphorylation sites are labeled with guanidinoethanethiol (GET) by beta-elimination/Michael addition prior to proteolysis and mass spectrometry (MS) analysis. This technique is especially useful in conjunction with gel-based technology in that all of the processes involved, including GET labeling, washing, and phosphospecific enzymatic hydrolysis, can be carried out in excised gel slices, thereby minimizing sample loss and contamination. The novel GET tag, which has a highly basic guanidine group, increases the peak intensities for the GET-labeled tryptic peptides by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In addition, phosphospecific proteolytic cleavage occurs at guanidinoethylcysteine (Gec) residue, which is arginine-mimic formed by GET tagging of phosphorylated serine residues. Thus, GET tagging is especially useful in analysis of long tryptic phosphopeptides. To illustrate the utility of the in-gel GET tagging and digestion approach, we used it to precisely analyze the phosphorylation sites of human glutathione S-transferase P1 (GSTP1), an enzyme involved in phase II metabolism of many carcinogens and anticancer drugs. The in-gel GET tagging/digestion technique significantly enhances the analytical potential of gel electrophoresis/MS in studies of proteome phosphorylation.  相似文献   

16.
Applications of affinity chromatography in proteomics   总被引:7,自引:0,他引:7  
Affinity chromatography is a powerful protein separation method that is based on the specific interaction between immobilized ligands and target proteins. Peptides can also be separated effectively by affinity chromatography through the use of peptide-specific ligands. Both two-dimensional electrophoresis (2-DE)- and non-2-DE-based proteomic approaches benefit from the application of affinity chromatography. Before protein separation by 2-DE, affinity separation is used primarily for preconcentration and pretreatment of samples. Those applications entail the removal of one protein or a class of proteins that might interfere with 2-DE resolution, the concentration of low-abundance proteins to enable them to be visualized in the gel, and the classification of total protein into two or more groups for further separation by gel electrophoresis. Non-2-DE-based approaches have extensively employed affinity chromatography to reduce the complexity of protein and peptide mixtures. Prior to mass spectrometry (MS), preconcentration and capture of specific proteins or peptides to enhance sensitivity can be accomplished by using affinity adsorption. Affinity purification of protein complexes followed by identification of proteins by MS serves as a powerful tool for generating a map of protein-protein interactions and cellular locations of complexes. Affinity chromatography of peptide mixtures, coupled with mass spectrometry, provides a tool for the study of protein posttranslational modification (PTM) sites and quantitative proteomics. Quantitation of proteomes is possible via the use of isotope-coded affinity tags and isolation of proteolytic peptides by affinity chromatography. An emerging area of proteomics technology development is miniaturization. Affinity chromatography is becoming more widely used for exploring PTM and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. More applications of affinity-based purification can be expected, including increasing the resolution in 2-DE, improving the sensitivity of MS quantification, and incorporating purification as part of multidimensional liquid chromatography experiments.  相似文献   

17.
Peptide mapping of heterogeneous protein samples.   总被引:5,自引:0,他引:5  
A simple two-dimensional electrophoretic method for peptide mapping of heterogeneous protein samples is presented. The reduced and denatured proteins of the mixture are separated in a first dimension by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. After completion of the electrophoresis, the whole gel lane is equilibrated in stacking gel buffer and is transferred at right angles onto a second slab gel. A protease solution is overlayed on the gel lane and a partial proteolysis of the proteins to be analyzed is performed during the stacking phase of the second electrophoresis. The second electrophoresis resolves the characteristic pattern of peptides of each individual protein as a series of spots located below the original position of the undigested protein. The peptide maps of the following samples are presented as examples: protein P23 and P23* of bacteriophage T4, membranes of Dictyostelium discoideum, membranes of human erythrocytes, and 35S-labeled proteins of D. discoideum synthesized in vivo or in a cell-free wheat germ extract. In complex samples, up to 20 individual proteins can be analyzed at once and a protein comprising only 1% of the total sample generates a clearly identifiable peptide pattern. Good reproducibility of the patterns obtained allows the comparison of samples of different origins.  相似文献   

18.
Most proteomics approaches for relative quantification of protein expression use a combination of stable-isotope labeling and mass spectrometry. Traditionally, researchers have used difference gel electrophoresis (DIGE) from stained 1D and 2D gels for relative quantification. While differences in protein staining intensity can often be visualized, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. A method is presented for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using In-gel Stable-Isotope Labeling (ISIL). Proteins extracted from any source (tissue, cell line, immunoprecipitate, etc.), treated under two experimental conditions, are resolved in separate lanes by gel electrophoresis. The regions of interest (visualized by staining) are reacted separately with light versus heavy isotope-labeled reagents, and the gel slices are then mixed and digested with proteases. The resulting peptides are then analyzed by LC-MS to determine relative abundance of light/heavy isotope pairs and analyzed by LC-MS/MS for identification of sequence and modifications. The strategy compares well with other relative quantification strategies, and in silico calculations reveal its effectiveness as a global relative quantification strategy. An advantage of ISIL is that visualization of gel differences can be used as a first quantification step followed by accurate and sensitive protein level stable-isotope labeling and mass spectrometry-based relative quantification.  相似文献   

19.
Fung KY  Askovic S  Basile F  Duncan MW 《Proteomics》2004,4(10):3121-3127
The ability to obtain the accurate mass of a protein in a complex sample mixture aids in determining its correct in vivo form. This is important when identifying post-translationally modified proteins, protein variants or isoforms. The central technique used to separate proteins, 2-dimensional gel electrophoresis offers excellent separation capabilities but does not provide adequate mass accuracy. In this study, an alternative method, liquid chromatography (LC) coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)-MS (LC-MALDI) is described. LC-MALDI-MS was used to separate and determine the mass of proteins and peptides in a complex biological sample (i.e., human pituitary gland homogenate). Peptides and proteins were first separated by capillary chromatography and the eluent mixed post-column with sinapinic acid matrix. The flow was then deposited directly onto a standard MALDI target via a capillary nebulizer. In addition to offering high mass accuracy, this method can be applied to peptide and protein quantification.  相似文献   

20.
The objective of this study was to determine if liquid chromatography mass spectrometry (LC/MS) data of tryptic digests of proteins can be used for quantitation. In theory, the peak area of peptides should correlate to their concentration; hence, the peak areas of peptides from one protein should correlate to the concentration of that particular protein. To evaluate this hypothesis, different amounts of tryptic digests of myoglobin were analyzed by LC/MS in a wide range between 10 fmol and 100 pmol. The results show that the peak areas from liquid chromatography mass spectrometry correlate linearly to the concentration of the protein (r2 = 0.991). The method was further evaluated by adding two different concentrations of horse myoglobin to human serum. The results confirm that the quantitation method can also be used for quantitative profiling of proteins in complex mixtures such as human sera. Expected and calculated protein ratios differ by no more than 16%. We describe a new method combining protein identification with accurate profiling of individual proteins. This approach should provide a widely applicable means to compare global protein expression in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号