首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biochemical studies on anaerobic phenylme-thylether cleavage by homoacetogenic bacteria have been hampered so far by the complexity of the reaction chain involving methyl transfer to acetyl-CoA synthase and subsequent methyl group carbonylation to acetyl-CoA. Strain TMBS 4 differs from other demethylating homoacetogenic bacteria in using sulfide as a methyl acceptor, thereby forming methanethiol and dimethylsulfide. Growing and resting cells of strain TMBS 4 used alternatitively CO2 as a precursor of the methyl acceptor CO for homoacetogenic acetate formation. Demethylation was inhibited by propyl iodide and reactivated by light, indicating involvement of a corrinoid-dependent methyltransferase. Strain TMBS 4 contained ca. 750 nmol g dry mass-1 of a corrinoid tentatively identified as 5-hydroxybenzimidazolyl cobamide. A photometric assay for measuring the demethylation activity in cell extracts was developed based on the formation of a yellow complex of Ti3+ with 5-hydroxyvanillate produced from syringate by demethylation. In cell extracts, the methyltransfer reaction from methoxylated aromatic compounds to sulfide or methanethiol depended on reductive activation by Ti3+. ATP and Mg2+ together greatly stimulated this reductive activation without being necessary for the demethylation reaction itself. The specific activity of the transmethylating enzyme system increased proportionally with protein concentration up to 3 mg ml-1 reaching a constant level of 20 nmol min-1 mg-1 at protein concentrations 10 mg ml-1. The specific rate of activation increased in a non-linear manner with protein concentration. Strain TMBS 4 degraded gallate, the product of sequential demethylations, to 3 acetate through the phloroglucinol pathway as found earlier with Pelobacter acidigallici.Abbreviations BV benzyl viologen - CTAB cetyltrimethylammonium bromide - H4folate tetrahydrofolate - MOPS 3-[N-morpholino]propanesulfonic acid - MV methyl viologen - NTA nitrilotriacetate - td doubling time - TMB 3,4,5-trimethoxybenzoate  相似文献   

2.
Nonadapted freshwater sediment slurries and sediment slurries adapted to dechlorinate 2,3-dichloropyridine (2,3-Cl2Pyd), 2,3-dichloroaniline (2,3-Cl2Anl), 2,3-dichlorophenol (2,3-Cl2PhOH), 3,5-dichloropyridine (3,5-Cl2Pyd), 3,5-dichloroaniline (3,5-Cl2Anl) and 3,5-dichlorophenol (3,5-Cl2PhOH) were studied to determine the rate, range and extent of biotransformation of structurally related compounds under anaerobic conditions. 2,3-dichloroanisole (2,3-Cl2Ans) and 3,5-dichloroanisole (3,5-Cl2Ans) were initially demethylated, producing 2,3-Cl2PhOH and 3,5-Cl2PhOH as intermediate transformation products. All other dichloroaromatic compounds examined were initially dechlorinated. The rates of dechlorination of 2,3-Cl2PhOH, 2,3-Cl2Anl, and 2,3-Cl2Pyd were significantly lower (5–15 times) in nonadapted sediment slurries compared to sediment slurries adapted to 2,3-Cl2Anl or 2,3-Cl2Pyd. In 2,3-Cl2PhOH adapted sediment, the rate of dechlorination of 2,3-Cl2PhOH was 15 times greater than in nonadapted sediment; however, the rates of dechlorination of 2,3-Cl2Anl and 2,3-Cl2Pyd were similar for 2,3-Cl2PhOH-adapted and nonadapted sediment slurries. In adapted and nonadapted sediment slurries, 2,3-Cl2PhOH, 2,3-Cl2Anl, and 2,3-Cl2Pyd were preferentially dechlorinated at the ortho, meta, and meta positions, respectively. Additionally, 2,3-Cl2Pyd adapted sediment slurries dechlorinated 2,3-Cl2PhOH and 2,3-Cl2Pyd at both ortho and meta positions.Rates of dechlorination of 3,5-Cl2PhOH, 3,5-Cl2Anl, and 3,5-Cl2Pyd were lower (2–4 times) in nonadapted sediment slurries compared to sediment slurries adapted to 3,5-Cl2Anl or 3,5-Cl2Pyd. In 3,5-Cl2PhOH adapted sediment, the rate of dechlorination of 3,5-Cl2PhOH was approximately 10 times greater than in nonadapted sediment. In contrast, rates of dechlorination of 3,5-Cl2Anl and 3,5-Cl2Pyd were similar in 3,5-Cl2PhOH-adapted and nonadapted sediment slurries. A single meta chlorine was removed for all 3,5-dichloroaromatic compounds tested except 3,5-Cl2Ans, which was initially demethylated. These results illustrate differences in the specificity and cross-reactivity of microbial populations adapted to structurally related dichloroaromatic compounds.  相似文献   

3.
1,3,5-Trimethoxybenzene is a key component of the Chinese rose odor. This compound is synthesized in three successive methylation steps from phloroglucinol, the initial precursor. A novel, to our knowledge, phloroglucinol O-methyltransferase (POMT) characterized here methylates the first step to produce the intermediate 3,5-dihydroxyanisole, while two previously described orcinol O-methyltransferases catalyze the subsequent steps. We isolated POMT from rose petals and determined partial amino acid sequences of the purified enzyme. The full-length POMT cDNA was isolated and expressed in Escherichia coli. Both the native and recombinant POMT exhibited substrate specificity for phloroglucinol. POMT was expressed specifically in floral organs, in accordance with its role as a key enzyme in the synthesis of rose floral scent compounds.  相似文献   

4.
Methylenetetrahydrofolate([H4] folate) dehydrogenase (D) and methenyl[H4] folate cyclohydrolase (C) coexist as a bifunctional enzyme (DC) or as the amino-terminal domain of a trifunctional enzyme (DCS) where the third activity is 10-formyl[H4]lfolate synthetase (S). Two crystal forms of the DC domain of the human cytosolic DCS enzyme have been grown from polyethyleneglycol solution. The monoclinic P21 crystals diffract to 2.8 Å with a = 72.5 Å, b = 68.5 Å, c = 125.2 Å, and β = 91.8° but were found to be twinned. The orthorhombic P212121 crystals diffract to 2.5 Å with a = 67.7 Å, b = 135.9 Å, c = 61.6 Å, and contain two molecules per asymmetric unit. Proteins 26:479–480 © 1996 Wiley-Liss, Inc.  相似文献   

5.
Six species of free-living nitrogen fixing bacteria, Azomonas agilis, Azospirillum brasilense, Azospirillum lipoferum, Azotobacter chroococcum, Azotobacter vinelandii, and Beijerinckia mobilis, were surveyed for their ability to grow and fix N2 using aromatic compounds as sole carbon and energy source. All six species grew and expressed nitrogenase activity on benzoate, catechol, 4-hydroxybenzoate, naphthalene, protocatechuate, and 4-toluate. In many cases, growth rates on one or more aromatic compounds were comparable to or greater than those on the non-aromatic substrates routinely used for cultivation of the organisms. Specific activity of nitrogenase in extracts of aromatic-grown cells often exceeded that in cells grown on non-aromatic substrates. All six species growing on substrates typically converted to catechol expressed inducible catechol 1,2-dioxygenase and/or catechol 2,3-dioxygenase. When grown on substrates typically converted to protocatechuate, inducible protocatechuate 3,4-dioxygenase and/or protocatechuate 4,5-dioxygenase was expressed. A. chroococcum expressed only ortho cleavage dioxygenases during growth on naphthalene and 4-toluate and only meta cleavage dioxygenases on the other aromatics. B. mobilis expressed only ortho cleavage dioxygenases. The other four species examined expressed both ortho and meta cleavage enzymes.A preliminary account of this work was presented at the 91st General Meeting of the American Society for Microbiology, Dallas, TX, 1991  相似文献   

6.
Vanillic acid (4-hydroxy-3-methoxybenzoic acid) supported the anaerobic (nitrate respiration) but not the aerobic growth of Pseudomonas sp. strain PN-1. Cells grown anaerobically on vanillate oxidized vanillate, p-hydroxybenzoate, and protocatechuic acid (3,4-dihydroxybenzoic acid) with O2 or nitrate. Veratric acid (3,4-dimethoxybenzoic acid) but not isovanillic acid (3-hydroxy-4-methoxybenzoic acid) induced cells for the oxic and anoxic utilization of vanillate, and protocatechuate was detected as an intermediate of vanillate breakdown under either condition. Aerobic catabolism of protocatechuate proceeded via 4,5-meta cleavage, whereas anaerobically it was probably dehydroxylated to benzoic acid. Formaldehyde was identified as a product of aerobic demethylation, indicating a monooxygenase mechanism, but was not detected during anaerobic demethylation. The aerobic and anaerobic systems had similar but not identical substrate specificities. Both utilized m-anisic acid (3-methoxybenzoic acid) and veratrate but not o- or p-anisate and isovanillate. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid), 3-O-methylgallic acid (3-methoxy-4,5-dihydroxybenzoic acid), and 3,5-dimethoxybenzoic acid were attacked under either condition, and formaldehyde was liberated from these substrates in the presence of O2. The anaerobic demethylating system but not the aerobic enzyme was also active upon guaiacol (2-methoxyphenol), ferulic acid (3-[4-hydroxy-3-methoxyphenyl]-2-propenoic acid), 3,4,5-trimethoxycinnamic acid (3-[3,4,5-trimethoxyphenyl]-2-propenoic acid), and 3,4,5-trimethoxybenzoic acid. The broad specificity of the anaerobic demethylation system suggests that it probably is significant in the degradation of lignoaromatic molecules in anaerobic environments.  相似文献   

7.
In contrast to the degradation of penta-and hexachlorobiphenyls in chemostat cultures, the metabolism of PCBs by Alcaligenes sp. JB1 was shown to be restricted to PCBs with up to four chlorine substituents in resting-cell assays. Among these, the PCB congeners containing ortho chlorine substituents on both phenyl rings were found to be least degraded. Monochloro-benzoates and dichlorobenzoates were detected as metabolites. Resting cell assays with chlorobenzoates showed that JB1 could metabolize all three monochlorobenzoates and dichlorobenzoates containing only meta and para chlorine substituents, but not dichlorobenzoates possessing an ortho chlorine substituent. In enzyme activity assays, meta cleaving 2,3-dihydroxybiphenyl 1,2-dioxygenase and catechol 2,3-dioxygenase activities were constitutive, whereas benzoate dioxygenase and ortho cleaving catechol 1,2-dioxygenase activities were induced by their substrates. No activity was found for pyrocatechase II, the enzyme that is specific for chlorocatechols. The data suggest that complete mineralization of PCBs with three or more chlorine substituents by Alcaligenes sp. JB1 is unlikely.Abbreviations PCB polychlorinated biphenyls - CBA chlorobenzoate - D di - Tr tri - Te tetra - Pe penta- - H hexa  相似文献   

8.
In our search to improve the stability and cellular absorption of tea polyphenols, we synthesized 3‐O‐(3,4,5‐trimethoxybenzoyl)‐(?)‐epicatechin (TMECG), which showed high antiproliferative activity against melanoma. TMECG downregulates dihydrofolate reductase (DHFR) expression in melanoma cells and we detail the sequential mechanisms that result from this even. TMECG is specifically activated in melanoma cells to form a stable quinone methide (TMECG‐QM). TMECG‐QM has a dual action on these cells. First, it acts as a potent antifolate compound, disrupting folate metabolism and increasing intracellular oxidized folate coenzymes, such as dihydrofolate, which is a non‐competitive inhibitor of dihydropterine reductase, an enzyme essential for tetrahydrobiopterin (H4B) recycling. Such inhibition results in H4B deficiency, endothelial nitric oxide synthase (eNOS) uncoupling and superoxide production. Second, TMECG‐QM acts as an efficient superoxide scavenger and promotes intra‐cellular H2O2 accumulation. Here, we present evidence that TMECG markedly reduces melanoma H4B and NO bioavailability and that TMECG action is abolished by the eNOS inhibitor Nω‐nitro‐L ‐arginine methyl ester or the H2O2 scavenger catalase, which strongly suggests H2O2‐dependent DHFR downregulation. In addition, the data presented here indicate that the simultaneous targeting of important pathways for melanoma survival, such as the folate cycle, H4B recycling, and the eNOS reaction, could represent an attractive strategy for fighting this malignant skin pathology. J. Cell. Biochem. 110: 1399–1409, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Alcaligenes xylosoxidans subspecies denitrificans JH1 was enriched with 2-chlorophenol from a mixed culture degrading different chloro- and methylphenols. The strain used all monochloro- and monomethylphenols apart from 2-methylphenol as sole source of energy and carbon with stoichiometric release of chloride. 4-Chlorophenol was mineralized up to a concentration of 1.3 mM. Degradation of mixtures of monochloro- and monomethylphenols occurred at least partially except for the mixture of 2-chlorophenol and 3-methylphenol. Depending upon the growth substrates used, enzymes of the ortho and/or meta cleavage pathway catalysed the degradation of the phenols. The transformation of chlorophenols was concluded to occur exclusively via the ortho cleavage pathway because no chlorocatechol 2,3-dioxygenase activity was found in chlorophenol-grown cells. Degradation of 4-methylphenol in strain JH1 occurred both by the ortho and meta cleavage pathway as indicated by the finding that the ortho- and meta-cleaving dioxygenases were expressed in 4-methylphenol-grown cells. Transformation of methylphenols by the ortho cleavage pathway led to the accumulation of methyllactones as dead-end products. Mixtures of methyl- and chlorophenols were metabolized mainly by the ortho cleavage pathway because chlorocatechols formed inactivated the constitutive catechol 2,3-dioxygenase which caused channelling of methylphenols into the ortho cleavage pathway.  相似文献   

10.
The effects of five new derivatives of 2,6-dialkyl-4-propylphenol containing different ionogenic groups (-SO3Na, -S-SO3Na, -S-(NH2)2Cl) in the para position on survival of the E. coli AB1157 strain and its isogenic strain deficient in repair enzyme genes have been investigated in the presence and in the absence of hydrogen peroxide. Survival of cells treated with hydrogen peroxide was markedly increased in the presence of sodium (3-(3,5-dimethyl-4-hydroxyphenyl)propyl)-1-sulphonate (C1). Replacement of methyl substituents at ortho-position of C1 for tert-butyl or cyclohexyl groups decreased cell protection against exogenous hydrogen peroxide. Among 2,6-di-tert-buthylphenol the compound with the thiosulphonate group demonstrated properties similar to its sulphonate analog, whereas 3 mM isothiuronium chloride completely suppressed cell growth both in the absence and in the presence of hydrogen peroxide. Thus, among the tested compounds C1 may be considered as the most promising antioxidant.  相似文献   

11.
Anaerobic degradation of hydroquinone was studied with the fermenting bacterium strain HQGö1. The rate of hydroquinone degradation by dense cell suspensions was dramatically accelerated by addition of NaHCO3. During fermentation of hydroquinone in the presence of 14C-Na2CO3 benzoate was formed as a labelled product, indicating an initial ortho-carboxylation of hydroquinone to gentisate. Gentisate was activated to the corresponding CoA-ester in a CoA ligase reaction at a specific activity of 0.15 mol x min–1 x mg protein–1. Gentisyl-CoA was reduced to benzoyl-CoA with reduced methyl viologen as electron donor by simultaneous reductive elimination of both the ortho and meta hydroxyl group. The specific activity of this novel gentisyl-CoA reductase was 17 nmol x min–1 x mg protein–1. Further degradation to acetate was catalyzed by enzymes which occur also in other bacteria degrading aromatic compounds via benzoyl-CoA.  相似文献   

12.
The incorporation of radioactive formate into an acid-stable non-volatile form by human erythrocytes is dependent upon the addition of 5-amino-4-imidazolecarboxamide riboside. The formate-incorporating activity of human erythrocytes varies widely among normal individuals and the values obtained are characteristic of the erythrocytes obtained from these individuals. The variation is unrelated to the total folate levels of the erythrocytes as measured by the growth response of Lactobacillus casei but is roughly correlated with the quantity of folate forms in the erythrocytes which support the growth of Steptococcus faecalis. The activities of several enzymes involved in the metabolism of the folate coenzymes has also been measured in extracts of erythrocytes. Extracts from all the individuals contained 10-formyltetrahydrofolate synthase, 5-amino-4-imidazolecarboxamide ribotide transformylase, and 5,10-methylenetetrahydrofolate dehydrogenase. None of the extracts contained detectable quantities of either 5,10-methylenetetrahydrofolate reductase or 5-methyltetrahydrofolate-homocysteine methyltransferase. These data support the conclusion that 5-methyltetrahydrofolate is not in metabolic equilibrium with the other forms of folate in the erythrocyte and the uptake of formate by intact erythrocytes is a function of those forms of the folate coenzymes which can be converted to tetrahydrofolate.  相似文献   

13.
The tissue distribution of folate in its numerous coenzyme forms may influence the development of disease at different sites. For instance, the susceptibility of human colonic mucosa to localized folate deficiency may predispose to the development of colorectal cancer. We report a sensitive and robust ultra high-performance liquid chromatography (UHPLC) tandem mass spectrometry method for quantifying tissue H4folate, 5-CH3-H4folate, 5-CHO-H4folate, folic acid, and 5,10-CH+-H4folate concentration. Human colonic mucosa (20–100 mg) was extracted using lipase and conjugase enzyme digestion. Rapid separation of analytes was achieved on a UHPLC 1.9-μm C18 column over 7 min. Accurate quantitation was performed using stable isotopically labeled (13C5) internal standards. The instrument response was linear over physiological concentrations of tissue folate (R2 > 0.99). Limits of detection and quantitation were less than 20 and 30 fmol on column, respectively, and within- and between-run imprecision values were 6–16%. In colonic mucosal samples from 73 individuals, the average molar distribution of folate coenzymes was 58% 5-CH3-H4folate, 20% H4folate, 18% formyl-H4folate (sum of 5-CHO-H4folate and 5,10-CH+-H4folate), and 4% folic acid. This assay would be useful in characterizing folate distribution in human and animal tissues as well as the role of deregulated folate homeostasis on disease pathogenesis.  相似文献   

14.
The effect of N2O-induced vitamin B12 deficiency on invivo folate metabolism was studied in an animal model previously developed for studies of the folate enterohepatic cycle, and in rats with localized, subcutaneous tumor nodules. While N2O inhibited liver folate polyglutamate formation, it did not affect the absorption of (3H)PteGlu1 from the gut, its reduction, methylation, and transport to the liver, or the subsequent secretion of CH3H4(3H)PteGlu1 into bile—the folate enterohepatic cyle. In addition, N2O did not impair folate polyglutamate formation in the fibrosarcoma tumor nodule suggesting that tumor tissue can either demethylate CH3H4PteGlu1 by an alternate pathway or can utilize it as a substrate for polyglutamate formation without demethylation.  相似文献   

15.
Demethylation of psychotomimetic compounds was measured by labeling each methyl and methoxy substitutent separately with 14C and injecting it into rats, intravenously and intracerebrally. Expired [14C]CO2 was measured continuously and the resultant multi-exponential curves yielded rates and integral demethylation. 5-Methoxy-N,N-dimethyltryptamine was not demethylated, eliminating one proposed metabolic pathway. 2,4,5-Trimethoxyphenalkylamines were demethylated less in the brain than peripherally, markedly so at the p-methoxy position, suggesting a possible biochemical site for endogenous induction of psychosis.  相似文献   

16.
The folylpolyglutamate synthetase (FPGS) activities of Neurospora crassa, wild type (FGSC 853) and two polyglutamate-deficient mutants, met-6,35809 (FGSC 1330) and mac, 65108 (FGSC 3609), were examined after growth in defined media. Extracts of the wild type produced H4PteGlu6 (60 %), H4PteGlu3 (35 %) and H4PteGlu2 (15 %). Met-6 extracts formed H4PteGlu2 but lacked the ability to utilize H4PteGlu4 or H4PteGlu5. The mac mutant failed to catalyse glutamate addition to H4PteGlu but H4PteGlu2 was an effective substrate for tri- and hexaglutamate synthesis. These polyglutamates were also formed by reaction systems containing mixtures of met-6 and mac protein or heterokaryon protein derived from mycelial fusions of met-6 and mac. Extract fractionations and heat treatments provided evidence for more than one FPGS activity in the wild type. A mitochondrial FPGS catalysed the H4PteGlu2 → H4PteGlu3 reaction but a cytosolic fraction synthesized di-, tri- and hexaglutamates when incubated with H4PteGlu and glutamate. The latter system contained a temperature-sensitive diglutamate-forming activity and a relatively stable H4PteGlu2 → H4PteGlu6 activity. Polyglutamate synthesis in N. crassa appears to involve more than one step, H4PteGlu → H4PteGlu2 followed by H4PteGlu2 → H4PteGlu6, in addition to the mitochondrial activity. These partial activities are lacking in mac and met-6 respectively. Consequently, these mutants are unable to form the folylhexaglutamates that predominate the folate pool of the wild type.  相似文献   

17.
Formate is oxidized to CO2 in the rat by folate-dependent reactions. Nitrous oxide treatment inhibited hepatic methionine synthetase activity, reduced hepatic S-adenosyl-l-methionine (Ado-Met) and tetrahydrofolate (H4 folate) concentrations and decreased the rate of formate oxidation in the rat. The administration of methionine to nitrous oxide-treated rats increased hepatic Ado-Met concentrations and restored hepatic H4folate levels and formate oxidation to control values but did not reverse the inhibition of methionine synthetase. Positive correlations were observed between hepatic Ado-Met levels and H4folate concentrations and between hepatic H4folate concentrations and formate oxidation. These results suggest that alterations in hepatic H4folate concentrations may profoundly influence the oxidation of one-carbon compounds. They confirm the importance of the methionine synthetase reaction as a major source of regeneration of H4folate. These findings also indicate that methionine acts at a site other than the methionine synthetase reaction to restore hepatic H4folate concentrations and formate oxidation to control values in nitrous oxide-treated rats.  相似文献   

18.
Escherichia coli grew in a minimal medium on propionate as the sole carbon and energy source. Initially a lag phase of 4–7 days was observed. Cells adapted to propionate still required 1–2 days before growth commenced. Incorporation of (2-13C), (3-13C) or (2H3)propionate into alanine revealed by NMR that propionate was oxidized to pyruvate without randomisation of the carbon skeleton and excluded pathways in which the methyl group was transiently converted to a methylene group. Extracts of propionate-grown cells contained a specific enzyme that catalyses the condensation of propionyl-CoA with oxaloacetate, most probably to methylcitrate. The enzyme was purified and identified as the already-known citrate synthase II. By 2-D gel electrophoresis, the formation of a second propionate-specific enzyme with sequence similarities to isocitrate lyases was detected. The genes of both enzymes were located in a putative operon with high identities (at least 76% on the protein level) with the very recently discovered prp operon from Salmonella typhimurium. The results indicate that E. coli oxidises propionate to pyruvate via the methylcitrate cycle known from yeast. The 13C patterns of aspartate and glutamate are consistent with the further oxidation of pyruvate to acetyl-CoA. Oxaloacetate is predominantly generated via the glyoxylate cycle rather than by carboxylation of phosphoenolpyruvate. Received: 28 April 1997 / Accepted: 4 July 1997  相似文献   

19.
Dimethylglycine dehydrogenase (EC 1.5.99.2) carries out the oxidative demethylation of dimethylglycine to sarcosine in liver mitochondria. In vivo, the enzyme uses tightly bound tetrahydropteroyl pentaglutamate (H4PteGlu5) as an acceptor of the one-carbon group generated during the reaction. The purified enzyme can use, but does not require, H4PteGluB and under these conditions formaldehyde is the one-carbon unit produced. It is reported that folic acid may be covalently linked to dimethylglycine dehydrogenase in a specific and saturable manner so that only 1 mole of folic acid is bound per mole of enzyme. Covalently bound folic acid blocks the subsequent binding of H4PteGlu, and does not inhibit the rate of dimethylglycine dehydrogenase activity in vitro.  相似文献   

20.
The white rot fungus (WRF) Pleurotus ostreatus produced manganese peroxidase (MnP) and manganese-independent peroxidase (MIP) activities during solid state fermentation of wheat straw, a natural lignocellulosic substrate. Most of the sulfonphthalein (SP) dyes were decolorized by MnP at pH 4.0. The higher Km for meta-cresol purple (40 μM) and lower Km for ortho-cresol red (26 μM) for MnP activities explained the preference for the position of methyl group at ortho than at meta on chromophore. Bromophenol blue decolorizing activity was higher at pH 3.5 and decreased as the concentration of MnII was increased. SP-decolorizing activity was associated not only with MnP but also with MIP. Additional bromine group along with the methyl group on SP chromophores decreases the rate of decolorization. Bromination of sulfonphthalein chromophore makes them the poorer substrate for MnP. This is evident from the higher Km for bromocresol green (117 μM) when compared to bromocresol purple (36 μM) and bromophenol blue (78 μM). The order of preference for the SP dyes as substrate for the MnP-catalyzed decolorizing activity is phenol red > ortho-cresol red > meta-cresol purple > bromophenol red > bromocresol purple > bromophenol blue > bromocresol green and the order of preference for the SP dyes as substrate for the MIP-catalyzed decolorizing activity is bromocresol green > bromophenol blue > bromocresol purple > bromophenol red > meta-cresol purple > ortho-cresol red > phenol red. Inhibition of PR decolorizing activity by NaN3 provided the evidence of decolorizing activity as an oxidative process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号