首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1‐like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2–KZM3 heteromeric channel became slower than the KZM3 channel. Patch‐clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize.  相似文献   

2.
The patch clamp technique was applied to protoplasts isolated from the epidermis and pericycle of Arabidopsis roots and their plasma membrane currents investigated. In the whole cell configuration, all protoplasts from the epidermis exhibited depolarization‐activated time‐dependent outwardly rectifying (OR) currents whereas OR currents were present in only 50% of cells from the pericycle. The properties of the OR currents in the epidermis and pericycle were compared with respect to their selectivity, pharmacology and gating. The time‐dependent activation kinetics, selectivity and sensitivity to extracellular tetraethyl ammonium of the OR current in each cell type were not significantly different. The reversal potential (Erev) of the OR currents indicated that they were primarily due to the movement of K+. However, the gating properties of the OR currents from the epidermis differed markedly from those exhibited in the pericycle. Although both cell types displayed OR currents with voltage‐dependent gating modulated in a potassium‐dependent fashion [i.e. the activation threshold (V0.5) was displaced to more positive voltages as extracellular K+ increased], the OR currents in the epidermis also displayed voltage‐independent gating by extracellular K+ which dramatically regulated current density. In the present study, reducing extracellular K+ activity from 40 to 0.87 mm reduced the OR current density in epidermal cells by approximately 80%. The chord conductance of the OR current saturated as a function of extracellular K+ and could be fitted with a Michaelis–Menten function to yield a binding constant (Km) of 10.5 mm . The ability of other monovalent cations to substitute for K+‐gating of the OR currents was also investigated and shown to exhibit a relative sequence of K+ ≥ Rb+ > Cs+ > Na+ ≥ Li+ (Eisenmann sequence IV) with respect to efficacy of gating. Furthermore, single channel recordings demonstrated that channel activity rather than the single channel conductance was modulated by extracellular K+. In contrast, OR current density in the pericycle was largely independent of extracellular K+. It is suggested that the contrasting gating properties of the K+ channels in the epidermis and pericycle reflect their different physiological roles, particularly with respect to their role in K+ (nutrient) transport from the soil solution to the shoot.  相似文献   

3.
The dominant outward rectifier K+ currents were examined in protoplasts from Vicia faba guard cells. In whole-cell patch-clamp recordings, we generally observed that the conductance of the K+ inward and the outward rectifier gradually decreases with a half time in the order of 2.3 ± 0.7 min. As a consequence of this rundown, a new steady state was achieved which was 90 ± 5 percnt; lower than that obtained at the beginning of the recording. The rundown of the outward rectifier could be greatly reduced by pre-treating protoplasts either with the membrane permeable drug deltamethrin or by perfusing protoplasts with a pipette solution containing 5 μmol/L cyclosporine A. Furthermore, after the rundown, the conductance of the outward rectifier could be partially restored upon addition of 5 μmol/L deltamethrin to the bath medium. Since deltamethrin and cyclosporine A are established inhibitors of the calcium sensitive phosphatase calcineurin, the data argue for a participation of this type of phosphatase in the control of the activity of K+ outward rectifier channels in guard cells.  相似文献   

4.
Summary Electrical membrane properties of solitary spiking cells during newt (Cynops pyrrhogaster) retinal regeneration were studied with whole-cell patch-clamp methods in comparison with those in the normal retina.The membrane currents of normal spiking cells consisted of 5 components: inward Na+ and Ca++ currents and 3 outward K+ currents of tetraethylammonium (TEA)-sensitive, 4-aminopyridine (4-AP)-sensitive, and Ca++-activated varieties. The resting potential was about -40mV. The activation voltage for Na+ and Ca++ currents was about -30 and -17 mV, respectively. The maximum Na+ and Ca++ currents were about 1057 and 179 pA, respectively.In regenerating retinae after 19–20 days of surgery, solitary cells with depigmented cytoplasm showed slowrising action potentials of long duration. The ionic dependence of this activity displayed two voltage-dependent components: slow inward Na+ and TEA-sensitive outward K+ currents. The maximum inward current (about 156 pA) was much smaller than that of the control. There was no indication of an inward Ca++ current.During subsequent regeneration, the inward Ca++ current appeared in most spiking cells, and the magnitude of the inward Na+, Ca++, and outward K+ currents all increased. By 30 days of regeneration, the electrical activities of spiking cells became identical to those in the normal retina. No significant difference in the resting potential and the activation voltage for Na+ and Ca++ currents was found during the regenerating period examined.  相似文献   

5.
Summary Guard cells of higher plants control transpirational water loss and gas exchange for photosynthesis by opening and closing pores in the epidermis of the leaf. To power these turgordriven movements, guard cells accumulate (and lose) 200 to 400mm (1 to 3 pmol/cell) K+, fluxes thought to pass through K+ channels in the guard cells plasma membrane. Steady-state current-voltage (I–V) relations of intactVicia guard cells frequently show large, outward-going currents at potentials approaching 0 mV. Since this current could be carried by K+ channels, its pharmacology and dependence on external K+ (K v + ) has been examined under voltage clamp over an extended potential range. Measurements were carried out on cells which showed little evidence of primary electrogenic transport, thus simplifying analyses. Clamping these cells away from the free-running membrane potential (V m ) revealed an outward-rectifying current with instantaneous and time-dependent components, and sensitive to the K+ channel blocker tetraethylammonium chloride. The current declined also under metabolic blockade with NaCN and in the presence of diethylstilbesterol, responses which were attributed to secondary effects of these inhibitors. The putative K+ current rose with voltage positive toV m but it decayed over two voltage ranges, one negative toV m and one near +100 mV, to give steady-stateI–V relations with two regions of negative (slope) conductance. Voltage-dependent and kinetic characteristics of the current were affected by K v + and followed the K+ equilibrium potential. Against a (presumably) low background of primary ion transport, the K+ current contributed appreciably to charge balance atV m in 0.1mm as well as in 1 to 10mm K v + . Thus, gating of these K+ channels compensates for the prevailing K+ conditions to ensure net K+ movement out of the cell.  相似文献   

6.
Michael R. Blatt 《Planta》1990,180(3):445-455
Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H+-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K+ channels at the membrane of intact guard cells ofVicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K+ channels. On adding 10 M ABA in the presence of 0.1, 3 or 10 mM extracellular K+, the free-running membrane potential (V m) shifted negative-going (–)4–7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K+-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response inV m. Calculated atV m, the K+ currents translated to an average 2.65-fold rise in K+ efflux with ABA. Abscisic acid was not observed to alter either K+-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K+ channels or channel conductance, rather than a direct effect of the phytohormone on K+-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K+ flux. Instead, thev highlight a rise in membranecapacity for K+ flux, dependent on concerted modulations of K+-channel and leak currents, and sufficiently rapid to account generally for the onset of K+ loss from guard cells and stomatal closure in ABA.  相似文献   

7.
Xylem parenchyma cells are situated around the (apoplastic) xylem vessels and are involved in the control of the composition of the xylem sap by exporting and resorbing solutes. We investigated properties of the K+ inward rectifier in the plasma membrane of these cells by performing patch clamp experiments on protoplasts in the whole-cell configuration. Inward currents were sensitive to the K+ channel blocker TEA+ at a high concentration (20 mm). Barium, another classical K+ channel blocker, inhibited K+ currents with a K i of about 1.3 mm. In contrast to guard cells, the cytosolic Ca2+ level proved to be ineffective in regulating the K+ conductance at hyperpolarization. External Ca2+ blocked currents weakly in a voltage-dependent manner. From instantaneous current-voltage curves, we identified a binding site in the channel pore with an electrical distance of about 0.2 to 0.5. Lanthanum ions reduced the inward current in a voltage-dependent manner and simultaneously displaced the voltage at which half of the channels are in the open state to more positive values. This finding was interpreted as resulting from a sum of two molecular effects, an interaction with the mouth of the channel that causes a reduction of current, and a binding to the voltage sensor, leading to a shielding of surface charges and, subsequently, a modulation of channel gating.A comparison between the K+ inward rectifier in xylem parenchyma cells, guard cells and KAT1 from Arabidopsis leads to the conclusion that these rectifiers form subtypes within one class of ion channels. The ineffectiveness of Ca2+ to control K+ influx in xylem parenchyma cells is interpreted in physiological terms.  相似文献   

8.
Summary Patch-clamp studies of whole-cell ionic currents were carried out in parietal cells obtained by collagenase digestion of the gastric fundus of the guinea pig stomach. Applications of positive command pulses induced outward currents. The conductance became progressively augmented with increasing command voltages, exhibiting an outwardly rectifying current-voltage relation. The current displayed a slow time course for activation. In contrast, inward currents were activated upon hyperpolarizing voltage applications at more negative potentials than the equilibrium potential to K+ (E K). The inward currents showed time-dependent inactivation and an inwardly rectifying current-voltage relation. Tail currents elicited by voltage steps which had activated either outward or inward currents reversed at nearE K, indicating that both time-dependent and voltagegated currents were due to K+ conductances. Both outward and inward K+ currents were suppressed by extracellular application of Ba2+, but little affected by quinine. Tetraethylammonium inhibited the outward current without impairing the inward current, whereas Cs+ blocked the inward current but not the outward current. The conductance of inward K+ currents, but not outward K+ currents, became larger with increasing extracellular K+ concentration. A Ca2+-mobilizing acid secretagogue, carbachol, and a Ca2+ ionophore, ionomycin, brought about activation of another type of outward K+ currents and voltage-independent cation currents. Both currents were abolished by cytosolic Ca2+ chelation. Quinine preferentially inhibited this K+ current. It is concluded that resting parietal cells of the guinea pig have two distinct types of voltage-dependent K+ channels, inward rectifier and outward rectifier, and that the cells have Ca2+-activated K+ channels which might be involved in acid secretion under stimulation by Ca2+-mobilizing secretagogues.  相似文献   

9.
Maize plants (Zea mays L. hybrid INRA 508) were placed under controlled conditions of light and CO2 partial pressure. The K+, Cl? and P contents were then determined by X-ray microanalysis in the bulbous end of guard cells and in the center of subsidiary cells. The results were interpreted in connection with the stomatal conductance at the time of sampling. In normal air, the K+ and Cl? contents in guard cells only rose from a light threshold of about 300 μmol m?2 s?1 at which stomata were already largely open. At 600 μmol m?2 s?1, the K+ and Cl? levels in guard cells attained values that were 3- and 8-fold greater, respectively, than the values observed in darkness. The K+ and Cl? contents in the subsidiary cells remained quite constant irrespective of the light conditions. CO2-free air in darkness induced a significant K+ influx towards guard and subsidiary cells. Under light and in CO2-free air, the K+ and Cl? contents dramatically increased in the guard cells, but slightly decreased in the subsidiary cells. Thus, when subjected to strong light in CO2-free air, the K+ and Cl? contents in the subsidiary cells were approximately equal to those measured in normal air conditions. In the guard cells, stomatal opening was associated with a marked shift of the Cl?/K+ ratio – from 0.3 for closed stomata to ca 1 for fully open stomata. This could imply a slow change in the nature of the principal counterion accompanying K+ during stomatal opening. The content of P in guard cells appeared, in contrast to that of K+ and Cl?, to be practically independent of stomatal aperture.  相似文献   

10.
Summary Human red cells were prepared with various cellular Na+ and K+ concentrations at a constant sum of 156mm. At maximal activation of the K+ conductance,g K(Ca), the net efflux of K+ was determined as a function of the cellular Na+ and K+ concentrations and the membrane potential,V m , at a fixed [K+]ex of 3.5mm.V m was only varied from (V m E K)25 mV and upwards, that is, outside the range of potentials with a steep inward rectifying voltage dependence (Stampe & Vestergaard-Bogind, 1988).g K(Ca) as a function of cellular Na+ and K+ concentrations atV m =–40, 0 and 40 mV indicated a competitive, voltage-dependent block of the outward current conductance by cellular Na+. Since the present Ca2+-activated K+ channels have been shown to be of the multi-ion type, the experimental data from each set of Na+ and K+ concentrations were fitted separately to a Boltzmann-type equation, assuming that the outward current conductance in the absence of cellular Na+ is independent of voltage. The equivalent valence determined in this way was a function of the cellular Na+ concentration increasing from 0.5 to 1.5 as this concentration increased from 11 to 101mm. Data from a previous study of voltage dependence as a function of the degree of Ca2+ activation of the channel could be accounted for in this way as well. It is therefore suggested that the voltage dependence ofg K(Ca) for outward currents at (V m E K)>25 25 mV reflects a voltage-dependent Na+ block of the Ca2+-activated K+ channels.  相似文献   

11.
In an attempt to understand the processes mediating ion transport within the root, the patch clamp technique was applied to protoplasts isolated from the cortex and stele of maize roots and their plasma membrane conductances investigated. In the whole-cell configuration, membrane hyperpolarization induced a slowly activating inwardly rectifying conductance in most protoplasts isolated from the root cortex. In contrast, most protoplasts isolated from the stele contained a slowly activating outwardly rectifying conductance upon plasma membrane depolarization. The reversal potential of the inward current indicated that it was primarily due to the movement of K+; the outwardly rectifying conductance was comparatively less selective for K+. Membrane hyperpolarization beyond a threshold of about ?70 mV induced inward currents. When EK was set negative of this threshold, inward currents activated negative of EK and no outward currents were observed positive of EK. Outward currents in the stelar protoplasts activated at potentials positive of ?85 mV. However, when EK was set positive of ?85 mV a small inward current was also observed at potentials negative (and slightly positive) of the equilibrium potential for K+. Inwardly and outwardly rectifying K+ channels were observed in outside-out patches from the plasma membrane of cortical and stelar cells, respectively. Characterization of these channels showed that they were likely to be responsible for the macroscopic ‘whole-cell’ currents. Inward and outward currents were affected differently by various K+ channel blockers (TEA+, Ba2+ and Cs+). In addition, Ca2+ above 1 mM partially blocked the inward current in a voltage-dependent manner but had little effect on the outward current. It is suggested that the inwardly rectifying conductance identified in protoplasts isolated from the cortex probably represents an important component of the low-affinity K+ uptake mechanism (mechanism II) identified in intact roots. The outwardly rectifying conductance identified in protoplasts isolated from the stele could play a role in the release of cations into the xylem vessels for transport to the shoot.  相似文献   

12.
13.
A two-electrode, voltage-clamp technique was used to measure the effect of the Cl channel blockers, 9-anthracene carboxylic acid and niflumic acid, upon the ionic currents of oocytes of the South American toad Bufo arenarum. The main results were: (1) both blockers produced a reversible increase of the outward currents on a dose-dependent manner; (2) the activated outward current was voltage dependent; (3) the 9-anthracene carboxylic acid-sensitive current was blocked with barium; and (4) the effect of 9-anthracene carboxylic acid was more pronounced in a zero-K+ solution than in standard (2 mmol l–1) or high (20 mmol l–1) K+ solutions, indicating that a K+ conductance is activated. The effect of the Cl channel blockers could be due to a direct interaction with endogenous cationic channels. Another possible explanation is that Cl that enter the cell during depolarizing steps in control solution inhibit this cationic conductance; thus, the blockade of Cl channels by 9-anthracene carboxylic acid and niflumic acid would remove this inhibition, allowing the cationic current to flow freely.Abbreviations 9-AC 9-anthracene carboxylic acid - Er reversal potential - NA niflumic acid - NSC non-selective cation channel  相似文献   

14.
The apoplastic pH of guard cells probably acidifies in response to light, since light induces proton extrusion by both guard cells and epidermal leaf cells. From the data presented here, it is concluded that these apoplastic pH changes will affect K+ fluxes in guard cells of Arabidopsis thaliana (L.) Heynh. Guard cells of this species were impaled with double-barrelled microelectrodes, to measure the membrane potential (Em) and the plasma-membrane conductance. Guard cells were found to exhibit two states with respect to their Em, a depolarized and a hyperpolarized state. Apoplastic acidification depolarized Em in both states, though the origin of the depolarization differed for each state. In the depolarized state, the change in Em was the result of a combined pH effect on instantaneously activating conductances and on the slow outward rectifying K+ channel (s-ORC). At a more acidic apoplastic pH, the current through instantaneously activated conductances became more inwardly directed, while the maximum conductance of s-ORC decreased. The effect on s-ORC was accompanied by an acceleration of activation and deactivation of the channel. Experiments with acid loading of guard cells indicated that the effect on s-ORC was due to a lowered intracellular pH, caused by apoplastic acidification. In the hyperpolarized state, the pH-induced depolarization was due to a direct effect of the apoplastic pH on the inward rectifying K+ channel. Acidification shifted the threshold potential of the channel to more positive values. This effect was accompanied by a decrease in activation times and an increase of deactivation times, of the channel. From the changes in Em and membrane conductance, the expected effect of acidification on K+ fluxes was calculated. It was concluded that apoplastic acidification will increase the K+-efflux in the depolarized state and reduce the K+-influx in the hyperpolarized state. Received: 28 April 1997 / Accepted: 10 November 1997  相似文献   

15.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

16.
The influence of the auxins indole-3-acetic acid (IAA) and 1-napthylene acetic acid (NAA) on K+ channels and their control was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes to record membrane potentials and to monitor K+ channel currents under voltage clamp during exposures to 0.1–100 µM IAA and NAA. Following impalements, challenge with either IAA or NAA in the presence of 10 mM KCl resulted in the concerted modulation of at least four different currents with distinct kinetic characteristics and concentration dependencies. Equivalent concentrations of benzoic acid were wholly without effect. Most striking, current carried by inward-rectifying K+ channels (IK,in) exhibited a bimodal response to both IAA and NAA which was reversed on washing the auxins from the bathing medium. The steady-state current was augmented 1.3- to 2-fold at concentrations between 0.1 and 10 µM and antagonized at concentrations near 30 µM and above. Auxin agonism of IK,in was time- and voltage-independent. By contrast, IK,in inactivation at the higher auxin concentrations was marked by a voltage-dependence and slowing of the kinetics for current activation. Inactivation of IK,in by the auxins was relieved when cytoplasmic pH (pHi) was clamped near 7.0 in the presence of 30 mM Na+-butyrate. In addition to the control of IK,in, current carried by a second class of (outward-rectifying) K+ channels rose in a monotonic and largely voltage-independent manner with auxin concentrations about 10 µM and above, and IAA and NAA also activated an inward-going current with a voltage dependence characteristic of guard cell anion channels. Further changes in background current were consistent with a limited activation of the H+-ATPase. Over the concentration range examined, the auxins evoked membrane hyperpolarizations and depolarizations of up to ±12–19 mV, depending on the free-running membrane potential prevailing before auxin additions. Prolonging exposures to 100 µM auxin beyond 3–5 min frequently elicited rapid transitions to voltages near EK as well as regenerative action potentials. However, in every case the voltage response was a predictable consequence of auxin action on the K+ channels and, at 100 µM auxin, on the anion current. These results demonstrate a control of K+ channel activity by auxin, consistent with the roles of these channels in mediating K+ flux for stomatal movements; the data associate a bimodal characteristic with the activity of IK,in, implicating pHi as a putative intermediate in its control, and offer strong evidence for a multiplicity of signal cascades evoked by auxin; finally, they highlight a coordinate modulation of transport activities by auxin, thereby drawing a close analogy to the pattern of stimulus-response coupling in abscisic acid.  相似文献   

17.
The influence of the plant water-stress hormone abscisic acid (ABA) on anion channel activity and its interaction with protein kinase and phosphatase antagonists was examined in stomatal guard cells of wild-type Nicotiana benthamiana L. and of transgenic plants expressing the dominant-negative (mutant) Arabidopsis abi1-1 protein phosphatase. Intact guard cells were impaled with double-barrelled micro-electrodes and membrane current was recorded under voltage clamp in the presence of 15 mM CsCI and 15 mM tetraethylammonium chloride (TEA-CI) to eliminate K+ channel currents. Under these conditions, the free-running voltage was situated close to 0 mV (+9 ± 6 mV, n = 18) and the membrane under voltage clamp was dominated by anion channel current (ICl) as indicated from tail current reversal near the expected chloride equilibrium potential, current sensitivity to the anion channel blockers 9-anthracene carboxylic acid and niflumic acid, and by its voltage-dependent kinetics. Pronounced activation of ICl was recorded on stepping from a conditioning voltage of ?250 mV to voltages between ?30 and +50 mV, and the current deactivated with a voltage-dependent halftime at more negative voltages (τ? 0.3 sec at ?150 mV). Challenge with 20 µM ABA increased the steady-state current conductance, gCl, near 0 mV by 1.2- to 2.8-fold and at ?150 mV by 4.5- to sixfold with a time constant of 40 ± 4 sec, and it slowed ICl deactivation as much as fourfold at voltages near ?50 mV, introducing two additional voltage-sensitive kinetic components to these current relaxations. Neither the steady-state and kinetic characteristics of ICl, nor its sensitivity to ABA were influenced by H7 or staurosporine, both broad-range protein kinase antagonists. However, the protein phosphatase 1/2A antagonist calyculin A mimicked the effects of ABA on gCl and current relaxations on its own and exhibited a synergistic interaction with ABA, enhancing ICl sensitivity to ABA three- to four-fold. Quantitatively similar current characteristics were recorded from guard cells of abi1-1 transgenic N. bentamiana, indicating that the abi1-1 protein phosphatase does not influence the ànion current or its response to ABA directly. These results demonstrate that ABA stimulates ICl and modulates its voltage sensitivity. Furthermore, they show that ABA promotes ICl, either by introducing additional long-lived states of the channel or by activating a second anion channel with similar permeation characteristics but with a very long dwell time in the open state. Overall, the data are broadly consistent with the view that ABA action engenders coordinate control of ICl together with guard cell K+ channels to effect solute loss and stomatal closure.  相似文献   

18.
Fan LM  Wang YF  Wu WH 《Protoplasma》2003,220(3-4):143-152
Summary.  Patch-clamp whole-cell and single-channel recording techniques were used to investigate the regulation of outward K+ channels by external and internal protons in Brassica chinensis pollen protoplasts. Outward K+ currents and conductance were insensitive to external pH (pHo) except at pH 4.5. Maximal conductance (G max) for the outward K+ currents was inhibited at acidic external pH. Half-activation voltage (E 1/2) for the outward K+ currents shifted to more positive voltages along with the decrease in pHo. E 1/2 can be described by a modified Henderson–Hasselbalch equation expected from a single titratable binding site. The activation kinetics of the outward K+ channels was largely insensitive to pHo. An internal pH (pHi) of 4.5 significantly increased outward K+ currents and conductance. G max for the outward K+ currents decreased with elevations in pHi. In contrast to the effect of pHo, E 1/2 was shifted to more positive voltages with elevations in pHi. The outward K+ currents, G max and E 1/2 can be described by the modified Henderson–Hasselbalch equation. Furthermore, acidifying pHi accelerated the activation of the outward K+ currents significantly. The differences in electro-physiological properties among previously reported and currently described plant outward K+ channels may reflect differences in the structure of these channels. Received May 7, 2002; accepted July 9, 2002; published online November 29, 2002  相似文献   

19.
Despite the availability of many mutants for signal transduction, Arabidopsis thaliana guard cells have so far not been used in electrophysiological research. Problems with the isolation of epidermal strips and the small size of A. thaliana guard cells were often prohibiting. In the present study these difficulties were overcome and guard cells were impaled with double-barreled microelectrodes. Membrane-potential recordings were often stable for over half an hour and voltage-clamp measurements could be conducted. The guard cells were found to exhibit two states. The majority of the guard cells had depolarized membrane potentials, which were largely dependent on external K+ concentrations. Other cells displayed spontaneous transitions to a more hyperpolarized state, at which the free-running membrane potential (Em) was not sensitive to the external K+ concentration. Two outward-rectifying conductances were identified in cells in the depolarized state. A slow outward-rectifying channel (s-ORC) had properties resembling the K+-selective ORC of Vicia faba guard cells (Blatt, 1988, J Membr Biol 102: 235–246). The activation and inactivation times and the activation potential, all depended on the reversal potential (Erev) of the s-ORC conductance. The s-ORC was blocked by Ba2+ (K1/2 = 0.3–1.3mM) and verapamil (K1/2 = 15–20 μM). A second rapid outward-rectifying conductance (r-ORC) activated instantaneously upon stepping the voltage to positive values and was stimulated by Ba2+. Inward-rectifying channels (IRC) were only observed in cells in the hyperpolarized state. The activation time and activation potential of this channel were not sensitive to the external K+ concentration. The slow activation of the IRC (t1/2 ≈ 0.5 s) and its negative activation potential (Vthreshold = −155 mV) resemble the values found for the KAT1 channel expressed in Saccharomyces cerevisiae (Bertl et al., 1995, Proc Natl Acad Sci USA 92: 2701–2705). The results indicate that A. thaliana guard cells provide an excellent system for the study of signal transduction processes. Received: 28 March 1996 / Accepted: 11 November 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号