首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thiol reagents activateK-Cl cotransport (K-Cl COT), the Cl-dependent and Na-independentouabain-resistant K flux, in red blood cells (RBCs) of several species,upon depletion of cellular glutathione (GSH). K-Cl COT isphysiologically active in high potassium (HK), high GSH (HG) dog RBCs.In this unique model, we studied whether the same inverse relationshipexists between GSH levels and K-Cl COT activity found in other species.The effects of GSH depletion by three different chemical reactions[nitrite (NO2)-mediated oxidation, diazene dicarboxylicacid bis-N,N-dimethylamide (diamide)-induceddithiol formation, and glutathione S-transferase (GST)-catalyzed conjugation of GSH with 1-chloro-2,4-dinitrobenzene (CDNB)] were tested on K-Cl COT and regulatory volume decrease (RVD).After 85% GSH depletion, all three interventions stimulated K-Cl COThalf-maximally with the following order of potency: diamide > NO2 > CDNB. Repletion of GSH reversed K-Cl COTstimulation by 50%. Cl-dependent RVD accompanied K-Cl COT activationby NO2 and diamide. K-Cl COT activation at concentrationratios of oxidant/GSH greater than unity was irreversible, suggestingeither nitrosothiolation, heterodithiol formation, or GST-mediateddinitrophenylation of protein thiols. The data support the hypothesisthat an intact redox system, rather than the absolute GSH levels,protects K-Cl COT activity and cell volume regulation from thiol modification.

  相似文献   

2.
Red blood cells (RBCs) collected for transfusion deteriorate during storage. This deterioration is termed the “RBC storage lesion.” There is increasing concern over the safety, therapeutic efficacy, and toxicity of transfusing longer-stored units of blood. The severity of the RBC storage lesion is dependent on storage time and varies markedly between individuals. Oxidative damage is considered a significant factor in the development of the RBC storage lesion. In this study, the variability during storage and heritability of antioxidants and metabolites central to RBC integrity and function were investigated. In a classic twin study, we determined the heritability of glutathione (GSH), glutathione disulfide (GSSG), the status of the GSSG,2H+/2GSH couple (Ehc), and total glutathione (tGSH) in donated RBCs over 56 days of storage. Intracellular GSH and GSSG concentrations both decrease during storage (median net loss of 0.52±0.63 mM (median ± SD) and 0.032±0.107 mM, respectively, over 42 days). Taking into account the decline in pH, Ehc became more positive (oxidized) during storage (median net increase of 35±16 mV). In our study population heritability estimates for GSH, GSSG, tGSH, and Ehc measured over 56 days of storage are 79, 60, 67, and, 75%, respectively. We conclude that susceptibility of stored RBCs to oxidative injury due to variations in the GSH redox buffer is highly variable among individual donors and strongly heritable. Identifying the genes that regulate the storage-related changes in this redox buffer could lead to the development of new methods to minimize the RBC storage lesion.  相似文献   

3.
Hsia, C. C. W., C. J. C. Chuong, and R. L. Johnson, Jr.Red cell distortion and conceptual basis of diffusing capacity estimates: finite element analysis. J. Appl.Physiol. 83(4): 1397-1404, 1997.To understandthe effects of dynamic shape distortion of red blood cells (RBCs) as itdevelops under high-flow conditions on the standard physiological andmorphometric methods of estimating pulmonary diffusing capacity, wecomputed the uptake of CO across a two-dimensional geometric capillarymodel containing a variable number of equally spaced RBCs. RBCs arecircular or parachute shaped, with the same perimeter length. Total COdiffusing capacity (DLCO)and membrane diffusing capacity(DMCO)were calculated by a finite element method.DLCOcalculated at two levels of alveolar PO2 were used to estimateDMCO by theRoughton-Forster (RF) technique. The same capillary model was subjectedto morphometric analysis by the random linear intercept method toobtain morphometric estimates ofDMCO. Results show thatshape distortion of RBCs significantly reduces capillary diffusive gasuptake. Shape distortion exaggerates the conceptual errors inherent inthe RF technique (J. Appl. Physiol.79: 1039-1047, 1995); errors are exaggerated at a high capillaryhematocrit. Shape distortion also introduces additional error inmorphometric estimates ofDMCO causedby a biased sampling distribution of random linear intercepts; errors are exaggerated at a low capillary hematocrit.

  相似文献   

4.
Staphylococcus aureus infection begins when bacterial cells circulating in blood adhere to components of the extracellular matrix or endothelial cells of the host and initiate colonization. S. aureus is known to exhibit extensive interactions with platelets. S. aureus is also known to bind to red blood cells (RBCs) in the presence of plasma proteins, such as fibrinogen and IgG. Herein we report a new binding mechanism of S. aureus to RBC independent of those plasma proteins. To characterize the new adhesion mechanism, we experimentally examine the binding kinetics and molecular constituents mediating the new adhesive interactions between S. aureus and RBCs under defined shear conditions. The results demonstrate that the receptors for fibrinogen (clumping factor A) and IgG (protein A) of S. aureus are not involved in the adhesion. S. aureus binds to RBCs with maximal adhesion at the shear rate 100 s–1 and decreasing adhesion with increasing shear. The heteroaggregates formed after shear are stable when subjected to the shear rate 2,000 s–1, indicating that intercellular contact time rather than shear forces controls the adhesion at high shear. S. aureus binding to RBC requires plasma, and 10% plasma is sufficient for maximal adhesion. Plasma proteins involved in the cell-cell adhesion, such as fibrinogen, fibronectin, von Willebrand factor, IgG, thrombospondin, laminin, and vitronectin are not involved in the observed adhesion. The extent of heteroaggregation is dramatically reduced on RBC treatment with trypsin, chymotrypsin, or neuraminidase, suggesting that the receptor(s) mediating the heteroaggregation process is a sialylated glycoprotein on RBC surface. Adhesion is divalent cation dependent and also blocked by heparin. This work demonstrates a new mechanism of S. aureus-RBC binding under hydrodynamic shear conditions via unknown RBC sialoglycoprotein(s). The binding requires plasma protein(s) other than fibrinogen or IgG and does not involve the S. aureus adhesins clumping factor A or protein A. adhesion; red blood cell  相似文献   

5.
Glutathione exists in biological samples in the reduced form (GSH), as its disulfide (GSSG) and as a mixed disulfide (GSSR) with thiols (RSH). GSH is the most abundant low-molecular-mass thiol and plays important roles as a cofactor and as a main constituent of the intracellular redox status. Due to its own sulfhydryl (SH) group, GSH reacts readily with o-phthaldialdehyde (OPA) to form a highly stable and fluorescent isoindole derivative (GSH-OPA), which allows for sensitive and specific quantitative determination of GSH in biological systems by HPLC with fluorescence (FL) detection. In the present article we report on the utility of the novel, strongly disulfide bond-reducing thiol N-acetyl-cysteine ethyl ester (NACET) for the specific quantitative analysis of GSH and GSSG in the cytosol of red blood cells (RBC) as GSH-OPA derivative with FL (excitation/emission 338/458 nm) or UV absorbance (338 nm) detection. Unlike in aqueous solution, the derivatization of GSH in RBC cytosol yielded two closely related derivatives in the absence of NACET and only the GSH-OPA derivative in the presence of NACET. The HPLC method was optimized and validated for human RBC and applied to measure GSH and GSSG in RBC of healthy subjects. Basal GSH and GSSG concentrations were determined to be 2340 ± 350 μM and 11.4 ± 3.2 μM, respectively, in RBC of 12 healthy young volunteers (aged 23–38 years). The method was also applied to study the effects of nitrite on the glutathione status in intact and lysed human RBC. Nitrite at mM-concentrations caused instantaneous and considerable GSSG formation in lysed but much less pronounced in intact RBC. GSH externally added to lysed RBC inhibited nitrite-induced methemoglobin formation. Our findings suggest that nitric oxide/nitrite-related consumption rate of GSH, and presumably that of NADH and NADPH, could be of the order of 600 μmol/day in RBC of healthy subjects.  相似文献   

6.
Frank, Andreas O., C. J. Charles Chuong, and Robert L. Johnson. A finite-element model of oxygen diffusion in thepulmonary capillaries. J. Appl.Physiol. 82(6): 2036-2044, 1997.We determined the overall pulmonary diffusing capacity(DL) and the diffusing capacities of the alveolar membrane (Dm) and the red blood cell (RBC)segments (De) of the diffusional pathway forO2 by using a two-dimensionalfinite-element model developed to represent the sheet-flowcharacteristics of pulmonary capillaries. An axisymmetric model wasalso considered to assess the effect of geometric configuration. Results showed the membrane segment contributing the major resistance, with the RBC segment resistance increasing asO2 saturation(SO2) rises during the RBC transit:RBC contributed 7% of the total resistance at the capillary inlet (SO2 = 75%) and 30% toward thecapillary end (SO2 = 95%) for a 45%hematocrit (Hct). Both Dm and DLincreased as the Hct increased but began approaching a plateau near anHct of 35%, due to competition between RBCs forO2 influx. Both Dm andDL were found to be relatively insensitive (2~4%) to changes in plasma protein concentration (28~45%). Axisymmetric results showed similar trends for all Hct andprotein concentrations but consistently overestimated the diffusingcapacities (~2.2 times), primarily because of an exaggerated air-tissue barrier surface area. The two-dimensional model correlated reasonably well with experimental data and can better represent theO2 uptake of the pulmonarycapillary bed.

  相似文献   

7.
Human umbilical vein smooth muscle cells (HUVSMCs) utilizeextracellular cystine, glutathione (GSH), andN-acetylcysteine (NAC) to synthesizecellular GSH. Extracellular cystine was effective from 5 µM, whereasGSH and NAC were required at 100 µM for comparable effects. Theefficacy of extracellular GSH was dependent on de novo GSH synthesis,indicating a dependence on cellular -glutamyltransferase (glutamyltranspeptidase). Coculture of syngenetic HUVSMCs and corresponding human umbilical vein endothelial cells (HUVECs) on poroussupports restricted cystine- or GSH-stimulated synthesis of HUVSMC GSHwhen supplied on the "luminal" endothelial side. Thus HUVSMC GSHrapidly attained a steady-state level below that achieved in theabsence of interposed HUVECs. HUVSMCs also readily utilizeboth reduced ascorbate (AA) and oxidized dehydroascorbate (DHAA) overthe range 50-500 µM. Phloretin effectively blocked both AA- andDHAA-stimulated assimilation of intracellular AA, indicating a role fora glucose transporter in their transport. Uptake of extracellular AAwas also sensitive to extracellular, but not intracellular, thioldepletion. When AA was applied to the endothelial side of the coculturemodel, assimilation of intracellular AA in HUVSMCs was restricted to asteady-state level below that achieved by free access.

  相似文献   

8.
Using the patch-clamp technique, we studied the effects ofepidermal growth factor (EGF) on whole cell and single channel currentsin adult rat alveolar epithelial type II cells in primary culture inthe presence or absence of EGF for 48 h. In symmetrical sodiumisethionate solutions, EGF exposure caused a significant increase inthe type II cell whole cell conductance. Amiloride (10 µM) produced ~20-30% inhibition of the wholecell conductance in both the presence and absence of EGF, such that EGFcaused the magnitude of the amiloride-sensitive component to more than double. Northern analysis showed that -, - and -subunits of rat epithelial Na+ channel (rENaC)steady-state mRNA levels were all significantly decreased by EGF. Atthe single channel level, all active inside-out patches demonstratedonly 25-pS channels that were amiloride sensitive and relativelynonselective for cations(PNa+/PK+  1.0:0.48). Although the biophysical characteristics (conductance, open-state probability, and selectivity) of the channels from EGF-treated and untreated cells were essentially identical, channel density was increased by EGF; the modal channel per patch was increasedfrom 1 to 2. These findings indicate that EGF increases expression ofnonselective, amiloride-sensitive cation channels in adult alveolarepithelial type II cells. The contribution of rENaC to the totalEGF-dependent cation current under these conditions is quantitativelyless important than that of the nonselective cation channels in these cells.

  相似文献   

9.
Water transport across the red blood cell (RBC) membrane is an essential cell function that needs to be preserved during ex vivo storage. Progressive biochemical depletion during storage can result in significant conformational and compositional changes to the membrane. Characterizing the changes to RBC water permeability can help in evaluating the quality of stored blood products and aid in the development of improved methods for the cryopreservation of red blood cells. This study aimed to characterize the water permeability (Lp), osmotically inactive fraction (b), and Arrhenius activation energy (Ea) at defined storage time-points throughout storage and to correlate the observed results with other in vitro RBC quality parameters. RBCs were collected from age- and sex-matched blood donors. A stopped flow spectrophotometer was used to determine Lp and b by monitoring changes in hemoglobin autofluorescence when RBCs were exposed to anisotonic solutions. Experimental values of Lp were characterized at three different temperatures (4, 20 and 37 °C) to determine the Ea. Results showed that Lp, b, and Ea of stored RBCs significantly increase by day 21 of storage. Degradation of the RBC membrane with length of storage was seen as an increase in hemolysis and supernatant potassium, and a decrease in deformability, mean corpuscular hemoglobin concentration and supernatant sodium. RBC osmotic characteristics were shown to change with storage and correlate with changes in RBC membrane quality metrics. Monitoring water parameters is a predictor of membrane damage and loss of membrane integrity in ex vivo stored RBCs.  相似文献   

10.
Albers, G. M., R. P. Tomkiewicz, M. K. May, O. E. Ramirez,and B. K. Rubin. Ring distraction technique for measuring surfacetension of sputum: relationship to sputum clearability. J. Appl. Physiol. 81(6):2690-2695, 1996.Poor sputum clearance has been related to sputumadhesion tension. In this study, we describe a modified du Noüyring method for measuring the surface tension () of small samples ofsputum and for comparinge the calculated work of adhesion(Wad) for sputum specimens withthe measured mucociliary transportability (MCTR) and coughtransportability (CTR). The , as measured by this method, correlateswith  measured by sputum contact angle on a low-surface-energy solid(R2 = 0.368, P = 0.03). There is a smallbut significant difference in measurements made by these two methods(P = 0.03).Wad calculated from the surfacetension ring method is inversely correlated with CTR(R2 = 0.181, P = 0.004) but has nocorrelation with MCTR in this study. The miniaturized ring method givesaccurate and reproducible measurements of the surface tension of smallamounts of respiratory secretions. Because sputum behaves enough like aliquid that the assumptions made in using the Young equation tocalculate Wad appear valid, wealso showed that the Neumann equation can be used to determine thesurface tension of sputum by its contact angle on tetrafluoroethylene(Teflon).

  相似文献   

11.
Micromolar concentrations ofATP stimulate biphasic change in transepithelial conductance acrossCaSki cultures, an acute increase (phase I response) followed by aslower decrease (phase II response). Phase I andphase II responses involve two distinct calcium-dependentpathways, calcium mobilization and calcium influx. To test thehypothesis that phase I and phase II responsesare mediated by distinct P2 purinergic receptors, changes inpermeability were uncoupled by blocking calcium mobilization with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(BAPTA) or by lowering extracellular calcium, respectively. Under theseconditions ATP EC50 was 25 µM for phase Iresponse and 2 µM for phase II response. The respectiveagonist profiles were ATP > UTP > adenosine5'-O-(3-thiotriphosphate) (ATP-S) N6-([6-aminohexyl]carbamoylmethyl)adenosine5'-triphosphate (A8889) > GTP and UTP > ATP > GTP = A8889 > ATP-S. Suramin blocked phase Iresponse and ATP-induced calcium mobilization, whereas pyridoxal phosphate-6-azophenyl-2',4-disulfonic acid (PPADS) blocked phase II response and ATP-augmented calcium influx. ATP time course andpharmacological profiles for phase II response and augmented calcium influx were similar, with a time constant of 2 min and asaturable concentration-dependent effect (EC50 of 2-3µM). RT-PCR experiments revealed expression of mRNA for both theP2Y2 and P2X4 receptors. These results suggestthat the ATP-induced phase I and phase IIresponses are mediated by distinct P2 purinergic receptor mechanisms.

  相似文献   

12.
We have previously demonstrated that the loss of glutathione (GSH) and GSH-peroxidase (GSH-PX) in banked red blood cells (RBCs) is accompanied by oxidative modifications of lipids, proteins and loss of membrane integrity[1]. The objective of this study was to determine whether artificial increases in antioxidant (GSH) or antioxidant enzyme (catalase) content could protect membrane damage in the banked RBCs following an oxidant challenge. RBCs stored at 1–6°C for 0, 42 and 84 days in a conventional additive solution (Adsol®) were subjected to oxidative stress using ferric/ascorbic acid (Fe/ASC) before and after enriching them with GSH or catalase using a hypotonic lysis-isoosmotic resealing procedure. This lysis-resealing procedure in the presence of GSH/catalase raised intracellular GSH and catalase concentrations 4–6 fold, yet produced only a small reduction in mean cell volume (MCV), mean cell hemoglobin (MCH) and mean cell hemoglobin concentrations (MCHC). Indicators of oxidative stress and membrane integrity were measured, including acetylcholinesterase (AChE) activity, GSH concentration, phosphatidylserine (PS) externalization (prothrombin-converting activity) and transmembrane lipid movements (14C-lyso phosphatidylcholine flip-flop and PS transport). GSH-enrichment protected AChE activity in fresh (0 day) and stored (42 and 84 days) RBCs from Fe/ASC oxidation by 10, 23 and 26%, respectively, compared with not-enriched controls. Following oxidative stress, the rate of transbilayer lipid flip-flop did not increase in fresh cells, but increased 9.3% in 42-day stored cells. Phosphatidylserine exposure, as measured by prothrombinase activity, increased 2.4-fold in fresh and 5.2-fold in 42-day stored cells exposed to Fe/ASC. Previous studies have shown that 42-day storage causes a moderate decrease in PS transport (~ 50 %), whereas transport rates declined by up to 75% in stored RBCs when challenged with Fe/ASC. GSH-enrichment prevented the increase in passive lipid flip-flop and the increase in prothrombinase activity, but offered no protection against oxidative damage of PS transport. In contrast to these effects, catalase-enrichment failed to protect GSH levels and AChE activity upon oxidative stress. Membrane protein thiol oxidation was assessed by labeling reactive protein thiols with 5-acetalamidofluorescein followed by immunoblotting with antifluorescein antibodies. Significant oxidation of membrane proteins was confirmed by a greater loss of thiols in stored RBCs than in fresh RBCs. These results demonstrate that it may be possible to prevent storage-mediated loss of AChE, increased lipid flip-flop, and increased PS exposure, by maintaining or increasing GSH levels of banked RBCs.  相似文献   

13.
Oostenbrug, G. S., R. P. Mensink, M. R. Hardeman, T. DeVries, F. Brouns, and G. Hornstra. Exercise performance, red bloodcell deformability, and lipid peroxidation: effects of fish oil andvitamin E. J. Appl. Physiol. 83(3):746-752, 1997.Previous studies have indicated that fish oilsupplementation increases red blood cell (RBC) deformability, which mayimprove exercise performance. Exercise alone, or in combination with anincrease in fatty acid unsaturation, however, may enhance lipidperoxidation. Effects of a bicycle time trial of ~1 h on RBCcharacteristics and lipid peroxidation were, therefore, studied in 24 trained cyclists. After 3 wk of fish oil supplementation (6 g/day),without or with vitamin E (300 IU/day), trial performance,RBC characteristics, and lipid peroxidation were measuredagain. RBC deformability appeared to decrease duringendurance exercise. After correction for hemoconcentration, plasmatotal tocopherol concentrations decreased by 0.77 µmol/l(P = 0.012) or 2.9% and carotenoidconcentrations by 0.08 µmol/l (P = 0.0008) or 4.5%. Endurance exercise did not affect the lag time andrate of in vitro oxidation of low-density lipoproteins (LDLs), but themaximum amount of conjugated dienes formed decreased by 2.1 ± 1.0 µmol/mmol LDL cholesterol (P = 0.042) or 1.2%. Fish oil supplementation with andwithout vitamin E did not affect RBC characteristics or exerciseperformance. Both supplements decreased the rate of LDL oxidation, andfish oil supplementation with vitamin E delayed oxidation. The amountof dienes, however, was not affected. The supplements also did notchange effects of exercise. We conclude that the changes observedduring endurance exercise may indicate increased oxidative stress, butfurther research is necessary to confirm this. Fish oil supplementation does not improve endurance performance, but it also does not cause oraugment changes in antioxidant levels or LDL oxidation during exercise.

  相似文献   

14.
Amyloid β-peptide (Aβ) is hypothesized to play a key role by oxidatively impairing the capacity of red blood cells (RBCs) to deliver oxygen to the brain. These processes are implicated in the pathogenesis of Alzheimer''s disease (AD). Although plasma Aβ has been investigated thoroughly, the presence and distribution of Aβ in human RBCs are still unclear. In this study, we quantitated Aβ40 and Aβ42 in human RBCs with ELISA assays, and provided evidence that significant amounts of Aβ could be detected in RBCs and that the RBC Aβ levels increased with aging. The RBC Aβ levels increased with aging. On the other hand, providing an antioxidant supplement (astaxanthin, a polar carotenoid) to humans was found to decrease RBC Aβ as well as oxidative stress marker levels. These results suggest that plasma Aβ40 and Aβ42 bind to RBCs (possibly with aging), implying a pathogenic role of RBC Aβ. Moreover, the data indicate that RBC Aβ40 and Aβ42 may constitute biomarkers of AD. As a preventive strategy, therapeutic application of astaxanthin as an Aβ-lowering agent in RBCs could be considered as a possible anti-dementia agent.

Trial Registration

Controlled-Trials.com ISRCTN42483402  相似文献   

15.
The simian parasite Plasmodium knowlesi causes severe and fatal malaria infections in humans, but the process of host cell remodelling that underpins the pathology of this zoonotic parasite is only poorly understood. We have used serial block‐face scanning electron microscopy to explore the topography of P. knowlesi‐infected red blood cells (RBCs) at different stages of asexual development. The parasite elaborates large flattened cisternae (Sinton Mulligan's clefts) and tubular vesicles in the host cell cytoplasm, as well as parasitophorous vacuole membrane bulges and blebs, and caveolar structures at the RBC membrane. Large invaginations of host RBC cytoplasm are formed early in development, both from classical cytostomal structures and from larger stabilised pores. Although degradation of haemoglobin is observed in multiple disconnected digestive vacuoles, the persistence of large invaginations during development suggests inefficient consumption of the host cell cytoplasm. The parasite eventually occupies ~40% of the host RBC volume, inducing a 20% increase in volume of the host RBC and an 11% decrease in the surface area to volume ratio, which collectively decreases the ability of the P. knowlesi‐infected RBCs to enter small capillaries of a human erythrocyte microchannel analyser. Ektacytometry reveals a markedly decreased deformability, whereas correlative light microscopy/scanning electron microscopy and python‐based skeleton analysis (Skan) reveal modifications to the surface of infected RBCs that underpin these physical changes. We show that P. knowlesi‐infected RBCs are refractory to treatment with sorbitol lysis but are hypersensitive to hypotonic lysis. The observed physical changes in the host RBCs may underpin the pathology observed in patients infected with P. knowlesi.  相似文献   

16.
《Biophysical journal》2021,120(21):4663-4671
Because of their compromised deformability, heat denatured erythrocytes have been used as labeled probes to visualize spleen tissue or to assess the ability of the spleen to retain stiff red blood cells (RBCs) for over three decades, e.g., see Looareesuwan et al. N. Engl. J. Med. (1987). Despite their good accessibility, it is still an open question how heated RBCs compare to certain diseased RBCs in terms of their biomechanical and biorheological responses, which may undermine their effective usage and even lead to misleading experimental observations. To help answering this question, we perform a systematic computational study of the hemorheological properties of heated RBCs with several physiologically relevant static and hemodynamic settings, including optical-tweezers test, relaxation of prestretched RBCs, RBC traversal through a capillary-like channel and a spleen-like slit, and a viscometric rheology test. We show that our in silico RBC models agree well with existing experiments. Moreover, under static tests, heated RBCs exhibit deformability deterioration comparable to certain disease-impaired RBCs such as those in malaria. For RBC traversal under confinement (through microchannel or slit), heated RBCs show prolonged transit time or retention depending on the level of confinement and heating procedure, suggesting that carefully heat-treated RBCs may be useful for studying splenic- or vaso-occlusion in vascular pathologies. For the rheology test, we expand the existing bulk viscosity data of heated RBCs to a wider range of shear rates (1–1000 s−1) to represent most pathophysiological conditions in macro- or microcirculation. Although heated RBC suspension shows elevated viscosity comparable to certain diseased RBC suspensions under relatively high shear rates (100–1000 s−1), they underestimate the elevated viscosity (e.g., in sickle cell anemia) at low shear rates (<10 s−1). Our work provides mechanistic rationale for selective usage of heated RBC as a potentially useful model for studying the abnormal traversal dynamics and hemorheology in certain blood disorders.  相似文献   

17.
Toxin- (T)from the Brazilian scorpion Tityusserrulatus venom caused a concentration- andtime-dependent increase in the release of norepinephrine andepinephrine from bovine adrenal medullary chromaffin cells. T was~200-fold more potent than veratridine judged fromEC50 values, although the maximalsecretory efficacy of veratridine was 10-fold greater than that of T(1.2 vs. 12 µg/ml of catecholamine release). The combination of both toxins produced a synergistic effect that was particularly drastic at 5 mM extracellular Ca2+concentration([Ca2+]o),when 30 µM veratridine plus 0.45 µM T were used. T (0.45 µM) doubled the basal uptake of45Ca2+,whereas veratridine (100 µM) tripled it. Again, a drastic synergism in enhancing Ca2+ entry was seenwhen T and veratridine were combined; this was particularlypronounced at 5 mM[Ca2+]o.Veratridine induced oscillations of cytosolicCa2+ concentration([Ca2+]i)in single fura 2-loaded cells without elevation of basal levels. Incontrast, T elevated basal[Ca2+]ilevels, causing only small oscillations. When added together, T andveratridine elevated the basal levels of[Ca2+]iwithout causing large oscillations. T shifted the current-voltage (I-V) curve forNa+ channel current to the left.The combination of T with veratridine increased the shift of theI-V curve to the left, resulting in agreater recruitment of Na+channels at more hyperpolarizing potentials. This led to enhanced andmore rapid accumulation of Na+ inthe cell, causing cell depolarization, the opening of voltage-dependent Ca2+ channels, andCa2+ entry and secretion.

  相似文献   

18.
WELSH  K. J.; SINK  K. C. 《Annals of botany》1981,48(5):583-590
Leaf sections of Browallia viscosa and B. speciosa were placedon Murashige and Skoog (1962) salts and vitamins medium (MS)containing auxins and cytokinins, singly or in combination,to elicit morphogenetic responses. B. viscosa developed extensiveroots in 4 weeks on media supplemented with indolebutyric acid(IBA), indol-3-yl acetic acid (IAA) or naphthalene acetic acid(NAA) (0·01, 0·1, 1·0, 5·0 and 10·0mg–1), but with 2, 4-D (0·1 mg–1) only lightyellow friable callus was obtained. Shoot initiation and elongationoccurred consistently in 4–6 weeks on leaf sections inthe presence of 6---dimethylallyl amino purine (2iP). Similarly,shoot regeneration from leaf-derived callus, initiated and sub-culturedon MS + benzyladenine (BA) + NAA only induced callus on leafexplants of both species. B. speciosa did not respond exceptfor moderate and prolific callus formation on MS + BA + NAAand Uchimiya and Murashige (1974) media respectively. Browallia viscosa, Browallia speciosa, tissue culture, regeneration, morphogenetic potential  相似文献   

19.
This study examined the effects ofhyperhydration, exercise-induced dehydration, and oral fluidreplacement on physiological strain of horses during exercise-heatstress. On three occasions, six horses completed a 90-min exerciseprotocol (50% maximal O2 uptake,34.5°C, 48% relative humidity) divided into two 45-min periods(exercise I andexercise II) with a 15-min recoverybetween exercise bouts. In random order, horses receivedno fluid (NF), 10 liters of water (W), or a carbohydrate-electrolytesolution (CE) 2 h before exercise and between exercise bouts. Compared with NF, preexercise hyperhydration (W and CE) did not alter heart rate, cardiac output (), stroke volume (SV), corebody temperature, sweating rate (SR), or sweating sensitivity duringexercise I. In contrast, afterexercise II, exercise-induceddehydration in NF (decrease in body mass: NF, 5.6 ± 0.8%; W, 1.1 ± 0.4%; CE, 1.0 ± 0.2%) resulted in greater heat storage,with core body temperature ~1.0°C higher compared with W and CE.In exercise II, the greater thermalstrain in NF was associated with significant(P < 0.05) decreases in (10 ± 2%), SV (9 ± 3%), SR, and sweatingsensitivity. We concluded that 1)preexercise hyperhydration provided no thermoregulatory advantage;2) maintenance of euhydration byoral fluid replacement (~85% of sweat fluid loss) during exercise inthe heat was reflected in higher , SV, and SR withdecreased heat storage; and 3) W oran isotonic CE solution was equally effective in reducing physiological strain associated with exercise-induced dehydration and heat stress.

  相似文献   

20.
Viña, José, Emilio Servera, Miguel Asensi, JuanSastre, Federico V. Pallardó, José A. Ferrero, JoséGarcía-de-la-Asunción, Vicente Antón, and JulioMarín. Exercise causes blood glutathione oxidation inchronic obstructive pulmonary disease: prevention by O2therapy. J. Appl. Physiol. 81(5):2199-2202, 1996.The aim of the present study was to determinewhether glutathione oxidation occurs in chronic obstructive pulmonarydisease (COPD) patients who perform exercise and whether this could beprevented. Blood glutathione red-ox ratio [oxidized-to-reducedglutathione (GSSG/GSH)] was significantly increased when patientsperformed exercise for a short period of time until exhaustion. Theirresting blood GSSG/GSH was 0.039 ± 0.008 (SD)(n = 5), whereas after exercise itincreased to 0.085 ± 0.019, P < 0.01. Glutathione oxidation associated with exercise was partiallyprevented by oxygen therapy (resting value: 0.037 ± 0.014, n = 5; after exercise: 0.047 ± 0.016, n = 5, P < 0.01). We conclude that lightexercise causes an oxidation of glutathione in COPD patients, which canbe partially prevented by oxygen therapy.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号