首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therfore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis.  相似文献   

2.
Bioinformatics is now used as an umbrella term for almost all aspects of computational biology. Bioinformatics research will have an impact on all of biology, and virology is not immune from these research methods. Although virology has been slower to embrace bioinformatics this is now changing, particularly in the areas of viral sequences databasing and the systematic identification of viral and host homologous proteins. Here we will review some of these recent advances focusing mainly on the herpesvirus.  相似文献   

3.
Support vector machine applications in bioinformatics   总被引:14,自引:0,他引:14  
  相似文献   

4.
5.
This paper surveys the computational strategies followed to parallelise the most used software in the bioinformatics arena. The studied algorithms are computationally expensive and their computational patterns range from regular, such as database-searching applications, to very irregularly structured patterns (phylogenetic trees). Fine- and coarse-grained parallel strategies are discussed for these very diverse sets of applications. This overview outlines computational issues related to parallelism, physical machine models, parallel programming approaches and scheduling strategies for a broad range of computer architectures. In particular, it deals with shared, distributed and shared/distributed memory architectures.  相似文献   

6.
ABSTRACT: BACKGROUND: In this study we explored preeclampsia through a bioinformatics approach. We create a comprehensive genes/proteins dataset by the analysis of both public proteomic data and text mining of public scientific literature. From this dataset the associated protein-protein interaction network has been obtained. Several indexes of centrality have been explored for hubs detection as well as the enrichment statistical analysis of metabolic pathway and disease. RESULTS: We confirmed the well known relationship between preeclampsia and cardiovascular diseases but also identified statistically significant relationships with respect to cancer and aging. Moreover, significant metabolic pathways such as apoptosis, cancer and cytokine-cytokine receptor interaction have also been identified by enrichment analysis. We obtained FLT1, VEGFA, FN1, F2 and PGF genes with the highest scores by hubs analysis; however, we also found other genes as PDIA3, LYN, SH2B2 and NDRG1 with high scores. CONCLUSIONS: The applied methodology not only led to the identification of well known genes related to preeclampsia but also to propose new candidates poorly explored or completely unknown in the pathogenesis of preeclampsia, which eventually need to be validated experimentally. Moreover, new possible connections were detected between preeclampsia and other diseases that could open new areas of research. More must be done in this area to resolve the identification of unknown interactions of proteins/genes and also for a better integration of metabolic pathways and diseases.  相似文献   

7.
8.
Gao L  Dai H  Zhang TL  Chou KC 《PloS one》2011,6(6):e20949
Some of the approaches have been developed to retrieve data automatically from one or multiple remote biological data sources. However, most of them require researchers to remain online and wait for returned results. The latter not only requires highly available network connection, but also may cause the network overload. Moreover, so far none of the existing approaches has been designed to address the following problems when retrieving the remote data in a mobile network environment: (1) the resources of mobile devices are limited; (2) network connection is relatively of low quality; and (3) mobile users are not always online. To address the aforementioned problems, we integrate an agent migration approach with a multi-agent system to overcome the high latency or limited bandwidth problem by moving their computations to the required resources or services. More importantly, the approach is fit for the mobile computing environments. Presented in this paper are also the system architecture, the migration strategy, as well as the security authentication of agent migration. As a demonstration, the remote data retrieval from GenBank was used to illustrate the feasibility of the proposed approach.  相似文献   

9.
We define basic networks as the undirected subgraphs with minimal number of units in which the distances (geodesics, minimal path lengths) among a set of selected nodes, which we call seeds, in the original graph are conserved. The additional nodes required to draw the basic network are called connectors. We describe a heuristic strategy to find the basic networks of complex graphs. We also show how the characterization of these networks may help to obtain relevant biological information from highly complex protein-protein interaction data.  相似文献   

10.
11.
Plant–animal mutualistic networks sustain terrestrial biodiversity and human food security. Global environmental changes threaten these networks, underscoring the urgency for developing a predictive theory on how networks respond to perturbations. Here, I synthesise theoretical advances towards predicting network structure, dynamics, interaction strengths and responses to perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic interactions provide better predictions of network dynamics. Those mechanisms include trait matching, adaptive foraging, and the dynamic consumption and production of both resources and services provided by mutualisms. Models incorporating species traits better predict the potential structure of networks (fundamental niche), while theory based on the dynamics of species abundances, rewards, foraging preferences and reproductive services can predict the extremely dynamic realised structures of networks, and may successfully predict network responses to perturbations. From a theoretician's standpoint, model development must more realistically represent empirical data on interaction strengths, population dynamics and how these vary with perturbations from global change. From an empiricist's standpoint, theory needs to make specific predictions that can be tested by observation or experiments. Developing models using short‐term empirical data allows models to make longer term predictions of community dynamics. As more longer term data become available, rigorous tests of model predictions will improve.  相似文献   

12.
13.
The derivation and comparison of biological interaction networks are vital for understanding the functional capacity and hierarchical organization of integrated microbial communities. In the current work we present metagenomic annotation networks as a novel taxonomy-free approach for understanding the functional architecture of metagenomes. Specifically, metagenomic operon predictions are exploited to derive functional interactions that are translated and categorized according to their associated functional annotations. The result is a collection of discrete networks of weighted annotation linkages. These networks are subsequently examined for the occurrence of annotation modules that portray the functional and organizational characteristics of various microbial communities. A variety of network perspectives and annotation categories are applied to recover a diverse range of modules with different degrees of annotative cohesiveness. Applications to biocatalyst discovery and human health issues are discussed, as well as the limitations of the current implementation.  相似文献   

14.

Background  

Very often genome-wide data analysis requires the interoperation of multiple databases and analytic tools. A large number of genome databases and bioinformatics applications are available through the web, but it is difficult to automate interoperation because: 1) the platforms on which the applications run are heterogeneous, 2) their web interface is not machine-friendly, 3) they use a non-standard format for data input and output, 4) they do not exploit standards to define application interface and message exchange, and 5) existing protocols for remote messaging are often not firewall-friendly. To overcome these issues, web services have emerged as a standard XML-based model for message exchange between heterogeneous applications. Web services engines have been developed to manage the configuration and execution of a web services workflow.  相似文献   

15.
This article defines and describes some of the basics of bioinformatics and projects aimed at sequencing entire genomes. Emphasis is placed on some of the ways in which the primary structures of nucleic acids and proteins may be investigated and analysed to gain meaningful biological information using computers and appropriate software. The importance of the world wide net and access to it is given prominence, particularly in bioinformatics research and teaching.  相似文献   

16.
17.
Issac B  Raghava GP 《BioTechniques》2002,33(3):548-50, 552, 554-6
Similarity searches are a powerful method for solving important biological problems such as database scanning, evolutionary studies, gene prediction, and protein structure prediction. FASTA is a widely used sequence comparison tool for rapid database scanning. Here we describe the GWFASTA server that was developed to assist the FASTA user in similarity searches against partially and/or completely sequenced genomes. GWFASTA consists of more than 60 microbial genomes, eight eukaryote genomes, and proteomes of annotatedgenomes. Infact, it provides the maximum number of databases for similarity searching from a single platform. GWFASTA allows the submission of more than one sequence as a single query for a FASTA search. It also provides integrated post-processing of FASTA output, including compositional analysis of proteins, multiple sequences alignment, and phylogenetic analysis. Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes. Thus, the integration of different tools for sequence analyses makes GWFASTA a powerful toolfor biologists.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号