首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Technology for preparation of chymosin from milk of transgenic sheep has been elaborated.Purification of the preparation by ion-exchange chromatography on aminosilochrom and biospecific chromatography on bacitracin-Sepharose yielded homogeneous active enzyme. Hydrolysis of protein substrates (hemoglobin, BSA, and sodium caseinate) by the transgenic sheep chymosin and stability of the enzyme at various values of pH were studied. Judging by the amino acid composition, the N-terminal sequence involving six amino acid residues, molecular mass, stability at various pH values, and the cat alytic activity against the protein substrates, the transgenic sheep chymosin is identical to calf chymosin.  相似文献   

2.
Fusion tags add desirable properties to recombinant proteins, but they are not necessarily acceptable in the final products. Ideally, fusion tags should be removed releasing the intact native protein with no trace of the tag. Unique endoproteinases with the ability to cleave outside their own recognition sequence can potentially cleave at the boundary of any native protein. Chymosin was recently shown to cleave a pro‐chymosin derived fusion tag releasing native target proteins. In our hands, however, not all proteins are chymosin‐resistant under the acidic cleavage conditions (pH 4.5) used in this system. Here, we have modified the pro‐chymosin fusion tag and demonstrated that chymosin can remove this tag at more neutral pH (pH 6.2); conditions, that are less prone to compromise the integrity of target proteins. Chymosin was successfully used to produce intact native target protein both at the level of small and large‐scale preparations. Using short peptide substrates, we further examined the influence of P1′ amino acid (the N‐terminus of the native target protein) and found that chymosin accepts many different, although not all, amino acids. We conclude that chymosin has several appealing characteristics for the exact removal of fusion tags. It is readily available in highly purified recombinant versions approved by the FDA for preparation of food for human consumption. We suggest that one should consider extending the use of chymosin to the preparation of pharmaceutical proteins.  相似文献   

3.
The crystal structure of recombinant bovine chymosin (EC 3.4.23.4; renin), which was cloned and expressed in Escherichia coli, has been determined using X-ray data extending to 2.3 A resolution. The crystals of the enzyme used in this study belong to the space group I222 with unit cell dimensions alpha = 72.7 A, b = 80.3 A, and c = 114.8 A. The structure was solved by the molecular replacement method and was refined by a restrained least-squares procedure. The crystallographic R factor is 0.165 and the deviation of bond distances from ideality is 0.020 A. The resulting model includes all 323 amino acid residues, as well as 297 water molecules. The enzyme has an irregular shape with approximate maximum dimensions of 40 x 50 x 65 A. The secondary structure consists primarily of parallel and antiparallel beta-strands with a few short alpha-helices. The enzyme can be subdivided into N- and C-terminal domains which are separated by a deep cleft containing the active aspartate residues Asp-34 and Asp-216. The amino acid residues and waters at the active site form an extensive hydrogen-bonded network which maintains the pseudo 2-fold symmetry of the entire structure. A comparison of recombinant chymosin with other acid proteinases reveals the high degree of structural similarity with other members of this family of proteins as well as the subtle differences which make chymosin unique. In particular, Tyr-77 of the flap region of chymosin does not hydrogen bond to Trp-42 but protrudes out in the P1 pocket forming hydrophobic interactions with Phe-119 and Leu-32. This may have important implications concerning the mechanism of substrate binding and substrate specificity.  相似文献   

4.
Enzymatic milk coagulation for cheese manufacturing involves the cleavage of the scissile bond in kappa-casein by an aspartic acid protease. Bovine chymosin is the preferred enzyme, combining a strong clotting activity with a low general proteolytic activity. In the present study, we report expression and enzymatic properties of recombinant camel chymosin expressed in Aspergillus niger. Camel chymosin was shown to have different characteristics than bovine chymosin. Camel chymosin exhibits a 70% higher clotting activity for bovine milk and has only 20% of the unspecific protease activity for bovine chymosin. This results in a sevenfold higher ratio of clotting to general proteolytic activity. The enzyme is more thermostable than bovine chymosin. Kinetic analysis showed that half-saturation is achieved with less than 50% of the substrate required for bovine chymosin and turnover rates are lower. While raw camel milk cannot be clotted with bovine chymosin, a high clotting activity was found with camel chymosin.  相似文献   

5.
研究微小毛霉(HL-1)凝乳酶的分离纯化条件及方法。研究酶的最适浸提温度、酶的浸提pH值和最适浸提时间,探讨离子浓度、加水量对浸提效率的影响,利用高速冷冻离心法、有机溶剂沉淀法,膜分离法和层析法等对粗酶液进行了分离。利用光谱法对纯化样品进行检测。酶的最适浸提温度为30℃;最适pH为6.0;浸提10 h活力最高;1%的氯化钠有利于酶的分离,加水比例为15时有利于提取,在10 000 r/min下离心10min澄清效果最好,95%的酒精沉淀效果最好,利用0.2μm的微滤膜可除去发酵液中的菌体,8 000的超滤膜可拦截凝乳酶蛋白,S300的填料可有效分离凝乳酶,纯度达95%以上。  相似文献   

6.
Expression of recombinant proteins as translational fusions is commonly employed to enhance stability, increase solubility and facilitate purification of the desired protein. In general, such fusion proteins must be cleaved to release the mature protein in its native form. The usefulness of the procedure depends on the efficiency and precision of cleavage and its cost per unit activity. We report here the development of a general procedure for precise and highly efficient cleavage of recombinant fusion proteins using the protease chymosin. DNA encoding a modified pro-peptide from bovine chymosin was fused upstream of hirudin, carp growth hormone, thioredoxin and cystatin coding sequences and expressed in a bacterial Escherichia coli host. Each of the resulting fusion proteins was efficiently cleaved at the junction between the pro-peptide and the desired protein by the addition of chymosin, as determined by activity, N-terminal sequencing and mass spectrometry of the recovered protein. The system was tested further by cleavage of two fusion proteins, cystatin and thioredoxin, sequestered on oilbody particles obtained from transgenic Arabidopsis seeds. Even when the fusion protein was sequestered and immobilized on oilbodies, precise and efficient cleavage was obtained. The precision, efficiency and low cost of this procedure suggest that it could be used in larger scale manufacturing of recombinant proteins which benefit from expression as fusions in their host organism.  相似文献   

7.
Kinetic parameters for the splitting of model peptide substrates and chi-casein with chymosin have been interpreted on the basis of the three-dimensional structure of chymosin. Model peptide substrates contain a fragment of the chi-casein sequence in the region of the bond Phe-105--Met-106 splitted with the enzyme. It was shown that the possible reason of the enormous milk-clotting efficiency of chymosin may be partly associated with the electrostatic interaction of the positive charged segment 98-102 (His-Pro-His-Pro-His) of the substrate and outer loop of the enzyme which contains Glu-245, Asp-247, Asp-249, Asp-251.  相似文献   

8.
A method is described for quantifying the proteolytic action of the milk-clotting enzyme chymosin on small and medium-sized peptide substrates by monitoring the decrease of absorbance at 230 nm during cleavage. The method is illustrated by the determination of the kinetic parameters of the specific splitting of a kappa-casein-related hexa- and pentadecapeptide by chymosin. The results are in good agreement with those found earlier with the same enzyme/substrate system by using an automated ninhydrin method. Erroneous results were obtained when the kinetic data were derived from one single progress curve. The significance of initial rate measurements for calculating correct kinetic parameters is briefly discussed. The usefulness of single progress curves measured at different initial substrate concentrations for obtaining information about the mechanism of the enzymic reaction is demonstrated.  相似文献   

9.
Gene fragments encoding the large subunit (LS) of Rubisco (RBCL) were cloned from various species of host plants of phytophagous Lepidoptera and expressed as recombinant proteins in Escherichia coli. Recombinant RBCLs were compared among each other along with casein and native Rubisco as proteinaceous substrates for measuring total midgut protease activities of fourth instar larvae of Helicoverpa armigera feeding on casein, Pieris brassicae feeding on cauliflower, and Antheraea assamensis feeding on Litsea monopetala and Persea bombycina. Cognate rRBCL (from the pertinent host plant species) substrates performed similar to noncognate rRBCL reflecting the conserved nature of encoding genes and the versatile use of these recombinant proteins. Casein and recombinant RBCL generally outperformed native Rubisco as substrates, except where inclusion of a reducing agent in the enzyme assay likely unfolded the plant proteins. Levels of total midgut protease activities detected in A. assamensis larvae feeding on two primary host species were similar, suggesting that the suite(s) of digestive enzymes in these insects could hydrolyze a plant protein efficiently. Protease activities detected in the presence of protease inhibitors and the reducing agent dithiothreitol (DTT) suggested that recombinant RBCL was a suitable protein substrate for studying insect proteases using in vitro enzyme assays and substrate zymography.  相似文献   

10.
Chymosin as an important industrial enzyme widely used in cheese manufacture. The yeast Kluyveromyces lactis is a promising host strain for expression of the chymosin gene. However, low yields (80 U/ml in shake flask cultures) were obtained when the K. lactis strain GG799 was used to express chymosin. We hypothesized that the codon-usage bias of the host may have resulted in inefficient translation and chymosin production. To improve expression efficiency of recombinant calf chymosin in K. lactis strain GG799, we designed and synthesized a DNA sequence encoding calf prochymosin using optimized codons, while keeping the G + C content relatively low. We altered 333 nucleotides to optimize codons encoding 315 amino acids. In shaking flask culture, chymosin activity was 575 U/ml in the strain expressing the optimized gene, a sevenfold higher expression level compared with the non-optimized control. SDS–PAGE analysis revealed that the purified recombinant calf chymosin had a molecular mass of 35.6 kDa, the same as the molecular weight of native calf chymosin. Alpha-casein, beta-casein, and kappa-casein were incubated with the recombinant calf chymosin from K. lactis strain GG799 or chymosin from calf stomach and the breakdown products were analyzed by SDS–PAGE. Both the recombinant calf chymosin and the native calf chymosin specifically hydrolyzed kappa-casein. Our results show that codon optimization of the calf chymosin gene improves expression in K. lactis strain GG799. Genetic manipulation to optimize codon usage has important applications for industrial chymosin production.  相似文献   

11.
Patients suffering certain metabolic diseases (e.g. phenylketonuria) need a low-phenylalanine diet throughout their lives. Transgenic rabbits were created to express low-phenylalanine kappa-casein in their milk. The aim was to demonstrate for the first time the feasibility of producing a modified milk protein in addition to normal milk proteins. A gene construct containing the coding region of the rabbit kappa-casein gene was modified by site-specific oligonucleotide directed mutagenesis. Four of the five phenylalanine amino acids present in the mature protein were mutated and the gene construct was used to create two transgenic rabbit lines. The transgenic rabbits produced the recombinant kappa-casein at a high level in their milk causing a reduction in the average size of the casein micelles. The low-phenylalanine kappa-casein was digestible with chymosin and it was separated from its native counterpart and from the other milk proteins by a one-step HPLC method on a reversed-phase column. In the future, low-phenylalanine casein produced in transgenic animals could be used as dietary replacements to meet the special requirements of certain consumer groups.  相似文献   

12.
凝乳酶在奶酪加工中应用广泛,为获得高活性的凝乳酶制剂,采用乳酸克鲁维酵母为宿主,首次对经密码子优化的牛凝乳酶原基因进行表达。利用DNAWorks3.0软件辅助设计,用两步PCR法合成了小牛凝乳酶原基因(GenBank Accession No.AA30448)。将该基因插入酵母表达载体pKLAC1,构建了重组载体pKLAC1-Prochy,并用电脉冲法将线性化的重组质粒转化到乳酸克鲁维酵母GG799中。通过含1%酪蛋白的YEPD平板活性筛选,PCR鉴定,最后获得了一株多拷贝整合的基因工程菌chy1。该菌株可分泌表达牛凝乳酶原,经SDS-PAGE分析,证明重组牛凝乳酶原的分子量约为41kDa,符合预期大小,酸化处理后为36kDa,证明可以正确自我剪切。液体培养96h后,酶活最高达到99.67SU/mL。分别以半乳糖和葡萄糖为碳源的条件下表达,其酶活性差异不大,说明在发酵期间,可以不经过半乳糖诱导即可产生高水平的牛凝乳酶原产物。该工程菌的获得为进一步优化产酶条件及放大工艺提供了条件,并为凝乳酶的工业化生产奠定了基础。  相似文献   

13.
Kashparov  I. V.  Russ  A. V.  Andreeva  N. S. 《Molecular Biology》2002,36(5):754-759
The method of molecular dynamics in explicit solvent was applied to test the hypothesis of the existence of a self-inhibited form of chymosin in solution. The paths and energies were calculated for chymosin in solution and in a crystalline environment. The modeling revealed that the intermolecular contacts of chymosin in crystal have negligible influence on the energy stabilization of its self-inhibited conformation. On the other hand, upon molecular dynamics simulation of the active and self-inhibited forms in solution their conformational energies proved to be quite close and the potential barrier between them relatively low. All this supports the possibility of chymosin to adopt spontaneously the self-inhibited conformation in solution, and indicates that it is one of the really existing enzyme forms rather than a crystal packing artifact. The results obtained open novel approaches to studying the specificity of chymosin as well as other aspartic proteinases.  相似文献   

14.
The question regarding the identity of the alpha and beta subunits of the yeast type I protein geranylgeranyltransferase was explored using prokaryotic expression of candidate genes. The Saccharomyces cerevisiae CDC43 and RAM2 genes were expressed in Escherichia coli and cell extracts examined for the ability to transfer [3H]geranylgeranyl diphosphate to an appropriate CaaX protein substrate. Individual expression of each gene yielded no activity; however, co-expression of the two genes resulted in high levels of [3H] geranylgeranyl incorporation into the substrate protein Ras-Cys-Val-Val-Leu. The activity was partially purified yielding approximately 12,600 units/liter. The partially purified enzyme geranylgeranylated the Ras-Cys-Val-Val-Leu, Ras-Cys-Ala-Ile-Leu, Ras-Cys-Ile-Ile-Leu, and Ras-Cys-Thr-Ile-Leu substrates but not the Ras-Cys-Val-Leu-Ser or Ras-Ser-Val-Leu-Ser substrates. The protein geranylgeranyltransferase was highly specific for geranylgeranyl diphosphate and poorly transferred farnesyl. The recombinant enzyme was indistinguishable from the native type I geranylgeranyltransferase in yeast extracts. As has been reported for the protein farnesyltransferase, the yeast type I protein geranylgeranyltransferase is also a magnesium-requiring, zinc metalloenzyme. Interestingly, the recombinant enzyme functioned with calcium as the only divalent cation, although addition of zinc increased calcium-dependent activity 2-fold.  相似文献   

15.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

16.
Plasmodium falciparum is the most prevalent and deadly species of the human malaria parasites, and thioredoxin reductase (TrxR) is an enzyme involved in the redox response to oxidative stress. Essential for P. falciparum survival, the enzyme has been highlighted as a promising target for novel antimalarial drugs. Here we report the discovery and characterization of seven molecules from an antimalarial set of 13533 compounds through single-target TrxR biochemical screens. We have produced high-purity, full-length, recombinant native enzyme from four Plasmodium species, and thioredoxin substrates from P. falciparum and Rattus norvegicus. The enzymes were screened using a unique, high-throughput, in vitro native substrate assay, and we have observed selectivity between the Plasmodium species and the mammalian form of the enzyme. This has indicated differences in their biomolecular profiles and has provided valuable insights into the biochemical mechanisms of action of compounds with proven antimalarial activity.  相似文献   

17.
Mus81-Mms4/Eme1 is a conserved structure-specific endonuclease that functions in mitotic and meiotic recombination. It has been difficult to identify a single preferred substrate of this nuclease because it is active on a variety of DNA structures. In addition, it has been suggested that the specificity of the recombinant protein may differ from that of the native enzyme. Here, we addressed these issues with respect to Mus81-Mms4 from S. cerevisiae. At low substrate concentrations, Mus81-Mms4 was active on any substrate containing a free end adjacent to the branchpoint. This includes 3'-flap (3'F), regressed leading strand replication fork (RLe), regressed lagging strand replication fork (RLa), and nicked Holliday junction (nHJ) substrates. Kinetic analysis was used to quantitate differences between substrates. High Kcat/Km values were obtained only for substrates with a 5'-end near the branchpoint (i.e., 3'F, RLe, and nHJ); 10-fold lower values were obtained for nicked duplex (nD) and RLa substrates. Substrates lacking any free ends at the branch point generated Kcat/Km values that were four orders of magnitude lower than those of the preferred substrates. Native Mus81-Mms4 was partially purified from yeast cells and found to retain its preference for 3'F over intact HJ substrates. Taken together, these results narrow the range of optimal substrates for Mus81-Mms4 and indicate that, at least for S. cerevisae, the native and recombinant enzymes display similar substrate specificities.  相似文献   

18.
19.
The mechanism by which polybasic peptides stimulate the activity of casein kinase 2 (CK2) has been studied by comparing the effect of polylysine on the phosphorylation of a variety of protein and peptide substrates by the native CK2 holoenzyme and by its recombinant catalytic alpha subunit, either alone or in combination with the recombinant non-catalytic beta subunit. Calmodulin is not phosphorylated by the CK2 holoenzyme, in either the native or the reconstituted form, unless polylysine is added. In the presence of polylysine, it becomes a good substrate for CK2 (Km 14.2 microM, Kcat 4.6 mol.min-1.mol CK2-1). The recombinant alpha subunit, however, spontaneously phosphorylates calmodulin, this phosphorylation being actually inhibited rather than stimulated by polylysine. The calmodulin tridecapeptide, RKMKDTDSEEEIR, reproducing the phosphorylation site for CK2, is spontaneously phosphorylated by either CK2 holoenzyme or the recombinant alpha subunit with 5.8-fold and 2.8-fold stimulation by polylysine, respectively. The recombinant beta subunit of CK2 is itself a good exogenous substrate for the enzyme, its phosphorylation, however, is inhibited rather than enhanced by polylysine. On the contrary, the phosphorylation of the nonapeptide, MSSSEEVSW, reproducing the beta-subunit phosphoacceptor site, is dramatically stimulated by polylysine. Using a variety of small peptide substrates, it was shown that phosphorylation rate is diversely stimulated by polylysine. The observed stimulation, moreover, is variably accounted for by changes in Vmax and/or Km, depending on the structure of the peptide substrate. Maximum stimulation with all protein/peptide substrates tested requires the presence of the beta subunit, since the recombinant alpha subunit is much less responsive than CK2 holoenzyme, either native or reconstituted. While the phosphorylation of the peptide RRRDDDSDDD by CK2 is stimulated 2.8-fold, with 15 nM polylysine being required for half-maximal stimulation, a stimulation of only 1.9-fold, with 80 nM polylysine required for half-maximal stimulation, is attained with recombinant alpha subunit. The concentration of polylysine required for half-maximal stimulation is comparable to CK2 concentration and increases by increasing CK2 concentration, suggesting that polylysine primarily interacts with the enzyme, rather than with the peptide substrate.  相似文献   

20.
The expression of recombinant human bile salt-stimulated lipase (bssl) was targeted to the lactating mammary gland of transgenic mice. Expression of recombinant genes comprisingbssl cDNA, or alternatively genomicbssl DNA, under control of regulatory elements derived from the murine whey acidic protein (wap) gene was achieved and evaluated. Constructs containing genomicbssl sequences mediated high levels (0.5–1, mg ml–1) of recombinant human BSSL in the milk. The recombinant BSSL produced was purified, biochemically characterized and compared to native BSSL and recombinant BSSL produced in mouse C127 and hamster CHO cells. Recombinant BSSL derived from transgenic mice showed a different migration and distribution after SDS-PAGE electrophoresis, lower apparent molecular mass on size-exclusion chromatography and no detectable interactions with a panel of lectins. These results indicate a significantly lower degree ofO-glycosylation of recombinant BSSL in milk from transgenic mice than was found for the native enzyme or recombinant CHO- or C127 cell-produced BSSL. Despite these differences, mouse-milk-derived recombinant BSSL exhibited similar lipase activity, the same, stability to low pH and similar sensitivity to elevated temperatures as the native enzyme. The observation that mouse-C127-cell-produced recombinant BSSL is heavilyO-glycosylated makes species-related restrictions less attractive as an explanation for the reducedO-glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号