首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
放化疗综合应用是癌症治疗中的常用方法。研究表明,放化疗综合应用可以有效地控制杀伤肿瘤,但过程中对正常细胞的毒副作用严重制约着放化疗的剂量和疗效。如何在有效杀伤肿瘤细胞的同时减轻放化疗综合应用中对正常细胞的毒副作用已经成为探索更好的治疗策略的关键。随着研究的不断深入,各种相关的新药和新治疗思路层出不穷,比如针对肿瘤发生及代谢过程的靶向类新药、用于辐射增敏的新的基因靶点等都已进入研究者的视线。另外,近年来关于肿瘤细胞中药物转运蛋白的研究也为综合治疗靶点寻找提供了一定依据。本文根据当前研究现状,着重总结近年来放化疗综合治疗靶向研究在上述几方面的一些新进展。  相似文献   

2.
肿瘤是危害人类健康的重大疾病之一。目前用于肿瘤治疗的方法有手术治疗、化学药物治疗、放射治疗等。然而,传统的治疗方法存在治疗效果不佳、易引发多药耐药、毒副作用大等缺点,仍需进一步探索新的肿瘤治疗靶点和策略。线粒体作为细胞的能量转换器,被认为是肿瘤、心血管和神经性疾病新药设计的最重要靶点之一。纳米药物递送载体具有易被主动靶向基团修饰的特点,可实现细胞乃至细胞器的精准靶向给药。本文从抑制肿瘤细胞增殖、促进肿瘤细胞凋亡、抑制肿瘤复发与转移、诱导细胞自噬等方面综述了线粒体靶向纳米载体在肿瘤诊疗中的应用。  相似文献   

3.
前列腺癌是目前在全球男性中第二位最常见的肿瘤,其在恶性肿瘤死亡率中排名第六位[1]。在发病率方面,我国虽然不及西方国家,但是随着生活水平和诊疗技术的提高,也表现出了逐渐上升的态势。靶向治疗是以肿瘤细胞的特有位点作为治疗靶点,在纠正病变、稳定细胞、发挥更强的抗肿瘤活性的同时,能够对正常细胞减少毒副作用[2]。由于我们对于肿瘤发生发展的分子途径认知的逐渐提高,以及更好的利用这些途径作为有效的药物作用靶点,我们已经看到了越来越多的分子靶向药物的开发和生产随之增加。本文着重探讨了分子靶向药物对肿瘤的治疗起作用的不同的靶向机制,以及它们的研究现状及临床应用。  相似文献   

4.
抗体药物偶联物(antibody-drug conjugates,ADC)是一类由单克隆抗体和小分子细胞毒性药物通过连接子偶联而成的新型生物治疗药物。与传统的细胞毒药物相比,ADC具有靶向性强、毒副作用小等优势,在临床上展现较好的治疗潜力。其中,抗体部分通过与肿瘤细胞表面的靶向抗原结合,精准地将小分子细胞毒性药物递送至肿瘤部位,从而实现肿瘤特异性杀伤效果,是影响ADC疗效的核心要素之一。对近年来ADC药物中抗体的组成及其作用靶点的研究进展进行了综述。  相似文献   

5.
近年来,随着国内外几款溶瘤病毒制剂的相继上市,溶瘤病毒疗法成为肿瘤免疫治疗的焦点。溶瘤病毒可选择性感染并裂解肿瘤细胞,同时释放肿瘤相关抗原激活机体的抗肿瘤免疫反应,达到杀伤肿瘤细胞和抑制肿瘤生长的目的。溶瘤病毒对肿瘤的靶向杀伤作用决定了其安全性和溶瘤效果。为了开发出安全高效的溶瘤病毒,目前主要采用以下策略:利用某些病毒载体对肿瘤细胞的天然靶向性,使溶瘤病毒选择性地在肿瘤细胞内复制并杀伤肿瘤细胞;或者对病毒基因组进行缺失和插入等修饰,通过靶向肿瘤细胞特异性表面受体、胞内信号通路或者肿瘤微环境等提高溶瘤病毒的肿瘤靶向性。其中,肿瘤微环境中的低氧状态、新血管生成以及免疫抑制状态等都可成为溶瘤病毒的靶点。而溶瘤病毒通过表达细胞因子和免疫检查点抑制剂,或者与CAR-T细胞联合作用,靶向调节肿瘤微环境中免疫抑制状态,成为提高溶瘤病毒肿瘤靶向性的常用方法。本文将对以上溶瘤病毒靶向治疗肿瘤策略的研究进展进行综述。  相似文献   

6.
肿瘤已成为威胁人类生命的一大杀手,目前主要采用手术和放、化疗等手段进行治疗,但由于放、化疗的细胞选择性差、毒副作用明显且易引起肿瘤细胞产生耐受(/药)性,不利于肿瘤的持续治疗,因此亟待研发具有定向定位优势、毒副作用低的新型靶向药物.原位自组装多肽能识别肿瘤部位的特异性高表达物质,在肿瘤部位靶向性聚集形成稳定的纳米结构,实现精准和高效治疗,有望成为一种新型的抗肿瘤药物.本研究基于多肽原位自组装的设计理念,利用溶酶体内组织蛋白酶L的催化活性,设计了靶向溶酶体且能够原位自组装的多肽分子Fmoc-FFRIKFERQ-OH,研究了该分子的自组装特性及抗肿瘤活性.结果显示,在体外酸性条件下,组织蛋白酶L能精准切割Fmoc-FFRIKFERQ-OH分子,其酶切产物FmocFFR-OH自组装形成长纳米纤维结构,对肿瘤细胞A375和SH-SY5Y均具有较好的杀伤作用.该分子通过靶向溶酶体杀伤肿瘤细胞且对正常细胞的毒性较低,有望成为一种新型的抗肿瘤药物.  相似文献   

7.
肿瘤导向治疗研究进展   总被引:1,自引:0,他引:1  
特异性地杀伤肿瘤细胞并降低对正常细胞的毒副作用是各种导向治疗方法的共同目标。本文综述了前体药物疗法,免疫毒素,基因疗法,以肿瘤增殖转移过程中的关键分子为靶的导向治疗,生物素-亲和素系统等导向治疗的研究进展。  相似文献   

8.
由于免疫学和肿瘤学发展的不断深入以及交叉渗透,肿瘤免疫学渐渐成为肿瘤治疗的新热点,为肿瘤治疗带来了新的希望。肿瘤免疫疗法主要是通过激活或正常化机体免疫系统,例如T细胞,NK细胞等,对肿瘤细胞进行杀伤,以期达到缓解或治愈的目的。随着肿瘤免疫研究的不断深入,多种肿瘤免疫新药已成功获批,并展现出了前所未有的多癌种普适性,但提高患者响应率仍是肿瘤免疫治疗领域之重要议题。从肿瘤免疫新靶点的研究,联合治疗的探索及生物标记物的应用三个方面浅析肿瘤免疫发展过程中的机遇与挑战。  相似文献   

9.
放射性药物指供临床诊断或治疗用的放射性核素制剂或其标记化合物。放射性核素靶向治疗是利用对肿瘤细胞具有特异高亲和力的分子载体将核素定向导入特定的肿瘤组织,对肿瘤进行治疗。与传统的放疗和化疗相比,其具有选择性杀伤肿瘤细胞的特点。随着核医学的发展,SPECT/CT、PET/CT的普及,新靶点的发现和新型放射性药物的研发,利用放射性药物进行靶向治疗在肿瘤临床治疗中占据的地位越来越重要。本文简述了放射性药物的分类、组成及特点;综述了针对肿瘤相关抗原的放射免疫药物在非霍奇金淋巴瘤、结直肠癌和前列腺癌中的应用;受体介导的放射性核素药物在治疗神经内分泌肿瘤、前列腺癌和乳腺癌中的临床应用以及基于基因修饰的放射性药物在肿瘤靶向治疗中的实验研究进展。最后总结了放射性药物在肿瘤靶向治疗中的应用前景与面临的挑战,以期为靶向治疗肿瘤的放射性药物的开发和临床应用提供一些参考。  相似文献   

10.
近年来,随着肝细胞癌基础研究不断深入,分子靶向药物及免疫治疗药物的临床开发及应用为肝细胞癌的治疗带来了新的突破。肝细胞癌的靶向治疗药物具有较高的特异性,能够选择性地杀伤肿瘤细胞,尽可能减少对正常组织的损伤。目前,这些靶向治疗药物主要分为小分子靶向药物、肝细胞癌抗原特异性靶向药物和免疫检验点靶向药物3类。现就肝细胞癌靶向治疗药物的最新研究进展作简要综述。  相似文献   

11.
Interferon alpha (IFN-alpha) is used worldwide for the treatment of a variety of cancers. For pancreatic cancer, recent clinical trials using IFN-alpha in combination with standard chemotherapeutic drugs showed some antitumor activity of the cytokine, but the effect was not significant enough to enlist pancreatic cancer as a clinically effective target of IFN-alpha. In general, an improved therapeutic effect and safety are expected for cytokine therapy when given in a gene therapy context, because the technology would allow increased local concentrations of this cytokine in the target sites. In this study, we first examined the antiproliferative effect of IFN-alpha gene transduction into pancreatic cancer cells. The expression of IFN-alpha effectively induced growth suppression and cell death in pancreatic cancer cells, an effect which appeared to be more prominent when compared with other types of cancers and normal cells. Another strategy we have been developing for pancreatic cancer targets its characteristic genetic aberration, K-ras point mutation, and we reported that the expression of antisense K-ras RNA significantly suppressed the growth of pancreatic cancer cells. When these two gene therapy strategies are combined, the expression of antisense K-ras RNA significantly enhanced IFN-alpha-induced cell death (1.3- to 3.5-fold), and suppressed subcutaneous growth of pancreatic cancer cells in mice. Because the 2',5'-oligoadenylate synthetase/RNase L pathway, which is regulated by IFN and induces apoptosis of cells, is activated by double-strand RNA, it is plausible that the double-strand RNA formed by antisense and endogenous K-ras RNA enhanced the antitumor activity of IFN-alpha. This study suggested that the combination of IFN-alpha and antisense K-ras RNA is a promising gene therapy strategy against pancreatic cancer.  相似文献   

12.
Induction of apoptosis in cancer cells with chemotherapy and radiation treatment is a major strategy in cancer therapy at present. Nevertheless, innate or acquired resistance has been an obstacle for conventional clinical therapy. TNF-related apoptosis inducing ligand (TRAIL/Apo-2L) is a typical member of the TNF ligand family that induces apoptosis through activating the death receptors. In recent years, considerable attention has been focused on the potential benefits of TRAIL in cancer therapy, as the majority of cancer cells are sensitive to TRAIL-induced apoptosis, while most normal cells are TRAIL-resistant. Furthermore, the use of TRAIL in combination with chemotherapeutic agents or irradiation strengthens its apoptotic effects. In this review, we will discuss the regulation mechanism of TRAIL-induced apoptosis and the molecular basis of the synergies created by its use in combination with chemotherapeutic agents and irradiation. We also analyze in detail that TRAIL may be cytotoxic, as this is a potential obstacle to its development for being used in cancer therapy.  相似文献   

13.
The Gotham Prize was awarded to Alex Varshavsky for “Targeting the absence”, a strategy employing negative targets of cancer therapy. This is a brilliant example of therapeutic engineering: designing a sequence of events that leads to the selective killing of one type of cell, while sparing all others. A complex molecular device (Varshavsky’s Demon) examines DNA, recognizes the present target in normal cells and kills cancer cells. The strategy is limited by the delivery (transfection or infection) of DNA-based devices into each cell of our body. How can we overcome this limitation? Can therapeutic engineering be applied to small drugs? Can each small molecule reach a cell separately and, once in a cell, exert orchestrated action governed by cellular context? Here I describe how a combination of small drugs can acquire a demonic power to check, choose and selectively kill. The cytotoxicity is restricted to cells lacking (or having) one of the targets. For example, in the presence of a normal target, one drug can cancel the cytotoxic action of another drug. And by increasing a number of targets, we can increase the precision and power of such ‘restrictive’ combinations. Here I discuss restrictive combinations of currently available drugs that could be tested in clinical trials. Could then these combinations cure cancer today? And what does ‘cure’ really mean? This article suggests the answer.  相似文献   

14.
Summary Blood lymphocytes from 100 patients with transitional cell carcinoma of the urinary bladder (TCC-bladder) were studied for their cytotoxicity in vitro against a panel of allogeneic tissue culture cell lines. Of the TCC-bladder patients, 45 were untreated for their disease, while 55 had been treated with local radiotherapy up to 12 years before testing. Control lymphocytes were obtained from (1) 45 untreated, age- and sex-matched patients with other neoplastic diseases, mainly urogenital cancers; (2) 19 patients with acute cystitis; and (3) 45 healthy donors. Lymphocytes from individual donors within all five groups were frequently cytotoxic to any one of the target cells. However, the lymphocytes from each of the two TCC-bladder groups were markedly more cytotoxic to two different bladder tumor targets than to control targets derived from normal bladder epithelium, from colon carcinoma, or from malignant melanoma. Similar comparisons made within each of the three control donor groups did not show this. The results indicate that the two bladder tumor targets were not more susceptible to lymphocyte-mediated lysis than the control targets. The mean cytotoxicity displayed by the lymphocytes from both TCC-bladder groups to the bladder tumor targets was significantly higher than that of the cancer control group and that of the healthy donors. No such elevation was seen when the cancer control group or the cystitis patients were compared with healthy donors. Although untreated TCC-patients with a larger tumor burden (stages T3–T4) appeared to be slightly less cytotoxic to all target cells than those with a smaller tumor burden (T1–T2), these differences were not statistically significant. On the other hand, among the treated TCC-patients, in the main those tested more than 1 year and up to 5 years after therapy exhibited a significantly elevated mean cytotoxicity to the bladder tumor targets. Within all five donor groups, the overall cytotoxicity to the bladder tumor targets and the normal bladder targets showed a statistically highly significant correlation. However, while there was no correlation for the untreated TCC-bladder patients and the clinical controls between cytotoxicity to the bladder tumor targets on one hand and non-bladder targets on the other, the cytotoxicity to the bladder tumor targets of the treated TCC-bladder patients was also correlated with that to the colon carcinoma and the melanoma targets. The results indicate that cytotoxicity in both TCC patients and controls reflects recognition by the lymphocytes of a variety of antigens, shared to different degrees by different groups of target cells. Furthermore, in TCC-bladder patients there is a superimposed cytotoxicity, which is related to their disease and which probably reflects reactions against one or several tumor-associated antigens.  相似文献   

15.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy.  相似文献   

16.
Despite intense studies, highly effective therapeutic strategies against cancer have not yet been fully exploited, because few true cancer-specific targets have been identified. Most modalities, perhaps with the exception of radiation therapy, target proliferating cells, which are also abundant in normal tissues. Thus, most current cancer treatments have significant side effects. More than 10 years ago, the tumor suppressor p53 was first explored as a cancer-specific target. At the time, the approach was to introduce a normal p53 gene into mutant p53 (mp53) tumor cells to induce cell cycle arrest and apoptosis. However, this strategy did not hold up and mostly failed in subsequent clinical studies. Recent research developments have now returned p53 to the limelight. Several studies have reported that mutant or null p53 tumor cells undergo apoptosis more easily than genetically matched, normal p53 counterparts when inhibiting a specific stress kinase in combination with standard chemotherapy or when exposed to an ataxia-telangiectasia mutated (ATM) kinase inhibitor and radiation, thus achieving true cancer specificity in animal tumor models. This short review highlights several of these recent studies, discusses possible mechanism(s) for mp53-mediated “synthetic lethality,” and the implications for cancer therapy.  相似文献   

17.
AZD1775 is a small molecule WEE1 inhibitor used in combination with DNA-damaging agents to cause premature mitosis and cell death in p53-mutated cancer cells. Here we sought to determine the mechanism of action of AZD1775 in combination with chemotherapeutic agents in light of recent findings that AZD1775 can cause double-stranded DNA (DS-DNA) breaks. AZD1775 significantly improved the cytotoxicity of 5-FU in a p53-mutated colorectal cancer cell line (HT29 cells), decreasing the IC50 from 9.3 μM to 3.5 μM. Flow cytometry showed a significant increase in the mitotic marker pHH3 (3.4% vs. 56.2%) and DS-DNA break marker γH2AX (5.1% vs. 50.7%) for combination therapy compared with 5-FU alone. Combination therapy also increased the amount of caspase-3 dependent apoptosis compared with 5-FU alone (4% vs. 13%). The addition of exogenous nucleosides to combination therapy significantly rescued the increased DS-DNA breaks and caspase-3 dependent apoptosis almost to the levels of 5-FU monotherapy. In conclusion, AZD1775 enhances 5-FU cytotoxicity through increased DS-DNA breaks, not premature mitosis, in p53-mutated colorectal cancer cells. This finding is important for designers of future clinical trials when considering the optimal timing and duration of AZD1775 treatment.  相似文献   

18.
Despite progresses achieved in the therapy of tumors, the prognosis of patients is still limited by reccurence of residual tumor cells. Cancer cell dormancy plays a pivotal role in cancer relapse and drug resistance. In recent years, tumor cells undergoing EMT(epithelial-mesenchymal transition), CSCs(cancer stem cells) and CTCs(circulating tumor cells) are proved to share some common characteristics and show a cell cycle arrest phenotype. Thus, understanding the dormant stage of tumor cells could facilitate us in discovering ways to accelerate the development of tumor therapy and prevent its reccurence. In this review, we summarize the specific process of tumor cell dormancy induced by pharmacotherapy, and consider that dormancy is an initiative response rather than a passive defense to cytotoxicity. Besides, we probe into the mechanisms of tumor cell dormancy-mediated drug resistance, anticipating paving a way to target dormant tumor cells and result in better clinical outcomes.  相似文献   

19.
Cancer is a major health problem worldwide. An increasing number of researchers are studying the diagnosis, therapy and mechanisms underlying the development and progression of cancer. The study of noncoding RNA has attracted a lot of attention in recent years. It was found that frequent alterations of miRNA expression not only have various functions in cancer but also that miRNAs can act as clinical markers of diagnosis, stage and progression of cancer. MiR‐212 is an important example of miRNAs involved in cancer. According to recent studies, miR‐212 may serve as an oncogene or tumour suppressor by influencing different targets or pathways during the oncogenesis and the development and metastasis of cancer. Its deregulation may serve as a marker for the diagnosis or prognosis of cancer. In addition, it was recently reported that miR‐212 was related to the sensitivity or resistance of cancer cells to chemotherapy or radiotherapy. Here, we summarize the current understanding of miR‐212 functions in cancer by describing the relevant signalling pathways and targets. The role of miR‐212 as a biomarker and its therapeutic potential in cancer is also described. The aim of this review was to identify new methods for the diagnosis and treatment of human cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号