首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
FTIR difference spectra have been obtained for the sR587----S373 phototransition of sensory rhodopsin I (sR-I), a signal-transducing protein of Halobacterium halobium. The vibrational modes of the sR587 chromophore have frequencies close to those of the bacteriorhodopsin bR568 chromophore, confirming that the two chromophores have very similar structures and environments. However, the sR-I Schiff base C = N stretch frequency is downshifted relative to bR, consistent with weaker hydrogen bonding with its counterion(s). The carboxyl (COOH) stretch modes of sR-I and halorhodopsin (hR) are at the same frequencies. On the basis of sequence homologies, these bands can be assigned to Asp-106 in helix D and/or Asp-201 in helix G. In contrast, no band was found that could be assigned to the protonation of Asp-76. In bR, the homologous residue Asp-85 serves as the acceptor group for the Schiff base proton. Bands appear in the amide I and II regions at similar frequencies in sR-I, hR, and bR, indicating that despite their different functions they all undergo closely related structural changes. Bands are also detected in the C-H stretch region, possibly due to alterations in the membrane lipids. Similar spectral features are also observed in the lipids of rhodopsin-containing photoreceptor membrane upon light activation.  相似文献   

2.
The role of tyrosines in the bacteriorhodopsin (bR) photocycle has been investigated by using Fourier transform infrared (FTIR) and UV difference spectroscopies. Tyrosine contributions to the BR570----M412 FTIR difference spectra recorded at several temperatures and pH's were identified by isotopically labelling tyrosine residues in bacteriorhodopsin. The frequencies and deuterium/hydrogen exchange sensitivities of these peaks and of peaks in spectra of model compounds in several environments suggest that at least two different tyrosine groups participate in the bR photocycle during the formation of M412. One group undergoes a tyrosinate----tyrosine conversion during the BR570----K630 transition. A second tyrosine group deprotonates between L550 and M412. Low-temperature UV difference spectra in the 220--350-nm region of both purple membrane suspensions and rehydrated films support these conclusions. The UV spectra also indicate perturbation(s) of one or more tryptophan group(s). Several carboxyl groups appear to undergo a series of protonation changes between BR570 and M412, as indicated by infrared absorption changes in the 1770--1720-cm-1 region. These results are consistent with the existence of a proton wire in bacteriorhodopsin that involves both tyrosine and carboxyl groups.  相似文献   

3.
Site-specific mutagenesis in combination with low temperature UV/visible difference spectroscopy has been used to investigate the role of individual amino acids in the structure and function of bacteriorhodopsin (bR). We examined the effects of eight single amino acid substitutions, all in the putative F helix, on the absorption of bR as well as formation of the K and M intermediates. Both the absorbance spectra and the photocycle difference spectra of Escherichia coli expressed bR as well as the mutants S183A, P186G, and E194Q all closely resembled the corresponding purple membrane spectra. In contrast the Pro-186----Leu substitution resulted in the loss of the normal photocycle and a large blue shift in the bR state lambda max. Thus, Pro-186 appears to play a critical role in maintaining the normal protein-chromophore interactions, although the pyrrolidine ring is not essential since proline could be replaced by glycine at this position. The mutants W182F, W189F, and S193A did not appear to be directly involved in the bathochromic shift of bR since they all had lambda max's close to that of purple membrane and produced intermediates similar to K and M. However, alterations in the UV and visible difference spectra as well as the appearance of some irreversibility in the photoreactions indicate that these mutants have altered protein-chromophore interactions during the photocycle. Unlike the other mutants examined, Y185F exhibited a red-shifted form of bR and K raising the possibility that Tyr-185 is directly involved in color regulation. In addition, UV difference peaks previously associated with a tyrosine deprotonation were absent in Y185F indicating that Tyr-185 undergoes protonation changes during the photocycle in agreement with recent Fourier transform infrared difference measurements (Braiman, M.S., Mogi, T., Stern, L. J., Hackett, N., Chao, B. H., Khorana, H.G., and Rothschild, K. J. (1988) Proteins: Structure, Function, and Genetics 3, 219-229). Our results suggest that Trp-182, Tyr-185, Pro-186, Trp-189, and Ser-193, all of which are within a 100 degrees segment of the F helix, are part of a retinal-binding pocket.  相似文献   

4.
Structure of the retinal chromophore in the hR578 form of halorhodopsin   总被引:1,自引:0,他引:1  
Halorhodopsin is a retinal-containing pigment that is thought to function as a light-driven chloride ion pump in the cell membrane of Halobacterium halobium. To address the role of the retinal chromophore in chloride ion transport, resonance Raman spectra have been obtained of the hR578 form of chromatographically purified halorhodopsin (hR). The close similarity of the frequencies and intensities of the hR578 Raman bands with those of light-adapted bacteriorhodopsin (bR568) shows that the chromophore in hR578 has an all-trans configuration and that the protein environment around the chromophore in these two pigments is very similar. In addition, hR578 exhibits a Raman line at 1633 cm-1 which is assigned as the stretching vibration of a protonated Schiff base linkage to the protein based on its shift to 1627 cm-1 in D2O. The reduced frequency of the Schiff base stretching vibration compared with bR568 (1640 cm-1) is shown to result from a reduction of its coupling with the NH in-plane rock. This may be due to a reduction in hydrogen-bonding between the Schiff base proton and an electronegative counterion in halorhodopsin.  相似文献   

5.
The role of proline residues in the photocycle of bacteriorhodopsin (bR) is addressed using solid-state NMR. (13)C and (15)N chemical shifts from X-Pro peptide bonds in bR are assigned from REDOR difference spectra of pairwise labeled samples, and correlations of chemical shifts with structure are explored in a series of X-Pro model compounds. Results for the three membrane-embedded X-Pro bonds of bR indicate only slight changes in the transition from the resting state of the protein to either the early or late M state of the protonmotive photocycle. These results suggest that the buried prolines serve a principally structural role in bR.  相似文献   

6.
Both the solution and the oriented film absorption and circular dichroic spectra of the bacteriorhodopsin (bR568) and M412 intermediate of the purple membrane photocycle were compared over the wavelength region 800-183 nm to assess structural changes during this photocycle. The main findings are (a) loss of the excitonic interaction among the chromophoric retinal transitions indicating disordering of the retinal orientations in the membrane and distortions of the membrane hexagonal crystal lattice, (b) structural change of the chromophoric retinal, (c) changes in the key interactions between the retinal and specific groups in the local environment of the apoprotein, (d) significant changes of the tertiary structure of the bR with negligible secondary structure involvement, and (e) a net tilting of the rodlike segments of the bR polypeptides away from the membrane normal. These findings are in accord with large scale global structural changes of the membrane during the photocycle and with structural metastability of the bR molecules. An important implication of these changes is the possibility of transmembrane retinal-regulated pulsating channels during the photocycle. The significance of this possibility in respect to models for the proton translocation function of this membrane is discussed.  相似文献   

7.
Bacteriorhodopsin (bR) and halorhodopsin (hR) are light-induced ion pumps in the cell membrane of Halobacterium salinarium. Under normal conditions bR is an outward proton transporter, whereas hR is an inward Cl- transporter. There is strong evidence that at very low pH and in the presence of Cl-, bR transports Cl- ions into the cell, similarly to hR. The chloride pumping activity of bR is connected to the so-called acid purple state. To account for the observed effects in bR a tentative complex counterion was suggested for the protonated Schiff base of the retinal chromophore. It would consist of three charged residues: Asp-85, Asp-212, and Arg-82. This quadruplet (including the Schiff base) would also serve as a Cl- binding site at low pH. We used Fourier transform infrared difference spectroscopy to study the structural changes during the transitions between the normal, acid blue, and acid purple states. Asp-85 and Asp-212 were shown to participate in the transitions. During the normal-to-acid blue transition, Asp-85 protonates. When the pH is further lowered in the presence of Cl-, Cl- binds and Asp-212 also protonates. The binding of Cl- and the protonation of Asp-212 occur simultaneously, but take place only when Asp-85 is already protonated. It is suggested that HCl is taken up in undissociated form in exchange for a neutral water molecule.  相似文献   

8.
Fourier-transform infrared difference spectroscopy has been used to study the role of the three membrane-embedded proline residues, Pro-50, Pro-91, and Pro-186, in the structure and function of bacteriorhodopsin. All three prolines were replaced by alanine and glycine; in addition, Pro-186 was changed to valine. Difference spectra were recorded for the bR----K and bR----M photoreactions of each of these mutants and compared to those of wild-type bacteriorhodopsin. Only substitutions of Pro-186 caused significant perturbations in the frequency of the C = C and C - C stretching modes of the retinylidene chromophore. In addition, these substitutions reduced bands in the amide I and II region associated with secondary structural changes and altered signals assigned to the adjacent Tyr-185. Pro-186----Val caused the largest alterations, producing a second species similar to bR548 and nearly blocking chromophore isomerization at 78 K but not at 250 K. These results are consistent with a model of the retinal binding site in which Pro-186 and Tyr-185 are located in direct proximity to the chromophore and may be involved in linking chromophore isomerization to protein structural changes. Evidence is also found that Pro-50 may be structurally active during the bR----K transition and that substitution of this residue by glycine preserves the normal protein structural changes during the photocycle.  相似文献   

9.
Nanosecond-to-microsecond time-resolved Fourier transform infrared (FTIR) spectroscopy in the 3000-1000-cm(-1) region has been used to examine the polarizable proton continua observed in bacteriorhodopsin (bR) during its photocycle. The difference in the transient FTIR spectra in the time domain between 20 ns and 1 ms shows a broad absorption continuum band in the 2100-1800-cm(-1) region, a bleach continuum band in the 2500-2150-cm(-1) region, and a bleach continuum band above 2700 cm(-1). According to Zundel (G., J. Mol. Struct. 322:33-42), these continua appear in systems capable of forming polarizable hydrogen bonds. The formation of a bleach continuum suggests the presence of a polarizable proton in the ground state that changes during the photocycle. The appearance of a transient absorption continuum suggests a change in the polarizable proton or the appearance of new ones. It is found that each continuum has a rise time of less than 80 ns and a decay time component of approximately 300 micros. In addition, it is found that the absorption continuum in the 2100-1800-cm(-1) region has a slow rise component of 190 ns and a fast decay component of approximately 60 micros. Using these results and those of the recent x-ray structural studies of bR(570) and M(412) (H. Luecke, B. Schobert, H.T. Richter, J.-P. Cartailler, and J. K., Science 286:255-260), together with the already known spectroscopic properties of the different intermediates in the photocycle, the possible origins of the polarizable protons giving rise to these continua during the bR photocycle are proposed. Models of the proton pump are discussed in terms of the changes in these polarizable protons and the hydrogen-bonded chains and in terms of previously known results such as the simultaneous deprotonation of the protonated Schiff base (PSB) and Tyr185 and the disappearance of water molecules in the proton release channel during the proton pump process.  相似文献   

10.
A combination of visible and Fourier transform infrared (FTIR) spectroscopies is used to characterize the formation of the M1 and M2 substates of the bacteriorhodopsin photocycle in glucose-embedded, hydrated thin films. Difference FTIR bands in the amide I region verify the previously reported existence of a significant peptide backbone conformational change in the transition from M1 to M2. The visible absorption spectra demonstrate that contamination of the M-intermediate samples by L, N, or other non-M species should contribute negligibly to the observed changes in the amide I region, and this conclusion is supported by comparison of specific carboxyl group peaks with corresponding bands in published L and N FTIR difference spectra. Based upon spectroscopic results, an extension of the C-T Model (Fodor, S., Ames, J., Gebhard, R., van den Berg, E., Stoeckenius, W., Lugtenberg, J., and Mathies, R. (1988) Biochemistry 27, 7097-7101) is presented. The results of this work suggest that protein structural changes should be clearly visible in M-bR, difference Fourier density maps and that these structural changes may in turn elucidate how bacteriorhodopsin actively pumps ions across the purple membrane of Halobacterium halobium.  相似文献   

11.
We present time-resolved room-temperature infrared difference spectra for the bacteriorhodopsin (bR) photocycle at 8 cm (-1) spectral and 5 micros temporal resolution, from 4000 to 800 cm (-1). An in situ hydration method allowed for a controlled and stable sample hydration (92% relative humidity), largely improving the quality of the data without affecting the functionality of bR. Experiments in both H 2 (16)O and H 2 (18)O were conducted to assign bands to internal water molecules. Room-temperature difference spectra of the L and M intermediates minus the bR ground state (L-BR and M-BR, respectively) were comprehensively compared with their low-temperature counterparts. The room-temperature M-BR spectrum was almost identical to that obtained at 230 K, except for a continuum band. The continuum band contains water vibrations from this spectral comparison between H 2 (16)O and H 2 (18)O, and no continuum band at 230 K suggests that the protein/solvent dynamics are insufficient for deprotonation of the water cluster. On the other hand, an intense positive broadband in the low-temperature L-BR spectrum (170 K) assigned to the formation of a water cavity in the cytoplasmic domain is absent at room temperature. This water cavity, proposed to be an essential feature for the formation of L, seems now to be a low-temperature artifact caused by restricted protein dynamics at 170 K. The observed differences between low- and room-temperature FTIR spectra are further discussed in light of previously reported dynamic transitions in bR. Finally, we show that the kinetics of the transient heat relaxation of bR after photoexcitation proceeds as a thermal diffusion process, uncorrelated with the photocycle itself.  相似文献   

12.
The structural alterations which occur in bacteriorhodopsin (bR) during dark adaptation (BR570----BR548) and the primary phototransition of the dark photocycle (BR548----KD610) have been investigated by Fourier transform infrared and UV difference spectroscopy. Possible contributions of tyrosine to the Fourier transform infrared difference spectra of these transitions were assigned by incorporating ring per-deuterated tyrosine into bR. Based on these data and UV difference measurements, we conclude that a stable tyrosinate exists in BR570 at physiological temperature and that it protonates during formation of BR548. A tyrosinate protonation has also been observed at low temperature during the primary phototransition of BR570 to the red-shifted photoproduct K630 (1). However, we now find that no tyrosine protonation change occurs during the primary phototransition of BR548 to the red-shifted intermediate KD610. Through analysis of bR containing isotopically labeled retinals, it was also determined that the chromophore of KD610 exits in a 13-trans, 15-cis configuration. On the basis of this evidence and previous studies on the structure of the chromophore in BR570, BR548, and K630, it appears that only the 13-trans,15-trans configuration of the protonated chromophore leads to a stable tyrosinate group. It is proposed that a tyrosinate residue is stabilized due to its interaction with the Schiff base positive charge in the BR570 chromophore. Isomerization of the chromophore about either the C13 = C14 or C = N bond disrupts this interaction causing a protonation of the tyrosinate.  相似文献   

13.
The cytoplasmic membranes of Halobacterium halobium contain at least three retinal pigments: bacteriorhodopsin (bR), halorhodopsin (hR), and a third rhodopsinlike pigment (tR). The amplitudes of the phototransient in the photolysis of hR and tR were measured in various salt solutions. Halogen ion (except fluoride) was required to retain the photocycle of hR. Parallels between the amplitude of the phototransient of hR and the magnitude of the photo-induced tetraphenylphosphonium (TPP+) uptake suggests that hR is a light-driven halogen pump, which supports the hypothesis by Schobert and Lanyi (J. Biol. Chem., 1982, 257:10306-10313). The order of effectiveness of halogen was Br- greater than Cl- greater than I-. On the other hand, no specific ion was required to retain the photocycle of tR, and tR was concluded to be nonelectrogenic.  相似文献   

14.
The first step of the bacteriorhodopsin (bR) photocycle involves the formation of a red-shifted product, K. Fourier transform infrared difference spectra of the bR570 to K630 transition at 81 K has been measured for bR containing different isotopic substitutions at the retinal Schiff base. In the case of bacteriorhodopsin containing a deuterium substitution at the Schiff base nitrogen, carbon 15, or both, we find spectral changes in the 1600-1610- and 1570-1580-cm-1 region consistent with the hypothesis that the K630 C=N stretching mode of a protonated Schiff base is located near 1609 cm-1. A similar set of Schiff base deuterium substitutions for retinal containing a 13C at the carbon 10 position strongly supports this conclusion. This assignment of the K630 C=N stretching vibration provides evidence that the bR Schiff base proton undergoes a substantial environmental change most likely due to separation from a counterion. In addition, a correlation is found between the C=N stretching frequency and the maximum wavelength of visible absorption, suggesting that movement of a counterion relative to the Schiff base proton is the main source of absorption changes in the early stages of the photocycle. Such a movement is a key prediction of several models of proton transport and energy transduction. Evidence is also presented that one or more COOH groups are involved in the formation of the K intermediate.  相似文献   

15.
Four rhodopsins, bacteriorhodopsin (bR), halorhodopsin (hR), sensory rhodopsin (sR) and phoborhodopsin (pR) exist in archaeal membranes. bR and hR work as a light-driven ion pump. sR and pR work as a photo-sensor of phototaxis, and form signaling complexes in membranes with their respective cognate transducer proteins HtrI (with sR) and HtrII (with pR), through which light signals are transmitted to the cytoplasm. What is the determining factor(s) of the specific binding to form the complex? Binding of the wild-type or mutated rhodopsins with HtrII was measured by isothermal titration calorimetric analysis (ITC). bR and hR could not bind with HtrII. On the other hand, sR could bind to HtrII, although the dissociation constant (K(D)) was about 100 times larger than that of pR. An X-ray crystallographic structure of the pR/HtrII complex revealed formation of two specific hydrogen bonds whose pairs are Tyr199(pR)/Asn74(HtrII) and Thr189(pR)/Glu43(HtrII)/Ser62(HtrII). To investigate the importance of these hydrogen bonds, the K(D) value for the binding of various mutants of bR, hR, sR and pR with HtrII was estimated by ITC. The K(D) value of T189V(pR)/Y199F(pR), double mutant/HtrII complex, was about 100-fold larger than that of the wild-type pR, whose K(D) value was 0.16 microM. On the other hand, bR and hR double mutants, P200T(bR)/V210Y(bR) and P240T(hR)/F250Y(hR), were able to bind with HtrII. The K(D) value of these complexes was estimated to be 60.1(+/-10.7) microM for bR and to be 29.1(+/-6.1) microM for hR, while the wild-type bR and hR did not bind with HtrII. We concluded that these two specific hydrogen bonds play important roles in the binding between the rhodopsins and transducer protein.  相似文献   

16.
The bleach continuum in the 1900-1800-cm(-1) region was reported during the photocycle of bacteriorhodopsin (bR) and was assigned to the dissociation of a polarizable proton chain during the proton release step. More recently, a broad band pass filter was used and additional infrared continua have been reported: a bleach at >2700 cm(-1), a bleach in the 2500-2150-cm(-1) region, and an absorptive behavior in the 2100-1800-cm(-1) region. To fully understand the importance of the hydrogen-bonded chains in the mechanism of the proton transport in bR, a detailed study is carried out here. Comparisons are made between the time-resolved Fourier transform infrared spectroscopy experiments on wild-type bR and its E204Q mutant (which has no early proton release), and between the changes in the continua observed in thermally or photothermally heated water (using visible light-absorbing dye) and those observed during the photocycle. The results strongly suggest that, except for the weak bleach in the 1900-1800-cm(-1) region and >2500 cm(-1), there are other infrared continua observed during the bR photocycle, which are inseparable from the changes in the absorption of the solvent water molecules that are photothermally excited via the nonradiative relaxation of the photoexcited retinal chromophore. A possible structure of the hydrogen-bonded system, giving rise to the observed bleach in the 1900-1800-cm(-1) region and the role of the polarizable proton in the proton transport is discussed.  相似文献   

17.
In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.  相似文献   

18.
Bacteriorhodopsin (bR) is a light-driven proton pump whose function includes two key membrane-based processes, active transport and energy transduction. Despite extensive research on bR and other membrane proteins, these processes are not fully understood on the molecular level. In the past ten years, the introduction of Fourier transform infrared (FTIR) difference spectroscopy along with related techniques including time-resolved FTIR difference spectroscopy, polarized FTIR, and attenuated total reflection FTIR has provided a new approach for studying these processes. A key step has been the utilization of site-directed mutagenesis to assign bands in the FTIR difference spectrum to the vibrations of individual amino acid residues. On this basis, detailed information has been obtained about structural changes involving the retinylidene chromophore and protein during the bR photocycle. This includes a determination of the protonation state of the four membrane-embedded Asp residues, identification of specific structurally active amino acid residues, and the detection of protein secondary structural changes. This information is being used to develop an increasingly detailed picture of the bR proton pump mechanism.  相似文献   

19.
The role of Thr-46 and Thr-89 in the bacteriorhodopsin photocycle has been investigated by Fourier transform infrared difference spectroscopy and time-resolved visible absorption spectroscopy of site-directed mutants. Substitutions of Thr-46 and Thr-89 reveal alterations in the chromophore and protein structure during the photocycle, relative to wild-type bacteriorhodopsin. The mutants T89D and to a lesser extent T89A display red shifts in the visible lambda max of the light-adapted states compared with wild type. During the photocycle, T89A exhibits an increased decay rate of the K intermediate, while a K intermediate is not detected in the photocycle of T89D at room temperature. In the carboxyl stretch region of the Fourier transform infrared difference spectra of T89D, a new band appears as early as K formation which is attributed to the deprotonation of Asp-89. Along with this band, an intensity increase occurs in the band assigned to the protonation of Asp-212. In the mutant T46V, a perturbation in the environment of Asp-96 is detected in the L and M intermediates which corresponds to a drop in its pK alpha. These data indicate that Thr-89 is located close to the chromophore, exerts steric constraints on it during all-trans to 13-cis isomerization, and is likely to participate in a hydrogen-bonding network that extends to Asp-212. In addition, a transient interaction between Thr-46 and Asp-96 occurs early in the photocycle. In order to explain these results, a previously proposed model of proton transport is extended to include the existence of a transient network of hydrogen-bonded residues. This model can account for the protonation changes of key amino acid residues during the photocycle of bacteriorhodopsin.  相似文献   

20.
Hutson MS  Alexiev U  Shilov SV  Wise KJ  Braiman MS 《Biochemistry》2000,39(43):13189-13200
Arginine-82 (R82) of bacteriorhodopsin (bR) has long been recognized as an important residue due to its absolute conservation in the archaeal rhodopsins and the effects of R82 mutations on the photocycle and proton release. However, the nature of interactions between R82 and other residues of the protein has remained difficult to decipher. Recent NMR studies showed that the two terminal nitrogens of R82 experience a highly perturbed asymmetric environment during the M state trapped at cryogenic temperatures [Petkova et al. (1999) Biochemistry 38, 1562-1572]. Although previous low-temperature FT-IR spectra of wild-type and mutant bR samples have demonstrated effects of R82 on vibrations of other amino acid side chains, no bands in these spectra were assignable to vibrations of R82 itself. We have now measured time-resolved FT-IR difference spectra of bR intermediates in the wild-type and R82A proteins, as well as in samples of the R82C mutant with and without thioethylguanidinium attached via a disulfide linkage at the unique cysteine site. Several bands in the bR --> M difference spectrum are attributable to guanidino group vibrations of R82, based on their shift upon isotope substitution of the thioethylguanidinium attached to R82C and on their disappearance in the R82A spectrum. The frequencies and intensities of these IR bands support the NMR-based conclusion that there is a significant perturbation of R82 during the bR photocycle. However, the unusually low frequencies attributable to R82 guandino group vibrations in M, approximately 1640 and approximately 1545 cm(-)(1), would require a reexamination of a previously discarded hypothesis, namely, that the perturbation of R82 involves a change in its ionization state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号