首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The HIV-1 Rev protein facilitates the nuclear export of mRNA containing the Rev response element (RRE) through binding to the export receptor CRM-1. Here we show that a cellular nuclear protein, Sam68 (Src-associated protein in mitosis), specifically interacts with RRE and can partially substitute for as well as synergize with Rev in RRE-mediated gene expression and virus replication. Differential sensitivity to leptomycin B, an inhibitor of CRM-1, indicates that the export pathways mediated by Rev and Sam68 are distinct. C-terminally deleted mutants of Sam68 inhibited the transactivation of RRE-mediated expression by both wild-type Sam68 and Rev. They were retained in the cytoplasm and impeded the nuclear localization of Rev in co-expressed cells. These mutants also inhibited wild-type HIV-1 replication to the same extent as the RevM10 mutant, and may be useful as anti-viral agents in the treatment of AIDS.  相似文献   

3.
Sam68 is absolutely required for Rev function and HIV-1 production   总被引:3,自引:0,他引:3       下载免费PDF全文
Sam68 functionally complements for, as well as synergizes with, HIV-1 Rev in Rev response element (RRE)-mediated gene expression and virus production. Furthermore, C-terminal deletion/point mutants of Sam68 (Sam68ΔC/Sam68-P21) exert a transdominant negative phenotype for Rev function and HIV-1 production. However, the relevance of Sam68 in Rev/RRE function is not well defined. To gain more insight into the mechanism of Sam68 in Rev function, we used an RNAi (RNA interference) strategy to create stable Sam68 knockdown HeLa (SSKH) cells. In SSKH cells, Rev failed to activate both RRE-mediated reporter gene [chloramphenicol acetyltransferase (CAT) and/or gag] expressions. Importantly, reduction of Sam68 expression led to a dramatic inhibition of HIV-1 production. Inhibition of the reporter gene expression and HIV production correlated with the failure to export RRE-containing CAT mRNA and unspliced viral mRNAs to the cytoplasm, confirming that SSKH cells are defective for Rev-mediated RNA export. Taken together, these results suggest that Sam68 is involved in Rev-mediated RNA export and is absolutely required for HIV production.  相似文献   

4.
The human immunodeficiency virus type 1 (HIV-1) Rev protein facilitates the nuclear export of viral mRNA containing the Rev response element (RRE). Although several host proteins co-operating with Rev in viral RNA export have been reported, little is known about the innate host defense factors that Rev overcomes to mediate the nuclear export of unspliced viral mRNAs. We report here that an anti-apoptotic protein, HS1-associated protein X-1 (Hax-1), a target of HIV-1 Vpr, interacts with Rev and inhibits its activity in RRE-mediated gene expression. Co-expression of Sam68 emancipates Rev activity from Hax-1-mediated inhibition. Hax-1 does not bind to RRE RNA by itself, but inhibits Rev from binding to RRE RNA in vitro. The impact of Hax-1 on Rev/RRE interactions in vitro correlates well with the reduced level of RRE-containing mRNA in vivo. Immunofluorescence studies further reveal that Hax-1 and Rev are cytoplasmic and nuclear proteins, respectively, when expressed independently. However, in Hax-1 co-expressing cells, Rev is translocated from the nucleus to the cytoplasm, where it is co-localized with Hax-1 in the cytoplasm. We propose that over-expression of Hax-1, possibly through binding to Rev, may interfere with the stability/export of RRE-containing mRNA and target the RNA for degradation.  相似文献   

5.
6.
7.
Both cis elements and host cell proteins can significantly affect HIV-1 RNA processing and viral gene expression. Previously, we determined that the exon splicing silencer (ESS3) within the terminal exon of HIV-1 not only reduces use of the adjacent 3' splice site but also prevents Rev-induced export of the unspliced viral RNA to the cytoplasm. In this report, we demonstrate that loss of unspliced viral RNA export is correlated with the inhibition of 3' end processing by the ESS3. Furthermore, we find that the host factor Sam68, a stimulator of HIV-1 protein expression, is able to reverse the block to viral RNA export mediated by the ESS3. The reversal is associated with a stimulation of 3' end processing of the unspliced viral RNA. Our findings identify a novel activity for the ESS3 and Sam68 in regulating HIV-1 RNA polyadenylation. Furthermore, the observations provide an explanation for how Sam68, an exclusively nuclear protein, modulates cytoplasmic utilization of the affected RNAs. Our finding that Sam68 is also able to enhance 3' end processing of a heterologous RNA raises the possibility that it may play a similar role in regulating host gene expression.  相似文献   

8.
9.
Sam68 is an RNA-binding protein that contains a heterogeneous nuclear ribonucleoprotein K homology domain embedded in a larger RNA binding domain called the GSG (GRP33, Sam68, GLD-1) domain. This family of proteins is often referred to as the STAR (signal transduction and activators of RNA metabolism) proteins. It is not known whether Sam68 is a general nonspecific RNA-binding protein or whether it recognizes specific response elements in mRNAs with high affinity. Sam68 has been shown to bind homopolymeric RNA and a synthetic RNA sequence called G8-5 that has a core UAAA motif. Here we performed a structure function analysis of Sam68 and identified two arginine glycine (RG)-rich regions that confer nonspecific RNA binding to the Sam68 GSG domain. In addition, by using chimeric proteins between Sam68 and QKI-7, we demonstrated that one of the Sam68 RG-rich sequences of 26 amino acids was sufficient to confer homopolymeric RNA binding to the GSG domain of QKI-7, another STAR protein. Furthermore, that minimal sequence can also give QKI-7 the ability (as Sam68) to functionally substitute for HIV-1 REV to facilitate the nuclear export of RNAs. Our studies suggest that neighboring RG-rich sequences may impose nonspecific RNA binding to GSG domains. Because the Sam68 RNA binding activity is negatively regulated by tyrosine phosphorylation, our data lead us to propose that Sam68 might be a specific RNA-binding protein when tyrosine phosphorylated.  相似文献   

10.
11.
The Rev transactivator protein of human immunodeficiency virus type 1 (HIV-1) is required for protein expression from the HIV-1 RNAs which contain a binding site for the Rev protein, termed the Rev-responsive element (RRE). This transactivator acts both at the level of splicing/transport of nuclear RNAs and at the level of translation of cytoplasmic RNAs. We used a monoclonal antibody specific for the HIV-1 Rev protein to immunoprecipitate cellular extracts from HIV-1-infected and -transfected cells. High levels of specific binding of wild-type Rev to the RRE-containing RNAs were found in cytoplasmic, but not nuclear, extracts from these cells. A Rev mutant which lacked both nuclear and cytoplasmic Rev function but retained RNA binding in vivo was generated. This binding was detectable with both nuclear and cytoplasmic extracts. These results verify the existence of direct binding of Rev to HIV-1 RNAs in vivo and conclusively prove that binding of Rev is not sufficient for nuclear or cytoplasmic Rev function. The results also support a direct role for Rev in the nuclear export and translation of HIV-1 RNAs.  相似文献   

12.
The hypothesis that the cellular protein Crm1 mediates human immunodeficiency virus type 1 (HIV-1) Rev-dependent nuclear export posits that Crm1 can directly interact both with the Rev nuclear export signal (NES) and with cellular nucleoporins. Here, we demonstrate that Crm1 is indeed able to interact with active but not defective forms of the HIV-1 Rev NES and of NESs found in other retroviral nuclear export factors. In addition, we demonstrate that Crm1 can bind the Rev NES when Rev is assembled onto the Rev response element RNA target and that Crm1, like Rev, is a nucleocytoplasmic shuttle protein. Crm1 also specifically binds the Rev NES in vitro, although this latter interaction is detectable only in the presence of added Ran · GTP. Overexpression of a truncated, defective form of the nucleoporin Nup214/CAN, termed ΔCAN, that retains Crm1 binding ability resulted in the effective inhibition of HIV-1 Rev or human T-cell leukemia virus Rex-dependent gene expression. In contrast, ΔCAN had no significant affect on Mason-Pfizer monkey virus constitutive transport element (MPMV CTE)-dependent nuclear RNA export or on the expression of RNAs dependent on the cellular mRNA export pathway. As a result, ΔCAN specifically blocked late, but not early, HIV-1 gene expression in HIV-1-infected cells. These data strongly validate Crm1 as a cellular cofactor for HIV-1 Rev and demonstrate that the MPMV CTE nuclear RNA export pathway uses a distinct, Crm1-independent mechanism. In addition, these data identify a novel and highly potent inhibitor of leucine-rich NES-dependent nuclear export.  相似文献   

13.
Cells normally restrict the nuclear export and expression of intron-containing mRNA. In many cell lines, this restriction can be overcome by inclusion of cis-acting elements, such as the Mason-Pfizer monkey virus constitutive transport element (CTE), in the RNA. In contrast, we observed that CTE-mediated expression from human immunodeficiency virus Gag-Pol reporters was very inefficient in 293 and 293T cells. However, addition of Sam68 led to a dramatic increase in the amount of Gag-Pol proteins produced in these cells. Enhancement of CTE function was not seen when a Sam68 point mutant (G178E) that is defective for RNA binding was used. Additionally, the effect of Sam68 was inhibited in a dose-dependent manner by coexpression of an activated form of the nuclear kinase Sik/BRK that hyperphosphorylated Sam68. RNA analysis showed that cytoplasmic Gag-Pol-CTE RNA levels were only slightly enhanced by the addition of Sam68, compared to a 60- to 70-fold increase in the levels of Gag-Pol protein expression. Thus, in this system, Sam68 functioned to enhance the cytoplasmic utilization of RNA containing the CTE. These results suggest that Sam68 may interact with specific RNAs in the nucleus to provide a "mark" that affects their cytoplasmic fate. They also provide further evidence of links between signal transduction and RNA utilization.  相似文献   

14.
15.
The Rev protein is a key regulator of human immunodeficiency virus type 1 (HIV-1) gene expression. Rev is primarily known as an adaptor protein for nuclear export of HIV RNAs. However, Rev also contributes to numerous other processes by less well known mechanisms. Understanding the functional nature of Rev requires extensive knowledge of its cellular interaction partners. Here we demonstrate that Rev interacts with members of a large family of multifunctional host cell factors called hnRNPs. Rev employs amino acids 9–14 for specific binding to the heterogeneous nuclear ribonucleoproteins (hnRNP) A1, Q, K, R, and U. In addition, Rev interacts with hnRNP E1 and E2 by a different mechanism. The set of hnRNPs recognized by the N terminus of Rev feature RGG boxes. Exemplary testing of hnRNP A1 revealed a critical role of arginine residues within the RGG box for interaction with Rev. Finally, we demonstrate that expression levels of hnRNP A1, Q, K, R, and U influence HIV-1 production by persistently infected astrocytes, linking these hnRNPs to HIV replication. The novel interaction of HIV-1 Rev with functionally diverse hnRNPs lends further support to the idea that Rev is a multifunctional protein and may be involved in coupling HIV replication to diverse cellular processes and promoting virus-host cell interactions.  相似文献   

16.
17.
The translation of the unspliced and partially spliced viral mRNAs that encode the late, structural proteins of HIV-1 depends on the viral-protein Rev. Oligomeric binding of Rev to the Rev response element (RRE) in these mRNAs promotes their export from the nucleus and thus controls their expression. Here, we compared the effects of hydrophobic to hydrophilic mutations within the oligomerization domain of Rev using assays for oligomeric RNA binding, protein structure, and export from the nucleus. Oligomeric RNA binding alone does not correlate well with RNA transport activity in the subset of mutants. However, protein structure as judged by CD spectroscopy does correlate well with Rev function. The oligomeric assembly of Rev-L18T is impaired but exhibits minor defects in structure and retains a basal level of activity in vivo. The prevalence of L18T in infected individuals suggests a positive selection mechanism for L18T modulation of Rev activity that may delay the onset of AIDS.  相似文献   

18.
细胞通过基因表达调控来应对外界刺激,其中影响mRNA稳定性及翻译效率的转录后调控发挥重要作用。RNA结合蛋白(RNA binding proteins, RBPs)是介导转录后调控的重要分子,Sam68(SRC associated in mitosis of 68 kD)是集信号转导特性与RNA激活功能于一身的RNA结合蛋白,参与转录、可变剪接及核输出等mRNA 的代谢过程,且Sam68可通过信号通路参与细胞应答、细胞周期调控和疾病发生等。最新研究表明,Sam68可通过非编码RNAs(noncoding RNA, ncRNAs)参与表观遗传、转录与转录后调控。本文在介绍Sam68结构和转录后修饰的基础上,着重讨论Sam68在信号转导、可变剪接、ncRNAs代谢、疾病发生等方面的最新研究进展。  相似文献   

19.
RNA binding proteins often contain multiple arginine glycine repeats, a sequence that is frequently methylated by protein arginine methyltransferases. The role of this posttranslational modification in the life cycle of RNA binding proteins is not well understood. Herein, we report that Sam68, a heteronuclear ribonucleoprotein K homology domain containing RNA binding protein, associates with and is methylated in vivo by the protein arginine N-methyltransferase 1 (PRMT1). Sam68 contains asymmetrical dimethylarginines near its proline motif P3 as assessed by using a novel asymmetrical dimethylarginine-specific antibody and mass spectrometry. Deletion of the methylation sites and the use of methylase inhibitors resulted in Sam68 accumulation in the cytoplasm. Sam68 was also detected in the cytoplasm of PRMT1-deficient embryonic stem cells. Although the cellular function of Sam68 is unknown, it has been shown to export unspliced human immunodeficiency virus RNAs. Cells treated with methylase inhibitors prevented the ability of Sam68 to export unspliced human immunodeficiency virus RNAs. Other K homology domain RNA binding proteins, including SLM-1, SLM-2, QKI-5, GRP33, and heteronuclear ribonucleoprotein K were also methylated in vivo. These findings demonstrate that RNA binding proteins are in vivo substrates for PRMT1, and their methylation is essential for their proper localization and function.  相似文献   

20.
Sik (mouse Src-related intestinal kinase) and its orthologue BRK (human breast tumor kinase) are intracellular tyrosine kinases that are distantly related to the Src family and have a similar structure, but they lack the myristoylation signal. Here we demonstrate that Sik and BRK associate with the RNA binding protein Sam68 (Src associated during mitosis, 68 kDa). We found that Sik interacts with Sam68 through its SH3 and SH2 domains and that the proline-rich P3 region of Sam68 is required for Sik and BRK SH3 binding. In the transformed HT29 adenocarcinoma cell cell line, endogenous BRK and Sam68 colocalize in Sam68-SLM nuclear bodies (SNBs), while transfected Sik and Sam68 are localized diffusely in the nucleoplasm of nontransformed NMuMG mammary epithelial cells. Transfected Sik phosphorylates Sam68 in SNBs in HT29 cells and in the nucleoplasm of NMuMG cells. In functional studies, expression of Sik abolished the ability of Sam68 to bind RNA and act as a cellular Rev homologue. While Sam68 is a substrate for Src family kinases during mitosis, Sik/BRK is the first identified tyrosine kinase that can phosphorylate Sam68 and regulate its activity within the nucleus, where it resides during most of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号