首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The receptor tyrosine kinase Flt3 is an important growth factor receptor in hematopoiesis, and gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia. SOCS6 (suppressor of cytokine signaling 6) is a member of the SOCS family of E3 ubiquitin ligases that can regulate receptor tyrosine kinase signal transduction. In this study, we analyzed the role of SOCS6 in Flt3 signal transduction. The results show that ligand stimulation of Flt3 can induce association of SOCS6 and Flt3 and tyrosine phosphorylation of SOCS6. Phosphopeptide fishing indicated that SOCS6 binds directly to phosphotyrosines 591 and 919 of Flt3. By using stably transfected Ba/F3 cells with Flt3 and/or SOCS6, we show that the presence of SOCS6 can enhance ubiquitination of Flt3, as well as internalization and degradation of the receptor. The presence of SOCS6 also induces weaker activation of Erk1/2, but not Akt, in transfected Ba/F3 and UT-7 cells and in OCI-AML-5 cells. The absence of SOCS6 promotes Ba/F3 and UT-7 cell proliferation induced by oncogenic internal tandem duplications of Flt3. Taken together, these results suggest that SOCS6 negatively regulates Flt3 activation, the downstream Erk signaling pathway, and cell proliferation.  相似文献   

2.
Suppressor of cytokine signaling (SOCS) proteins are a family of Src homology 2-containing adaptor proteins. Cytokine-inducible Src homology domain 2-containing protein, SOCS1, SOCS2, and SOCS3 have been implicated in the down-regulation of cytokine signaling. The function of SOCS4, 5, 6, and 7 are not known. KIT receptor signaling is regulated by protein tyrosine phosphatases and adaptor proteins. We previously reported that SOCS1 inhibited cell proliferation in response to stem cell factor (SCF). By screening the other members of SOCS family, we identified SOCS6 as a KIT-binding protein. Using KIT mutants and peptides, we demonstrated that SOCS6 bound directly to KIT tyrosine 567 in the juxtamembrane domain. To investigate the function of this interaction, we constitutively expressed SOCS6 in cell lines. Ectopic expression of SOCS6 in Ba/F3-KIT cell line decreased cell proliferation in response to SCF but not SCF-induced chemotaxis. SOCS6 reduced SCF-induced activation of ERK1/2 and p38 but not activation of AKT or STATs in Ba/F3, murine embryonic fibroblast (MEF), or COS-7 cells. SOCS6 did not impair ERK and p38 activation by other stimuli. These results indicate that SOCS6 binds to KIT juxtamembrane region, which affects upstream signaling components leading to MAPK activation. Our results indicate that KIT signaling is regulated by several SOCS proteins and suggest a putative function for SOCS6 as a negative regulator of receptor tyrosine kinases.  相似文献   

3.
4.
Cytokines exert biological functions by activating Janus tyrosine kinases (JAKs), and JAK inhibitors JAB (also referred to as SOCS1 and SSI1) and CIS3 (SOCS3) play an essential role in the negative regulation of cytokine signaling. We have found that transgenic (Tg) mice expressing a mutant JAB (F59D-JAB) exhibited a more potent STAT3 activation and a more severe colitis than did wild-type littermates after treatment with dextran sulfate sodium. We now find that there is a prolonged activation of JAKs and STATs in response to a number of cytokines in T cells from Tg mice with lck promoter-driven F59D-JAB. Overexpression of F59D-JAB also sustained activation of JAK2 in Ba/F3 cells. These data suggested that F59D-JAB up-regulated STAT activity by sustaining JAK activation. To elucidate molecular mechanisms related to F59D-JAB, we analyzed the effects of F59D-JAB on the JAK/STAT pathway using the 293 cell transient expression system. We found that the C-terminal SOCS-box played an essential role in augmenting cytokine signaling by F59D-JAB. The SOCS-box interacted with the Elongin BC complex, and this interaction stabilized JAB. F59D-JAB induced destabilization of wild-type JAB, whereas overexpression of Elongin BC canceled this effect. Levels of endogenous JAB and CIS3 in T cells from F59D-JAB Tg-mouse were lower than in wild-type mice. We propose that F59D-JAB destabilizes wild-type, endogenous JAB and CIS3 by chelating the Elongin BC complex, thereby sustaining JAK activation.  相似文献   

5.
Translation initiation factor 4E (eIF4E) is a cytoplasmic cap-binding protein that is required for cap-dependent translation initiation. Here, we have shown that eIF4E is ubiquitinated primarily at Lys-159 and incubation of cells with a proteasome inhibitor leads to increased eIF4E levels, suggesting the proteasome-dependent proteolysis of ubiquitinated eIF4E. Ubiquitinated eIF4E retained its cap binding ability, whereas eIF4E phosphorylation and eIF4G binding were reduced by ubiquitination. The W73A mutant of eIF4E exhibited enhanced ubiquitination/degradation, and 4E-BP overexpression protected eIF4E from ubiquitination/degradation. Because heat shock or the expression of the carboxyl terminus of heat shock cognate protein 70-interacting protein (Chip) dramatically increased eIF4E ubiquitination, Chip may be at least one ubiquitin E3 ligase responsible for eIF4E ubiquitination.  相似文献   

6.
The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine and growth factor-induced signal transduction. The C-terminal SOCS box region is thought to regulate SOCS protein stability most likely via an elongin C interaction. In the present study, we have found that phosphorylation of SOCS3 at two tyrosine residues in the conserved SOCS box, Tyr204 and Tyr221, can inhibit the SOCS3-elongin C interaction and activate proteasome-mediated SOCS3 degradation. Jak-mediated phosphorylation of SOCS3 decreased SOCS3 protein half-life, and phosphorylation of both Tyr204 and Tyr221 was required to fully destabilize SOCS3. In contrast, a phosphorylation-deficient mutant of SOCS3, Y204F,Y221F, remained stable in the presence of activated Jak2 and receptor tyrosine kinases. SOCS3 stability correlated with the relative amount that bound elongin C, because in vitro phosphorylation of a SOCS3-glutathione S-transferase fusion protein abolished its ability to interact with elongin C. In addition, a SOCS3/SOCS1 chimera that co-precipitates with markedly increased elongin C, was significantly more stable than wild-type SOCS3. The data suggest that interaction with elongin C stabilizes SOCS3 protein expression and that phosphorylation of SOCS box tyrosine residues disrupts the complex and enhances proteasome-mediated degradation of SOCS3.  相似文献   

7.
The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2   总被引:16,自引:0,他引:16  
Fusion of the TEL gene on 12p13 to the JAK2 tyrosine kinase gene on 9p24 has been found in human leukemia. TEL-mediated oligomerization of JAK2 results in constitutive activation of the tyrosine kinase (JH1) domain and confers cytokine-independent proliferation on interleukin-3-dependent Ba/F3 cells. Forced expression of the JAK inhibitor gene SOCS1/JAB/SSI-1 induced apoptosis of TEL-JAK2-transformed Ba/F3 cells. This suppression of TEL-JAK2 activity was dependent on SOCS box-mediated proteasomal degradation of TEL-JAK2 rather than on kinase inhibition. Degradation of JAK2 depended on its phosphorylation and its high affinity binding with SOCS1 through the kinase inhibitory region and the SH2 domain. It has been demonstrated that von Hippel-Lindau disease (VHL) tumor-suppressor gene product possesses the SOCS box that forms a complex with Elongin B and C and Cullin-2, and it functions as a ubiquitin ligase. The SOCS box of SOCS1/JAB has also been shown to interact with Elongins; however, ubiquitin ligase activity has not been demonstrated. We found that the SOCS box interacted with Cullin-2 and promoted ubiquitination of TEL-JAK2. Furthermore, overexpression of dominant negative Cullin-2 suppressed SOCS1-dependent TEL-JAK2 degradation. Our study demonstrates the substrate-specific E3 ubiquitin-ligase-like activity of SOCS1 for activated JAK2 and may provide a novel strategy for the suppression of oncogenic tyrosine kinases.  相似文献   

8.
Suppressor of cytokine signaling 1 inhibits IL-10-mediated immune responses   总被引:8,自引:0,他引:8  
IL-10 has proved to be a key cytokine in regulating inflammatory responses by controlling the production and function of various other cytokines. The suppressor of cytokine signaling (SOCS) gene products are a family of cytoplasmic molecules that are essential mediators for negatively regulating cytokine signaling. It has been previously shown that IL-10 induced SOCS3 expression and that forced constitutive expression of SOCS3 inhibits IL-10/STAT3 activation and LPS-induced macrophage activation. In this report, we show that, in addition to SOCS3 expression, IL-10 induces SOCS1 up-regulation in all cell lines tested, including Ba/F3 pro-B cells, MC/9 mast cells, M1 leukemia cells, U3A human fibroblasts, and primary mouse CD4(+) T cells. Induction of SOCS molecules is dependent on STAT3 activation by IL-10R1. Cell lines constitutively overexpressing SOCS proteins demonstrated that SOCS1 and SOCS3, but not SOCS2, are able to partially inhibit IL-10-mediated STAT3 activation and proliferative responses. Pretreatment of M1 cells with IFN-gamma resulted in SOCS1 induction and a reduction of IL-10-mediated STAT3 activation and cell growth inhibition. IL-10-induced SOCS is associated with the inhibition of IFN-gamma signaling in various cell types, and this inhibition is independent of C-terminal serine residues of the IL-10R, previously shown to be required for other anti-inflammatory responses. Thus, the present results show that both SOCS1 and SOCS3 are induced by IL-10 and may be important inhibitors of both IL-10 and IFN-gamma signaling. IL-10-induced SOCS1 may directly inhibit IL-10 IFN-gamma signaling, while inhibition of other proinflammatory cytokine responses may use additional IL-10R1-mediated mechanisms.  相似文献   

9.
10.
Ste4 is the β subunit of a heterotrimeric G protein that mediates mating responses in Saccharomyces cerevisiae. Here we show that Ste4 undergoes ubiquitination in response to pheromone stimulation. Ubiquitination of Ste4 is dependent on the E3 ligase Rsp5. Disrupting the activity of Rsp5 abolishes ubiquitination of Ste4 in vivo, and recombinant Rsp5 is capable of ubiquitinating Ste4 in vitro. We find also that Lys-340 is a major ubiquitination site on Ste4, as pheromone-induced ubiquitination of the protein is prevented when this residue is mutated to an arginine. Functionally, ubiquitination does not appear to regulate the stability of Ste4, as blocking ubiquitination has no apparent effect on either the abundance or the half-life of the protein. However, when presented with a concentration gradient of pheromone, Ste4(K340R) mutant cells polarize significantly faster than wild-type cells, indicating that ubiquitination limits pheromone-directed polarized growth. Together, these findings reveal a novel stimulus-dependent posttranslational modification of a Gβ subunit, establish Ste4 as a new substrate of the E3 ligase Rsp5, and demonstrate a role for G protein ubiquitination in cell polarization.  相似文献   

11.
Suppressor of cytokine signaling (SOCS) proteins have emerged as important regulators of cytokine signals in lymphocytes. In this study, we have investigated regulation of SOCS expression and their role in Th cell growth and differentiation. We show that SOCS genes are constitutively expressed in naive Th cells, albeit at low levels, and are differentially induced by Ag and Th-polarizing cytokines. Whereas cytokines up-regulate expression of SOCS1, SOCS2, SOCS3, and cytokine-induced Src homology 2 protein, Ags induce down-regulation of SOCS3 within 48 h of Th cell activation and concomitantly up-regulate SOCS1, SOCS2, and cytokine-induced Src homology 2 protein expression. We further show that STAT1 signals play major roles in inducing SOCS expression in Th cells and that induction of SOCS expression by IL-4, IL-12, or IFN-gamma is compromised in STAT1-deficient primary Th cells. Surprisingly, IL-4 is a potent inducer of STAT1 activation in Th2 but not Th1 cells, and SOCS1 or SOCS3 expression is dramatically reduced in STAT1(-/-) Th2 cells. To our knowledge, this is the first report of IL-4-induced STAT1 activation in Th cells, and suggests that its induction of SOCS, may in part, regulate IL-4 functions in Th2 cells. In fact, overexpression of SOCS1 in Th2 cells represses STAT6 activation and profoundly inhibits IL-4-induced proliferation, while depletion of SOCS1 by an anti-sense SOCS1 cDNA construct enhances cell proliferation and induces constitutive activation of STAT6 in Th2 cells. These results are consistent with a model where IL-4 has dual effects on differentiating T cells: it simulates proliferation/differentiation through STAT6 and autoregulates its effects on Th2 growth and effector functions via STAT1-dependent up-regulation of SOCS proteins.  相似文献   

12.
Deubiquitinating enzymes (DUbs) play important roles in many ubiquitin-dependent pathways, yet how DUbs themselves are regulated is not well understood. Here, we provide insight into the mechanism by which ubiquitination directly enhances the activity of ataxin-3, a DUb implicated in protein quality control and the disease protein in the polyglutamine neurodegenerative disorder, Spinocerebellar Ataxia Type 3. We identify Lys-117, which resides near the catalytic triad, as the primary site of ubiquitination in wild type and pathogenic ataxin-3. Further studies indicate that ubiquitin-dependent activation of ataxin-3 at Lys-117 is important for its ability to reduce high molecular weight ubiquitinated species in cells. Ubiquitination at Lys-117 also facilitates the ability of ataxin-3 to induce aggresome formation in cells. Finally, structure-function studies support a model of activation whereby ubiquitination at Lys-117 enhances ataxin-3 activity independent of the known ubiquitin-binding sites in ataxin-3, most likely through a direct conformational change in or near the catalytic domain.  相似文献   

13.
14.
15.
The potential of some proinflammatory mediators to inhibit gp130-dependent STAT3 activation by enhancing suppressor of cytokine signaling (SOCS) 3 expression represents an important molecular mechanism admitting the modulation of the cellular response toward gp130-mediated signals. Thus, it is necessary to understand the mechanisms involved in the regulation of SOCS3 expression by proinflammatory mediators. In this study, we investigate SOCS3 expression initiated by the proinflammatory cytokine TNF-alpha. In contrast to IL-6, TNF-alpha increases SOCS3 expression by stabilizing SOCS3 mRNA. Activation of the MAPK kinase 6 (MKK6)/p38(MAPK)-cascade is required for TNF-alpha-mediated stabilization of SOCS3 mRNA and results in enhanced SOCS3 protein expression. In fibroblasts or macrophages deficient for MAPK-activated protein kinase 2 (MK2), a downstream target of the MKK6/p38(MAPK) cascade, basal SOCS3-expression is strongly reduced and TNF-alpha-induced SOCS3-mRNA stabilization is impaired, indicating that MK2 is crucial for the control of SOCS3 expression by p38(MAPK)-dependent signals. As a target for SOCS3 mRNA stability-regulating signals, a region containing three copies of a pentameric AUUUA motif in close proximity to a U-rich region located between positions 2422 and 2541 of the 3' untranslated region of SOCS3 is identified. One factor that could target this region is the zinc finger protein tristetraprolin (TTP), which is shown to be capable of destabilizing SOCS3 mRNA via this region. However, data from TTP-deficient cells suggest that TTP does not play an irreplaceable role in the regulation of SOCS3 mRNA stability by TNF-alpha. In summary, these data indicate that TNF-alpha regulates SOCS3 expression on the level of mRNA stability via activation of the MKK6/p38(MAPK) cascade and that the activation of MK2, a downstream target of p38(MAPK), is important for the regulation of SOCS3 expression.  相似文献   

16.
Suppressor of cytokine signaling 3 (SOCS3) is an important intracellular protein that inhibits cytokine signaling in numerous cell types and has been implicated in several inflammatory diseases. However, the expression and function of SOCS3 in osteoblasts are not known. In this study, we demonstrated that SOCS3 expression was transiently induced by LPS in osteoblasts, and apparently contributed to the inhibition of IL-6 induction by LPS treatment. We found that tyrosine 204 of the SOCS box, the SH2 domain, and the N-terminal kinase inhibitory region (KIR) of SOCS3 were all involved in its IL-6 inhibition. Furthermore, we demonstrated that CCAAT/enhancer-binding protein (C/EBP) β was activated by LPS (increased DNA binding activity), and played a key role in LPS-induced IL-6 expression in osteoblasts. We further provided the evidence that SOCS3 functioned as a negative regulator for LPS response in osteoblasts by suppressing C/EBPβ DNA binding activity. In addition, tyrosine 204 of the SOCS box, the SH2 domain, and the N-terminal kinase inhibitory region (KIR) of SOCS3 were all required for its C/EBPβ inhibition. These findings suggest that SOCS3 by interfering with C/EBPβ activation may have an important regulatory role during bone-associated inflammatory responses.  相似文献   

17.
Ubiquitination of cytokine receptors controls intracellular receptor routing and signal duration, but the underlying molecular determinants are unclear. The suppressor of cytokine signaling protein SOCS3 drives lysosomal degradation of the granulocyte colony-stimulating factor receptor (G-CSFR), depending on SOCS3-mediated ubiquitination of a specific lysine located in a conserved juxtamembrane motif. Here, we show that, despite ubiquitination of other lysines, positioning of a lysine within the membrane-proximal region is indispensable for this process. Neither reallocation of the motif nor fusion of ubiquitin to the C-terminus of the G-CSFR could drive lysosomal routing. However, within this region, the lysine could be shifted 12 amino acids toward the C-terminus without losing its function, arguing against the existence of a linear sorting motif and demonstrating that positioning of the lysine relative to the SOCS3 docking site is flexible. G-CSFR ubiquitination peaked after endocytosis, was inhibited by methyl-β-cyclodextrin as well as hyperosmotic sucrose and severely reduced in internalization-defective G-CSFR mutants, indicating that ubiquitination mainly occurs at endosomes. Apart from elucidating structural and spatio-temporal aspects of SOCS3-mediated ubiquitination, these findings have implications for the abnormal signaling function of G-CSFR mutants found in severe congenital neutropenia, a hematopoietic disorder with a high leukemia risk.  相似文献   

18.
Explaining the uniqueness of the acquired somatic JAK2 V617F mutation, which is present in more than 95% of polycythemia vera patients, has been a challenge. The V617F mutation in the pseudokinase domain of JAK2 renders the unmutated kinase domain constitutively active. We have performed random mutagenesis at position 617 of JAK2 and tested each of the 20 possible amino acids for ability to induce constitutive signaling in Ba/F3 cells expressing the erythropoietin receptor. Four JAK2 mutants, V617W, V617M, V617I, and V617L, were able to induce cytokine independence and constitutive downstream signaling. Only V617W induced a level of constitutive activation comparable with V617F. Also, only V617W stabilized tyrosine-phosphorylated suppressor of cytokine signaling 3 (SOCS3), a mechanism by which JAK2 V617F overcomes inhibition by SOCS3. The V617W mutant induced a myeloproliferative disease in mice, mainly characterized by erythrocytosis and megakaryocytic proliferation. Although JAK2 V617W would predictably be pathogenic in humans, the substitution of the Val codon, GTC, by TTG, the codon for Trp, would require three base pair changes, and thus it is unlikely to occur. We discuss how the predicted conformations of the activated JAK2 mutants can lead to better screening assays for novel small molecule inhibitors.  相似文献   

19.
Interleukin-18 (IL-18) is a pro-inflammatory cytokine, and IL-18-binding protein (IL-18BP) is a naturally occurring protein that binds IL-18 and neutralizes its biological activities. Computer modeling of human IL-18 identified two charged residues, Glu-42 and Lys-89, which interact with oppositely charged amino acid residues buried in a large hydrophobic pocket of IL-18BP. The cell surface IL-18 receptor alpha chain competes with IL-18BP for IL-18 binding, although the IL-18 receptor alpha chain does not share significant homology to IL-18BP. In the present study, Glu-42 was mutated to Lys and Lys-89 to Glu; Glu-42 and Lys-89 were also deleted separately. The deletion mutants (E42X and K89X) were devoid of biological activity, and the K89E mutant lost 95% of its activity. In contrast, compared with wild-type (WT) IL-18, the E42K mutant exhibited a 2-fold increase in biological activity and required a 4-fold greater concentration of IL-18BP for neutralization. The binding of WT IL-18 and its various mutants to human natural killer cells was evaluated by competition assays. The mutant E42K was more effective than WT IL-18 in inhibiting the binding of (125)I-IL-18 to natural killer cells, whereas the three inactive mutants E42X, K89E, and K89X were unable to compete with (125)I-IL-18 for binding. Similarly, WT IL-18 and the E42K mutant induced degradation of Ikappa-Balpha, whereas the three biologically inactive mutants did not induce degradation. The present study reveals that Glu-42 and Lys-89 are critical amino acid residues for the integrity of IL-18 structure and are important for binding to cell surface receptors, for signal transduction, and for neutralization by IL-18BP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号