首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract: Intracerebroventricular administration of N6, 2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate (db-cyclic AMP) to mice increased high-affinity choline transport (HAChT) into synaptosomal preparations from the hippocampus, striatum, and frontal cortex in a time-dose-, and brain region-dependent manner. Similar observations were made when the cyclic AMP analogue 8-bromo-cyclic AMP, the adenylyl cyclase activator forskolin, and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine were administered. Inhibition of phosphatase 1 and 2A, with okadaic acid, increased basal choline transport and enhanced the response to db-cyclic AMP. The early increase of HAChT activity induced by db-cyclic AMP was blocked by H-7 and H-89, protein kinase A inhibitors, but not by cycloheximide, a protein synthesis inhibitor. Kinetic analysis of the early changes of HAChT revealed an increase in the apparent Vmax without a change of the Km for choline. Hemicholinium-3 (HC-3) binding was not altered when studied 1 h after db-cyclic AMP administration. In contrast, HC-3 binding and HAChT activity were both elevated when estimated 3 h after the treatment, and pretreatment with cycloheximide partially prevented the db-cyclic AMP-induced HAChT rise. As evidence that enhanced HAChT is associated with a direct action of cyclic AMP-dependent pathways on the cholinergic nerve terminals, addition of 8-bromocyclic AMP to isolated hippocampal synaptosomes induced an increase of HAChT that was prevented by H-89. Choline acetyltransferase activity was not affected at any time during the studies. The synthesis of acetylcholine, however, was enhanced 1 h after db-cyclic AMP addition. Our studies show that cyclic AMP-mimetic compounds appear to modulate the choline carrier by a dual mode: an early increase of the maximal velocity without a change of the number of HC-3 binding sites and a late rise of transport that is accompanied by an increase of HC-3 binding. We postulate that HAChT and consequently acetylcholine synthesis in vivo is modulated, in part, by protein kinase A.  相似文献   

2.
Multiple DNA polymerase activity solubilized from higher plant chromatin   总被引:1,自引:0,他引:1  
DNA polymerase preparations solubilized from chromatin of unwashed and washed sugar beet storage tissue exhibit multiple activity peaks when separated by DEAE-Sephadex chromatography. Activity peaks isolated from unwashed and washed tissue required Mg2+, all four deoxynucleoside triphosphates and added DNA. Activity from peaks isolated from washed tissue was completely sensitive to pancreatic DNase and insensitive to RNase. Enzyme activity was increased in the tissue during the washing period. In addition, there was a drastic change in template specificity from single-stranded primer in unwashed tissue to double-stranded DNA in washed tissue.  相似文献   

3.
The involvement of protein kinase C (PKC) in the regulation of [3H]choline cotransport was studied in Limulus brain hemi-slice preparations. The PKC activators, phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate (PDBu), significantly decreased [3H]choline cotransport. Conversely, the PKC inhibitors, staurosporine (STAURO) and polymyxin B (PMB), each increased [3H]choline cotransport. These PKC inhibitors prevented the phorbol ester-induced reduction of transport. Both the PMA induced decrease and the STAURO induced increase in [3H]choline cotransport were paralleled by respective and comparable changes in [3H]hemicholinium-3 (HC-3) specific binding. Pre-exposure of brain hemi-slices to elevated potassium chloride (120 mM KCl) resulted in a doubling of [3H]choline cotransport and [3H]HC-3 binding. The enhancement of [3H]choline cotransport by STAURO and antecedent 120 mM KCl treatment were additive. PMA did not significantly alter elevated potassium stimulated transport. Moreover, arachidonyltrifluoromethyl ketone (AACOCF3) and quinacrine (QUIN), both phospholipase A2 (PLA2) inhibitors, markedly decreased enhanced [3H]choline transport and [3H]HC-3 binding induced by antecedent exposure to depolarizing concentrations of potassium. These results suggest that PKC and PLA2 are involved in the regulation of [3H]choline cotransport but at different regulatory sites.  相似文献   

4.
Active choline uptake by rat superior cervical sympathetic ganglia (SCG), which contain abundant cholinergic nerve terminals, was studied with respect to sensitivity to inhibition by hemicholinium-3 (HC-3) and dependence on extracellular Na+ under standard conditions of assay. Choline was taken up by a single saturable process with apparentK m=3.07×10–5 M and Vmax=286 pmoles/min/mg protein. Neither denervation followed by degeneration of cholinergic nerve terminals nor axotomy with successive neuronal degeneration significantly decreased in choline uptake by the ganglia in vitro. HC-3 dose-dependently inhibited ganglionic choline uptake more effectively at lower than at higher choline concentrations. HC-3 sensitive inhibition of ganglionic choline uptake was not seen in young rats one week after birth but appeared with maturity, attaining approximately 50% maximal inhibition in adult SCG. Extent of inhibition by HC-3 and Na+ dependence of ganglionic choline uptake was not altered by denervation or axotomy.Abbreviations used (HC-3) hemicholinium-3 - (HAChU) high affinity choline uptake - (LAChU) low affinity choline uptake - (SCG) superior cervical ganglia - (Ch) choline - (ACh) acetylcholine  相似文献   

5.
Vulnerability of hippocampal hemicholinium-3 (HC-3)-sensitive carriers to ethanol was evaluated in vitro during rat postnatal development. The high-affinity uptake of [3H]choline (HACU) and the specific binding of [3H]HC-3 were measured on synaptosomes from 7-, 14-, and 60-day- and 3-month-old male and female Wistar rats. Marked increases of basal (between 7 and 60 days of age) and of stimulated HACU levels via K+-depolarization (between 14 days and 3 months) but only a mild elevation in [3H]HC-3 binding (between 7 days and 3 months) associated with alterations in the binding site number were found. On the mature tissue, ethanol at high concentrations (5%) moderately inhibited the choline transport under basal conditions but totally eliminated depolarization effects. However, both age- and sex-dependent alterations in basal HACU mediated by high or low pharmacologically relevant alcohol concentrations (50–100 mM) were observed in the immature tissue. Namely, the dose- and incubation time–dependent inhibition of HACU associated with changes in the transport velocity was found in postnatal male but not female tissue. [3H]HC-3 binding site was not markedly sensitive to ethanol actions. Anisotropy measurements in the region of the hydrophilic heads of phospholipid bilayers and in the membrane hydrocarbon core indicated penetration of 100 mM ethanol to immature female but not male tissue. Our results suggest the noncompetitive binding of alcohol to choline carriers from immature male tissue and correspond with data reporting significant sexual dimorphism of postnatal hippocampal neurons. The direct effects of ethanol on male choline carriers can contribute to the inhibition of acetylcholine synthesis and to sex-dependent neurotoxic effects of alcohol applied in vivo during early and late postnatal period.  相似文献   

6.
Abnormalities of choline processing in cancer cells have been used as a basis for imaging of cancer with positron emission tomography and magnetic resonance spectroscopy. In this study, the transport mechanism for choline was investigated in cultured PC-3 prostate cancer cells. Furthermore, tritiated hemicholinium 3 (HC-3), a well-known inhibitor of choline transport, was studied as a prototypic molecular imaging probe in PC-3 cells and 9L glioma-bearing rats. [(3)H]Choline uptake by PC-3 cells was found to have both facilitative and nonfacilitative components. Facilitative transport was characterized by partial sodium dependence and intermediate affinity (K(M) = 9.7 +/- 0.8 microM). HC-3 inhibited choline with a K(I) of 10.5+/- 2.2 microM. Ouabain (1 mM) caused a 94% reduction in choline uptake. At physiologic choline concentration, phosphocholine was the rapid and predominant metabolic fate. The binding of [(3)H]HC-3 to PC-3 cells was rapid and specific (competitively blocked with unlabeled HC-3). Biodistribution of [(3)H]HC-3 in 9L glioma-bearing rats showed the ranking of uptake to be kidney > lung > tumor > liver > skeletal muscle congruent with blood > brain. In comparison with [(14)C]choline, [(3)H]HC-3 showed over twofold higher tumor uptake and favorable uptake ratios of tumor to blood, tumor to muscle, tumor to lung, and tumor to liver. The data demonstrate the quantitative importance of an intermediate-affinity, partially sodium-dependent choline transport system on choline processing in PC-3 cancer cells. The biodistribution properties of [(3)H]HC-3 in tumor-bearing rats encourage the development of molecular imaging probes based on choline transporter binding ligands.  相似文献   

7.
Protein kinase and cyclic adenosine 3′,5′-monophosphate (cAMP) binding activities have been detected in cell extracts of the dimorphic fungus Mucor rouxii. The subcellular distribution of both activities indicates that most of the binding protein is in the high-speed supernatant (S100), while about 70% of the total protein kinase activity remains in particulate fractions. S100 preparations have been analyzed by diethylaminoethyl cellulose column chromatography. Binding activity can be resolved in two peaks (A and B) and protein kinase in three peaks (I, II, and III). Peaks I and II are casein dependent and insensitive to cAMP. Peak III utilizes histone as substrate and is activated (two- to fourfold) by cAMP. Theophylline strongly inhibits cAMP binding activity and mimics the effect of cAMP on cAMP-dependent protein kinase. The possible relationship between cAMP binding activity and cAMP-dependent protein kinase is suggested.  相似文献   

8.
The activities of choline kinase (CK) and choline acetyltransferase (ChAT) were examined in vitro in superior cervical sympathetic ganglia (SCG) excised from rats following aerobic incubation for 1 h in a medium containing various choline concentrations, with and without application of a high KCl level (70 mM). Ganglionic CK activity was strongly inhibited (by approximately 75%) at low extracellular choline concentrations (1-5 microM) but rose as the choline concentration was raised to 10-50 microM in the incubation medium, then fell and rose again with further increases in choline concentration. A similar but moderate accelerative effect on ganglionic CK activity was also observed after addition of acetylcholine (ACh; 1 mM) without eserine. Whereas specific CK activity did not change significantly in axotomized SCG, in which the ratio of glial cells to neurons is greatly increased for a week after the operation., it was remarkably increased after denervation, in which the preganglionic cholinergic nerve terminals had degenerated. When either a high KCl level or hemicholinium-3 (HC-3; 50 microM) was added to the medium in the presence or absence of choline, ganglionic CK activity was markedly inhibited. On the other hand, ChAT activity in the SCG remained at a significantly high level during incubation with low choline concentrations (1-10 microM), but the enhanced enzyme activity became inhibited as the extracellular choline concentration was raised to 50-100 microM in the medium. Addition of HC-3 to the medium did not alter ganglionic ChAT activity at low choline concentrations. However, application of quinacrine (10 microM) considerably reduced ganglionic CK activity and also suppressed ChAT activity induced by high KCl levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of hemicholinium-3 (HC-3) on choline uptake and phosphatidylcholine (PC) biosynthesis was examined in human leukemic monocyte-like U937 cells. HC-3 inhibited [3H]choline uptake in a dose- and time-dependent manner. After a 3 h treatment, HC-3 (100 μM) decreased choline uptake by as much as 80 per cent (p < 0·0001; n = 4). Reduction of incorporation of label into PC was also detected in a dose-dependent manner; the extent of inhibition, however, was always 10–20 per cent less than that observed in the total uptake. At 3 h HC-3 decreased the incorporation into PC by 65 per cent (p < 0·0001; n = 5). Kinetic studies in vivo showed that HC-3 inhibited total uptake and incorporation into PC differently, suggesting that the labelling of PC is not simply dictated by [3H]choline uptake. In separate experiments, cells were pretreated with 100 μM HC-3 for 3 h. After washing, the inhibitory effect on total uptake was no longer observed, while a 20 per cent stimulation of the incorporation into PC was obtained in these pretreated cells. In pulse-chase studies, the cells were prelabelled with [3H]choline for 30 min and chased with HC-3 for up to 3 h; the results showed a significant stimulation of incorporation into PC in a longer chase with 100 μM HC-3. After a 3 h treatment, the cytosolic CTP:cholinephosphate cytidylytransferase (CT) was activated by 56 per cent, while choline kinase (CK) was inhibited slightly. The stimulation of CT was not simply due to the intact HC-3 molecule, and there was no redistribution of CT between cytosol and microsomes. Taken together, the results suggest that HC-3 activates PC biosynthesis apart from the inhibitory effect on choline uptake.  相似文献   

10.
The sequence of reactions which function to incorporate choline into phosphatidylcholine was investigated in lung from fetuses following premature delivery. The rate of [methyl-14C]choline incorporation by rat lung slices into phosphatidylcholine increases following premature delivery at both 20 and 21 days gestation. The increase in choline incorporation is primarily due to an increased specific activity of phosphorylcholine resulting from a decreased pool size of phosphorylcholine. The decrease in the concentration of phosphorylcholine following premature delivery is apparently caused by an increased activity of cytidylyltransferase which leads to an increase in the conversion of phosphorylcholine to phosphatidylcholine. The total activity of choline kinase, cytidylyltransferase, cholinephosphotransferase and phosphatidate phosphohydrolase did not change significantly. However, the cytidylyltransferase activity in the microsome fraction increased following premature delivery at 20 and 21 days gestation. The amount of cytidylyltransferase in the H form in the cytosol fraction increased following premature delivery at 21 days gestation but not at 20 days gestation. The results are interpreted to indicate that the active form of cytidylyltransferase in lung cells is the membrane-bound enzyme and this form increases following birth resulting in an increased synthesis of phosphatidylcholine.  相似文献   

11.
Abstract— Microsomal, mitochondrial, synaptosomal and synaptic vesicle fractions of rat brain took up [3H-methyl]choline by a similar carrier-mediated transport system. The apparent Km for the uptake of [3H-methyl]choline in these subcellular fractions was about 5 × 10?5 M. Choline uptake was also observed in microsomal fractions prepared from liver and skeletal muscle. Virtually identical kinetic properties for [3H-methyl]choline transport were found in the synaptosomal fractions prepared from the whole brain, cerebellum or basal ganglia. Countertransport of [3H-methyl]choline from the synaptosomal fraction was demonstrated against a concentration gradient. HC-3 was a competitive inhibitor of the uptake of [3H-methyl]choline in brain microsomal, synaptosomal and mitochondria] fractions with respective values for Ki of 4.0, 2.1 and 2.3 × 10?5 M. HC-15 was a competitive inhibitor of the transport of [3H-methyl]choline in the synaptosomal fraction, with a Ki of 1.7 × 10?4 M. Upon entry into the microsomal fraction, 74 per cent of the radioactivity could be recovered as unaltered choline, 10 per cent as phosphorylcholine, 1.5 per cent as acetylcholine and 2.5 per cent as phospholipid. Choline acetyltransferase (EC 2.3.1.6) was assayed with [14C]acetylCoA in synaptosomal fractions prepared from basal ganglia and cerebellum, and in the 31,000 g supernatant fraction of a rat brain homogenate. Enzyme activity was 11-fold greater in the synaptosomal fraction from the basal ganglia than in that from the cerebellum. HC-3 did not inhibit choline acetyltransferase and there was no evidence for acetylation of HC-3. Our findings suggest that choline uptake is a ubiquitous property of membranes in the CNS and cannot serve to distinguish cholinergic nerve endings and their synaptic vesicles.  相似文献   

12.
Kinetic mechanism of choline kinase from rat striata   总被引:2,自引:0,他引:2  
The kinetic mechanism of choline kinase associated with both the cytosolic and membrane fractions of synaptosomes isolated from rat striata was studied. The velocity of choline kinase was measured using various concentrations of MgATP at several concentrations of uncomplexed Mg2+ and a single concentration of choline. This experiment was repeated using different concentrations of choline. Analysis of these data according to a terreactant mechanism indicates that MgATP binds in rapid equilibrium prior to Mg2+, but the binding of MgATP and choline is random. Product inhibition by phosphorylcholine was noncompetitive versus both choline and MgATP. Hemicholinium-3 (HC-3), an analog of choline and competitive inhibitor of the sodium-dependent high affinity choline transport system, was noncompetitive versus choline and uncompetitive versus MgATP at high levels of Mg2+. However, when the concentration of Mg2+ was decreased below the KMg2 +, HC-3 was noncompetitive versus MgATP. Thiocholine, another analog of choline, gave slope-linear intercept hyperbolic inhibition versus choline. Mg-5'-adenylyl imidodiphosphate, an analog of MgATP, was competitive versus MgATP and noncompetitive versus choline. Virtually identical results were obtained using either soluble or particulate forms of choline kinase from rat striata. All data are consistent with the mechanism suggested by initial velocity studies alone and additionally suggest that the release of MgADP is slow, occurs last, and may limit the overall rate of the reaction.  相似文献   

13.
The presence of 5 or 20 microM choline in the eserinized medium superfusing striatal slices enhanced the spontaneous release of acetylcholine (ACh) at both concentrations and, at 20 microM, the release of transmitter evoked by electrical field stimulation. Neither the electrical stimulation nor the addition of choline altered choline acetyltransferase activity. These results show that ACh release is dependent on the availability of extracellular choline. The rate of choline efflux was 7 times higher than the rate of ACh release, was not affected by stimulation, and was increased by 40% when hemicholinium-3 (HC-3), an inhibition of choline uptake, was present. The muscarinic antagonist atropine (1 microM) increased the evoked release of ACh into both the choline-free medium and that containing 20 microM choline. An adenosine receptor antagonist, 1,3-diethyl-8-phenyl xanthine (10 microM), failed to affect ACh release or the enhancement of release produced by atropine. In medium containing HC-3, stimulation of the slices elicited ACh release for the first 20 min of the 30 min stimulation period (15 Hz); thereafter, although stimulation was continued, the rate of release decreased to that associated with spontaneous release. Tissue ACh contents were not modified by the addition of choline or atropine to the medium, but were depressed by HC-3. Neither atropine nor HC-3 altered tissue choline content. The total amount of ACh + choline released during an experiment was 5-15 times higher than the decrease in tissue levels of these two compounds during the same period of time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Summary About 25% of total pyruvate kinase activity in human skeletal muscle is associated with the ribonucleoprotein complexes soluble in salt solutions of high ionic strength. These complexes, called form MB, crystallize readily from 48% saturated ammonium sulfate at pH 5.6.Crystalline preparations represent a heterogenous population of ribonucleoprotein complexes displaying a graduated activity and a variable RNA content. Free protein was not detected in the preparations.Fractionation of crystalline complexes in salt solutions of varying ionic strength and pH, followed by gel filtration on Sephadex G-200 led to the separation of two nucleoprotein fractions with very high specific activity. Fractions containing 30% RNA and 85% RNA respectively revealed a specific activity of 660–670 U/mg protein at 25°C.Pyruvate kinase form MA was extracted from muscle homogenate with distilled water, purified to homogeneity and crystallized. It contained less than 0.2% RNA and had a specific activity of 270 U/mg. Active ribonucleoprotein complexes gave in double immunodiffusion test the precipitation bands with the anti-MA sera at the same protein concentration of both antigens, MB and MA.Pyruvate kinase MB with high activity is sensitive to treatment with RNase. Digestion with RNase for 10 min at 25°C diminished the initial specific activity to about one third. Similar residual activity was found in crystalline ribonucleo protein complexes with low RNA content (3.5–20% RNA) which are resistant to further inactivation by RNase.These results implicate the enhancement and control of pyruvate kinase activity by RNA bound to the enzyme.This work was supported by a grant from the Biochemical and Biophysical Committee of Polish Academy of Sciences.  相似文献   

16.
The physiological mechanisms regulating activity of the sodium-dependent, high-affinity choline transporter and the molecular events in the translocation process remain unclear; the protein has not been purified or characterized biochemically. In the present study, [3H]choline mustard aziridinium ion [( 3H]ChM Az), a nitrogen mustard analogue of choline, bound irreversibly to presynaptic plasma membranes from Torpedo electric organ in a hemicholinium-sensitive, and sodium-, time-, and temperature-dependent manner. Specific binding of this ligand was greatest when it was incubated with membranes in the presence of sodium at 30 degrees C. Separation of the 3H-labelled membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that most of the radiolabel was associated with a polypeptide of apparent molecular mass of approximately 42,000 daltons; labelling of this species was abolished in membranes incubated with ligand in the presence of HC-3. Two other 3H-labelled polypeptides were detected, with apparent molecular masses of approximately 58,000 and 90,000 daltons; radiolabelling of the former was also HC-3 sensitive. [3H]ChM Az may be a useful affinity ligand in the purification of the choline carrier from cholinergic neurons.  相似文献   

17.
The characteristics of [3H]hemicholinium-3 ([3H]HC-3) interactions with rat striatal membranes were investigated. Under the described assay conditions, [3H]-HC-3 binds with a saturable population of membrane binding sites having the following regional distribution: striatum much greater than hippocampus greater than or equal to cerebral cortex greater than cerebellum. The specific binding of [3H]HC-3 showed an obligatory requirement for NaCl; other halide salts of sodium or KCl failed to substitute for NaCl. The Scatchard transformation of saturation isotherm data generated a curvilinear plot with high- and low-affinity components of binding. The dissociation of [3H]HC-3 at infinite dilution was also multiexponential. The dissociation could, however, be accelerated if unlabeled HC-3 was included in the diluting buffer, and this increase in dissociation appeared to be dependent on the concentrations of unlabeled HC-3 used, with the maximal increase demonstrable at 100 nM. The dissociation was also dependent on the fractional saturation of binding sites with labeled HC-3, such that, at higher fractional saturation of binding sites, the overall dissociation was faster and the difference in the dissociation observed between "dilution only" and "dilution + unlabeled HC-3" was reduced. This occupancy-dependent change in dissociation could also be influenced by temperature and pH. Based on the results of these kinetic studies, the steady-state [3H]HC-3 binding data were analyzed for a homogeneous population of binding sites undergoing site-site interactions of the negative cooperative type. Such an analysis yielded a KD of 9.3 nM for the high-affinity state and a KD of 22.8 nM for the low-affinity state of binding sites, with a Bmax of 434 fmol/mg of protein. Competitive binding studies showed that unlabeled HC-3 was most potent in displacing [3H]HC-3, followed by choline. Other drugs known to have little influence on the synaptosomal sodium-dependent high-affinity choline uptake system (SDHACU) had no significant effect on [3H]HC-3 binding sites. Similarities in ionic dependencies, regional distributions, and pharmacological selectivities of [3H]HC-3 binding with synaptosomal SDHACU suggest that [3H]HC-3 selectively labels SDHACU sites located on presynaptic cholinergic neurons in rat CNS. We suggest that the two affinity states of [3H]HC-3 binding sites represent the different "functional" states of the SDHACU system. The binding of HC-3 (or choline) with the high-affinity state of the binding sites induces negative cooperative site-site interactions among the binding sites, resulting in the formation of a low-affinity binding state.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
[3H]Hemicholinium-3 (HC-3) was used to label sodium-dependent, high-affinity choline uptake sites in regions of rat brain. Autoradiography revealed a high density of [3H]HC-3 binding sites in brain regions with a high density of cholinergic terminals, such as the interpeduncular nucleus, caudate-putamen, and olfactory tubercle. This distribution of [3H]HC-3 binding sites was in close agreement with the amounts of choline acetyltransferase in specific nuclei and subregions of rat brain. Destruction of presynaptic cholinergic projections in the cerebral cortex and the basal ganglia by injection of excitotoxins reduced [3H]HC-3 binding by 40-50%. These data indicate that sodium-dependent [3H]HC-3 binding sites are related to the choline transport system present in cholinergic neurons.  相似文献   

19.
Myometrium obtained from pregnant ewes (30–80 days gestation) contains a factor which inhibits phospholipase A2 (PLA2) activity. The activity of this moiety was assessed using an in vitro porcine pancreatic PLA2 assay system. Inhibitory activity was associated with a 35–45000 dalton molecular weight fraction, heat-labile, sensitive to protease degradation and did not partition into organic solvents. These data are indicative that PLA2-inhibitory activity resides in a protein moiety. Dixon-plot analysis of myometrial-inhibitory activity was indicative that the inhibition of PLA2 activity was of a non-competitive nature (Ki = 4.1 ± 0.7μg/ml, ca 118 nmol/1). Myometrial phospholipase-inhibitory protein(s) may be involved in the suppression of eicosanoid biosynthesis by the uterine tissues throughout gestation thus inhibiting uterine contractile activity.  相似文献   

20.
Commercial samples of hemicholinium-3 (HC-3) have been found to vary in colour (from white to a sandy-yellow colour) and chemical composition. There were no significant differences between the various HC-3 samples with regards to inhibition of high affinity choline uptake into synaptosomes or inhibition of neuromuscular transmission in the chick biventer cervicis (CBC) preparation. Yellow HC-3 inhibited acetylcholinesterase more than white HC-3 with I50 of 4.8 × 10?5 M and 3.3 × 10?4 M, respectively. Carbachol-induced contractions of the CBC preparation were inhibited more by yellow HC-3 than white HC-3; the opposite was true for acetylcholine- induced contractions. The results indicated that there is a minor contaminant in yellow HC-3 other than deanol which was a potent inhibitor of acetylcholinesterase and the carbachol response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号