首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chickpea (Cicer arietinum L.) seeds contain Bowman–Birk proteinase inhibitors, which are ineffective against the digestive proteinases of larvae of the insect pest Helicoverpa armigera. We have identified and purified a low expressing proteinase inhibitor (PI), distinct from the Bowman–Birk Inhibitors and active against H. armigera gut proteinases (HGP), from chickpea seeds. N-terminal sequencing of this HGP inhibitor revealed a sequence similar to reported pea (Pisum sativum) and chickpea -l-fucosidases and also homologous to legume Kunitz inhibitors. The identity was confirmed by matrix assisted laser desorption ionization – time of flight analysis of tryptic peptides and isolation of DNA sequence coding for the mature protein. Available sequence data showed that this protein forms a distinct phylogenetic cluster with Kunitz inhibitors from Glycine max, Medicago truncatula, P. sativum and Canavalia lineata. The isolated coding sequence was cloned into a yeast expression vector and produced as a recombinant protein in Pichia pastoris. -l-fucosidase activity was not detectable in purified or recombinant protein, by solution assays. The recombinant protein did not inhibit chymotrypsin or subtilisin activity but did exhibit stoichiometric inhibition of trypsin, comparable to soybean Kunitz trypsin inhibitor. The recombinant protein exhibited higher inhibition of total HGP activity as compared to soybean kunitz inhibitor, even though it preferentially inhibited HGP-trypsins. H. armigera larvae fed on inhibitor-incorporated artificial diet showed significant reduction in average larval weight after 18 days of feeding demonstrating potent antimetabolic activity. The over-expression of this gene in chickpea could act as an endogenous source of resistance to H. armigera.  相似文献   

2.
Plant defensins are small basic peptides of 5–10 kDa and most of them exhibit antifungal activity. In a sunflower resistant to broomrape, among the three defensin encoding cDNA identified, SF18, SD2 and HaDef1, only HaDef1 presented a preferential root expression pattern and was induced upon infection by the root parasitic plant Orobanche cumana. The amino acid sequence deduced from HaDef1 coding sequence was composed of an endoplasmic reticulum signal sequence of 28 amino acids, a standard defensin domain of 50 amino-acid residues and an unusual C-terminal domain of 30 amino acids with a net positive charge. A 5.8 kDa recombinant mature Ha-DEF1 corresponding to the defensin domain was produced in Escherichia coli and was purified by means of a two-step chromatography procedure, Immobilized Metal Affinity Chromatography (IMAC) and Ion Exchange Chromatography. Investigation of in vitro antifungal activity of Ha-DEF1 showed a strong inhibition on Saccharomyces cerevisiae growth linked to a membrane permeabilization, and a morphogenetic activity on Alternaria brassicicola germ tube development, as already reported for some other plant defensins. Bioassays also revealed that Ha-DEF1 rapidly induced browning symptoms at the radicle apex of Orobanche seedlings but not of another parasitic plant, Striga hermonthica, nor of Arabidopsis thaliana. FDA vital staining showed that these browning areas corresponded to dead cells. These results demonstrate for the first time a lethal effect of defensins on plant cells. The potent mode of action of defensin in Orobanche cell death and the possible involvement in sunflower resistance are discussed.  相似文献   

3.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

4.
The expression of recombinant allergens is becoming new insights of an important diagnosis and the therapy of allergies as well as molecular approaches to immunological and structural studies of allergens. Ovomucoid is a major food allergens in the hen's egg white which causes immediate food-hypersensitivity reactions mainly in children. A gene coding for the cDNA representing an entire ovomucoid molecule has been cloned in Escherichia coli under the control of T5 promoter fused with six-Histidine tag at the amino terminal end. Upon induction, the E. coli cells, harbouring this construct, expressed the recombinant protein as a soluble fraction and the recombinant ovomucoid protein was purified to electrophoeretic homogeneity using Ni2+ nitrilotriacetic acid agarose affinity chromatography. Immunoblot analysis showed that human IgE and IgG binding activities of the recombinant ovomucoid was identical to that of native analogue. The antigenicity and allergenicity of recombinant ovomucoid were almost same as that of native form when tested with an ELISA using six individual patient's serum. CD spectra indicated that that the recombinant ovomucoid has more -helix and less -structure than native form. These results show that the recombinant ovomucoid constructed in this study could be used for further studies on the immunological and structural studies of ovomucoid.  相似文献   

5.
An abundant 17 kDa protein which was isolated and characterized from 10-day old healthy root tissue of white lupin (Lupinus albus) proved to have a high sequence similarity to pathogenesis-related proteins found in other species. Subsequently, a corresponding clone (LaPR-10) was identified in a cDNA library prepared from the same tissue that exhibited a high amino acid sequence similarity to a number of the PR-10 family proteins. The clone contains an open reading frame encoding a polypeptide of 158 amino acids, with a predicted molecular mass of 16905 Da and an isoelectric point of 4.66. Southern blot analysis indicates that LaPR-10 is likely a single-copy gene, or a member of a small gene family. The clone was expressed in Escherichia coli, and its protein product was purified to near homogeneity. Both the native and the recombinant proteins were immunorecognized by antibodies raised against pea PR-10 proteins, and exhibited a ribonucleolytic activity against several RNA preparations, including lupin root total RNA. Characterization of its enzymatic properties indicates that the LaPR-10 protein belongs to the class II ribonucleases. We present evidence that the white lupin 17 kDa protein is constitutively expressed during all stages of root development and, to a lesser extent, in other plant parts. In addition, we demonstrate the presence, in the LaPR-10 amino acid sequence, of a number of motifs that are common to most PR-10 proteins, as well as a RGD motif that is shared only with the alfalfa SRG1 sequence.  相似文献   

6.
Reactive oxygen species (ROS) are ubiquitous DNA-damaging agents, and the repair of oxidative DNA lesions is essential to prevent mutations and cell death. Escherichia coli endonuclease III is the prototype repair enzyme for removal of oxidized pyrimidines from DNA. A database homology search identified a genomic sequence in Arabidopsis thaliana encoding a predicted protein with sequence similarity to E. coli endonuclease III. We cloned, sequenced and expressed the corresponding cDNA, which encodes a 39.1 kDa protein containing several sequence motifs conserved in endonuclease III homologues, including an iron-sulfur cluster domain and critical residues at the active site. The protein, designated AtNTH1, was over-expressed in E. coli and purified to apparent homogeneity. AtNTH1 exhibits DNA-glycosylase activity on different types of DNA substrates with pyrimidine damage, being able to release both urea and thymine glycol from double-stranded polydeoxyribonucleotides. The enzyme also possesses an apurinic/apyrimidinic lyase activity on UV- and -irradiated DNA substrates. The AtNTH1 gene contains 10 introns and 11 exons and is widely expressed in different plant tissues. Our results suggest that AtNTH1 is a structural and functional homologue of endonuclease III and probably plays a major role in plant defence against oxidative DNA damage.  相似文献   

7.
In legumes, ENOD40 expression is increased upon interaction of plants with rhizobia. Little is known of the expression pattern of ENOD40 during other stages of the plant life cycle. Studies of ENOD40 expression in non-legume development may give an indication of the function of the gene. To investigate the ENOD40 expression pattern during plant development, a fusion between the -glucuronidase (GUS) reporter gene and 150 bp of the 5 untranslated region plus 3,000 bp of 5 untranscribed tomato ENOD40 sequence was constructed and introduced into Lycopersicon esculentum Miller. Based on the observed GUS expression patterns in transgenic tomato we speculate that ENOD40 in tomato has a role in counteracting ethylene-provoked responses.Abbreviations GUS -glucuronidase - FISH fluorescence in situ hybridisation - RACE rapid amplification of cDNA ends - RFLC restriction fragment length polymorphism  相似文献   

8.
A cDNA showing high sequence similarity (>70%) to plant protein phosphatase 1 catalytic subunit variants from other species has been isolated from a cDNA library derived from mRNAs expressed in elicitor-treated suspension-cultured cells. The clone appears to be a near full-length 1431 bp with a 172 bp 5-untranslated region and a 317 bp 3-untranslated region. The open reading frame, determined by sequence similarity, codes for a protein with predicted M r of 35552. Alternatively an ATG situated to the 5 end of the putative start site would increase the protein size by 6 amino acids.The mRNA for Pvpp1 was shown to be rapidly induced by elicitor treatment of suspension-cultured cells of French bean. The cloned cDNA represents one of the few examples of a gene product that is probably involved in dephosphorylation events arising after the initial responses to biotic stress.Abbreviations PAL phenylalanine ammonia-lyase - PP1 protein phosphatase 1 - Pvpp1 Phaseolus vulgaris protein phosphatase 1  相似文献   

9.
Trimeresurus flavoviridis (Crotalinae) snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima, and Okinawa. Affinity and conventional chromatographies of Amami-Oshima T. flavoviridis venom led to isolation of a novel phospholipase A2 (PLA2). This protein was highly homologous (91%) in sequence to trimucrotoxin, a neurotoxic PLA2, which had been isolated from T. mucrosquamatus (Taiwan) venom, and exhibited weak neurotoxicity. This protein was named PLA-N. Its LD50 for mice was 1.34 µg/g, which is comparable to that of trimucrotoxin. The cDNA encoding PLA-N was isolated from both the Amami-Oshima and the Tokunoshima T. flavoviridis venom-gland cDNA libraries. Screening of the Okinawa T. flavoviridis venom-gland cDNA library with PLA-N cDNA led to isolation of the cDNA encoding one amino acid-substituted PLA-N homologue, named PLA-N(O), suggesting that interisland mutation occurred and that Okinawa island was separated from a former island prior to dissociation of Amami-Oshima and Tokunoshima islands. Construction of a phylogenetic tree of Crotalinae venom group II PLA2s based on the amino acid sequences revealed that neurotoxic PLA2s including PLA-N and PLA-N(O) form an independent cluster which is distant from other PLA2 groups such as PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Comparison of the nucleotide sequence of PLA-N cDNA with those of the cDNAs encoding other T. flavoviridis venom PLA2s showed that they have evolved in an accelerated manner. However, when comparison was made within the cDNAs encoding Crotalinae venom neurotoxic PLA2s, their evolutionary rates appear to be reduced to a level between accelerated evolution and neutral evolution. It is likely that ancestral genes of neurotoxic PLA2s evolved in an accelerated manner until they had acquired neurotoxic function and since then they have evolved with less frequent mutation, possibly for functional conservation. The nucleotide sequences reported in this paper are available from the GenBank/EMBL/DDBJ databases under accession numbers AB102728 and AB102729.  相似文献   

10.
The substrate specificity of acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) determines the fatty acids available for the biosynthesis of storage and membrane lipids in seeds. In order to determine the mechanisms involved in the biosynthesis of fatty acids in sunflower seeds (Helianthus annuus L.), we isolated, cloned and sequenced a cDNA clone of acyl-ACP thioesterase from developing sunflower seeds, HaFatA1. Through the heterologous expression of HaFatA1 in Escherichia coli we have purified and characterized this enzyme, showing that sunflower HaFatA1 cDNA encodes a functional thioesterase with preference for monounsaturated acyl-ACPs. The HaFatA1 thioesterase was most efficient (kcat/Km) in catalyzing oleoyl-ACP, both in vivo and in vitro. By comparing this sequence with those obtained from public databases, we constructed a phylogenetic tree that included FatA and FatB thioesterases, as well as related prokaryotic proteins. The phylogenetic relationships support the endosymbiotic theory of the origin of eukaryotic cells and the suggestion that eubacteria from the -subdivision were the guest cells in the symbiosis with archaea. These prokaryotic proteins are more homologous to plant FatB, suggesting that the ancient thioesterases were more similar to FatB. Finally, using the available structure prediction methods, a 3D model of plant acyl-ACP thioesterases is proposed that reflects the combined data from direct mutagenesis and chimera studies. In addition, the model was tested by mutating the residues proposed to interact with the ACP protein in the FatA thioesterase by site-directed mutagenesis. The results indicate that this region is involved in the stabilization of the substrate at the active site.  相似文献   

11.
Three cDNA clones that hybridize to a partial rice cDNA that show similarity to bovine mitochondrial 2-oxoglutarate/malate translocator were isolated from leaves of Panicum miliaceum L. (proso millet), an NAD-malic enzyme-type C4 plant. The nucleotide sequences of the clones resemble each other, and some of the isolated cDNAs contained extra sequences that seemed to be introns. The predicted proteins encoded by the cDNAs have 302 amino acids and molecular weights of 32211 and 32150. The hydrophobic profile of the amino acid sequence predicted the existence of six transmembrane -helices that is a common property of members in the mitochondrial transporter family. The predicted amino acid sequence showed the highest similarity with that of the 2-oxoglutarate/malate translocator from mammalian mitochondria. An expression plasmid containing the coding region of the cDNAs was used to over-express recombinant protein with a C-terminal histidine tag Escherichia coli, which was affinity-purified. The antibody against the recombinant protein cross-reacted with proteins of 31–32 kDa in the membrane fraction from P. miliaceum mitochondria, but not with the chloroplast fraction. The recombinant protein reconstituted in liposomes efficiently transported malate, citrate, and 2-oxoglutarate.  相似文献   

12.
A large gene family encoding the putative cysteine-rich defensins was discovered in Medicago truncatula. Sixteen members of the family were identified by screening a cloned seed defensin from M. sativa (Gao et al. 2000) against the Institute for Genomic Research’s (TIGR) M. truncatula gene index (MtGI version 7). Based on the comparison of their amino acid sequences, M. truncatula defensins fell arbitrarily into three classes displaying extensive sequence divergence outside of the eight canonical cysteine residues. The presence of Class II defensins is reported for the first time in a legume plant. In silico as well as Northern blot and RT-PCR analyses indicated these genes were expressed in a variety of tissues including leaves, flowers, developing pods, mature seed and roots. The expression of these genes was differentially induced in response to a variety of biotic and abiotic stimuli. For the first time, a defensin gene (TC77480) was shown to be induced in roots in response to infection by the mycorrhizal fungus, Glomus versiforme. Northern blot analysis indicated that the tissue-specific expression patterns of the cloned Def1 and Def2 genes differed substantially between M. truncatula and M. sativa. Furthermore, the induction profiles of the Def1 and Def2 genes in response to the signaling molecules methyl jasmonate, ethylene and salicylic acid differed markedly between these two legumes.  相似文献   

13.
A family of Golgi-localised molecules was recently described in animals and fungi possessing extensive coiled regions and a short (~40 residues) conserved C-terminal domain, called the GRIP domain, which is responsible for their location to this organelle. Using the model plant Arabidopsis thaliana, we identified a gene (AtGRIP) encoding a putative GRIP protein. We demonstrated that the C-terminal domain from AtGRIP functions as a Golgi-targeting sequence in plant cells. Localisation studies in living cells expressing the AtGRIP fused to a DsRed2 fluorescent probe, showed extensive co-location with the Golgi marker -mannosidase I in transformed tobacco protoplasts. GRIP-like sequences were also found in genomic databases of rice, maize, wheat and alfalfa, suggesting that this domain may be a useful Golgi marker for immunolocalisation studies. Despite low sequence identity amongst GRIP domains, the plant GRIP sequence was able to target to the Golgi of mammalian cells. Taken together, these data indicate that GRIP domain proteins might be implicated in a targeting mechanism that is conserved amongst eukaryotes.Abbreviations -ManI -Mannosidase I - AtGRIP Arabidopsis GRIP domain protein - GCC Golgi-localized coiled-coil protein - GFP Green fluorescent protein - MES 2-(N-Morpholino)ethanesulfonic acid - TGN Trans-Golgi network  相似文献   

14.
15.
By protein immunobiochemistry and cDNA sequencing, we have found only a single hemocyanin polypeptide in an opisthobranch gastropod, the sea hare Aplysia californica, which contrasts with previously studied prosobranch gastropods, which express two distinct isoforms of this extracellular respiratory protein. We have cloned and sequenced the cDNA encoding the complete polypeptide of Aplysia californica hemocyanin (AcH). The cDNA comprises 11,433 bp, encompassing a 5UTR of 77 bp, a 3UTR of 1057 bp, and an open reading frame for a signal peptide of 20 amino acids plus a polypeptide of 3412 amino acids (Mr ca. 387 kDa). This polypeptide is the subunit of the cylindrical native hemocyanin (Mr ca. 8 MDa). It comprises eight different functional units (FUs: a, b, c, d, e, f, g, h) that have been identified immunobiochemically after limited proteolysis of AcH purified from the hemolymph. Each FU shows a highly conserved copper-A and copper-B site for reversible oxygen binding. FU AcH-h carries a specific C-terminal extension of ca. 100 amino acids that include two cysteines that may be utilized for disulfide bridge formation. Potential N-glycosylation sites are present in six FUs but lacking in AcH-b and AcH-c. On the basis of multiple sequence alignments, phylogenetic trees and a statistically firm molecular clock were calculated. The latter suggests that the last common ancestor of Haliotis and Aplysia lived 373±47 million years ago, in convincing agreement with fossil records from the early Devonian. However, the gene duplication yielding the two distinct hemocyanin isoforms found today in Haliotis tuberculata occurred 343±43 million years ago.[Reviewing Editor: Dr. Axel Meyer]The sequence reported in this paper has been deposited in the GenBank database under accession number AJ556169.  相似文献   

16.
Yang AH  Yeh KW 《Planta》2005,221(4):493-501
A cDNA clone, designated CeCPI, encoding a novel phytocystatin was isolated from taro corms (Colocasia esculenta) using both degenerated primers/RT-PCR amplification and 5-/3-RACE extension. The full-length cDNA gene is 1,008 bp in size, encodes 206 amino acid residues, with a deduced molecular weight of 29 kDa. It contains a conserved reactive site motif Gln-Val-Val-Ser-Gly of cysteine protease inhibitors, and another consensus ARFAV sequence for phytocystatin. Sequence analysis revealed that CeCPI is phylogenetically closely related to Eudicots rather than to Monocots, despite taro belonging to Monocot. Recombinant GST–CeCPI fusion protein was overexpressed in Escherichia coli and its inhibitory activity against papain was identified on gelatin/SDS-PAGE. These results confirmed that recombinant CeCPI protein exhibited strong cysteine protease inhibitory activity. Investigation of its antifungal activity clearly revealed a toxic effect on the mycelium growth of phytopathogenic fungi, such as Sclerotium rolfsii Sacc. etc., at a concentration of 80 g recombinant CeCPI/ ml. Moreover, mycelium growth was completely inhibited and the sclerotia lysed at a concentration of 150–200 g/ml. Further studies have demonstrated that recombinant CeCPI is capable of acting against the endogenous cysteine proteinase in the fungal mycelium.  相似文献   

17.
Neutral trehalase from Neurospora crassa was expressed in Escherichia coli as a polypeptide of 84 kDa in agreement with the theoretical size calculated from the corresponding cDNA. The recombinant neutral trehalase, purified by affinity chromatography exhibited a specific activity of 80–150 mU/mg protein. Optima of pH and temperature were 7.0 and 30 °C, respectively. The enzyme was absolutely specific for trehalose, and was quite sensitive to incubation at 40 °C. The recombinant enzyme was totally dependent on calcium, and was inhibited by ATP, copper, silver, aluminium and cobalt. KM was 42 mM, and Vmax was 30.6 nmol of glucose/min. The recombinant protein was phosphorylated by cAMP-dependent protein kinase, but not significantly activated. Immunoblotting with polyclonal antiserum prepared against the recombinant protein showed that neutral trehalase protein levels increased during exponential phase of N. crassa growth and dropped at the stationary phase. This is the first report of a neutral trehalase produced in E. coli with similar biochemical properties described for fungi native neutral trehalases, including calcium-dependence.  相似文献   

18.
We report herein the complete coding sequence of a Taenia solium cytosolic malate dehydrogenase (TscMDH). The cDNA fragment, identified from the T. solium genome project database, encodes a protein of 332 amino acid residues with an estimated molecular weight of 36517 Da. For recombinant expression, the full length coding sequence was cloned into pET23a. After successful expression and enzyme purification, isoelectrofocusing gel electrophoresis allowed to confirm the calculated pI value at 8.1, as deduced from the amino acid sequence. The recombinant protein (r-TscMDH) showed MDH activity of 409 U/mg in the reduction of oxaloacetate, with neither lactate dehydrogenase activity nor NADPH selectivity. Optimum pH for enzyme activity was 7.6 for oxaloacetate reduction and 9.6 for malate oxidation. Kcat values for oxaloacetate, malate, NAD, and NADH were 665, 47, 385, and 962 s−1, respectively. Additionally, a partial characterization of TsMDH gene structure after analysis of a 1.56 Kb genomic contig assembly is also reported.  相似文献   

19.
20.
The trehalosyl dextrin-forming enzyme (TDFE) mainly catalyzes an intramolecular transglycosyl reaction to form trehalosyl dextrins from dextrins by converting the -1,4-glucosidic linkage at the reducing end to an -1,1-glucosidic linkage. In this study, the treY gene encoding TDFE was PCR cloned from the genomic DNA of Sulfolobus solfataricus ATCC 35092 to an expression vector with a T7 lac promoter and then expressed in Escherichia coli. The recombinant TDFE was purified sequentially by using heat treatment, ultrafiltration, and gel filtration. The obtained recombinant TDFE showed an apparent optimal pH of 5 and an optimal temperature of 75°C. The enzyme was stable in a pH range of 4.5–11, and the activity remained unchanged after a 2-h incubation at 80°C. The transglycosylation activity of TDFE was higher when using maltoheptaose as substrate than maltooligosaccharides with a low degree of polymerization (DP). However, the hydrolysis activity of TDFE became stronger when low DP maltooligosaccharides, such as maltotriose, were used as substrate. The ratios of hydrolysis activity to transglycosylation activity were in the range of 0.2–14% and increased when the DP of substrate decreased. The recombinant TDFE was found to exhibit different substrate specificity, such as its preferred substrates for the transglycosylation reaction and the ratio of hydrolysis to transglycosylation of the enzyme reacting with maltotriose, when compared with other natural or recombinant TDFEs from Sulfolobus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号