首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Social behaviors of most mammals are affected by chemical signals, pheromones, exchanged between conspecifics. Previous experiments have shown that behavioral responses to the same pheromone differ depending on the sex and endocrine status of the respondent. Although the exact mechanism of this dimorphism is not known, one possible contributor may be due to sexually dimorphic receptors or due to differences in central processing within the brain. In order to investigate the differences in response between male and female mice to the same pheromonal stimulus two urinary compounds (2-heptanone and 2,5-dimethylpyrazine) were used to stimulate the production of Inositol (1,4,5)-trisphosphate (IP(3)) in microvillar membrane preparations of the vomeronasal organ as an indirect measurement of pheromonal stimulation. Incubation of such membranes from prepubertal mice with urine from the same sex or opposite sex, results in an increase in production of IP(3). This stimulation is mimicked by GTPgammaS and blocked by GDPbetaS. Furthermore we found that 2-heptanone present in both male and female urine was capable of stimulating increased production of IP(3) in the female VNO but not the male VNO. Finally, 2,5-dimethylpyrazine present only in female urine was also only capable of stimulating increased production of IP(3) in the female VNO.  相似文献   

2.
Mouse major urinary proteins (MUPs) have been proposed to play a role in regulating the release and capture of pheromones. Here, we report affinity measurements of five recombinant urinary MUP isoforms (MUPs-I, II, VII, VIII, and IX) and one recombinant nasal isoform (MUP-IV) for each of three pheromonal ligands, (+/-)-2-sec-butyl-4,5-dihydrothiazole (SBT), 6-hydroxy-6-methyl-3-heptanone (HMH), and (+/-)dehydro-exo-brevicomin (DHB). Dissociation constants for all MUP-pheromone pairs were determined by isothermal titration calorimetry, and data for SBT were corroborated by measurements of intrinsic protein fluorescence. We also report the isolation of MUP-IV protein from mouse nasal extracts, in which MUP-IV mRNA has been observed previously. The affinity of each MUP isoform for SBT (K(d) approximately 0.04 to 0.9 micro M) is higher than that for DHB (K(d) approximately 26 to 58 micro M), which in turn is higher than that for HMH (K(d) approximately 50 to 200 micro M). Isoforms I, II, VIII, and IX show very similar affinities for each of the ligands. MUP-VII has approximately twofold higher affinity for SBT but approximately twofold lower affinity for the other pheromones, whereas MUP-IV has approximately 23-fold higher affinity for SBT and approximately fourfold lower affinity for the other pheromones. The variations in ligand affinities of the MUP isoforms are consistent with structural differences in the binding cavities of the isoforms. The data indicate that the concentrations of available pheromones in urine may be influenced by changes in the expression levels of urinary MUPs or the excretion levels of other MUP ligands. The variation in pheromone affinities of the urinary MUP isoforms provides only limited support for the proposal that MUP heterogeneity plays a role in regulating profiles of available pheromones. However, the binding data support the proposed role of nasal MUPs in sequestering pheromones and possibly transporting them to their receptors.  相似文献   

3.
The lipocalin protein family is characterized in structure by a conserved hydrophobic pocket which can bind small volatile odorants. The Major Urinary Proteins (MUPs) are a class of lipocalins found in the urine of adult male mice which concentrate in the urine odorants which confer a characteristic odor. The behavioural as well as the endocrine effects of mouse urine and MUPs are briefly reviewed, suggesting a complex role is pheromonal communication. Some recent data on the molecular receptors of the vomeronasal organ further suggest a complex interaction with the MUP system.  相似文献   

4.
5.
The social and reproductive behaviors of most mammals are modulated by pheromones, which are perceived by the vomeronasal organ (VNO). Vomeronasal transduction in vertebrates is activated through G-protein-coupled receptors, which in turn leads to the generation of inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG) by the activity of phospholipase C. DAG has been shown to gate the transient receptor potential channel 2, whereas IP(3) may play a role in stimulating the release of calcium from the endoplasmic reticulum store. To investigate the role of the alpha subunits of G(q/11) in the transduction process, microvillar membranes from female mice VNO were preincubated with a selective C-terminal peptide antibody against Galpha(q/11) and then stimulated with adult male urine. Incubation of VNO membranes with antibodies against Galpha(q/11) blocked the production of IP(3) in a dose-dependent manner. We were also able to impair the production of IP(3) when we stimulated with 2-heptanone or 2,5-dimethylpyrazine in the presence of antibodies against the alpha subunit of G(q/11). 2-Heptanone is a known pheromone that has been linked to VIR receptors. Thus, our observations indicate that the alpha subunits of G(q/11) play a role in pheromonal signaling in the VNO.  相似文献   

6.
In comparison with many mammals, there is limited knowledge of the role of pheromones in conspecific communication in the gray short-tailed opossum. Here we report that mitral/tufted (M/T) cells of the accessory olfactory bulb (AOB) of male opossums responded to female urine but not to male urine with two distinct patterns: excitation followed by inhibition or inhibition. Either pattern could be mimicked by application of guanosine 5'-O-3-thiotriphosphate and blocked by guanosine 5'-O-2-thiodiphosphate, indicating that the response of neurons in this pathway is through a G-protein-coupled receptor mechanism. In addition, the inhibitor of phospholipase C (PLC), U73122, significantly blocked urine-induced responses. Male and female urine were ineffective as stimuli for M/T cells in the AOB of female opossums. These results indicate that urine of diestrous females contains a pheromone that directly stimulates vomeronasal neurons through activation of PLC by G-protein-coupled receptor mechanisms and that the response to urine is sexually dimorphic.  相似文献   

7.
We investigated the specific pattern of major urinary proteins (MUPs) expression in 3-, 4-, and 12-week old mice of CBA/LacY and C57BL/6JY inbred strains using polyacrylamide gel electrophoresis. Quantitative evaluation of 8 protein fractions A-H with regard to sex, age, and genotype of the animals is presented for the first time. Actual problems of genetic control and neuroendocrine regulation of MUPs expression during ontogenesis are discussed. In the light of current views on MUPs as a key component in intrapopulation information exchange via pheromones, we put forward the idea that the genetically determined structure of the olfactory code of the definitive type is formed at an early ontogenetic stage on the basis of the MUPs combinatorial pattern.  相似文献   

8.
9.
Several types of intermediate filament proteins are expressed in developing and mature neurons; they cooperate with other cytoskeletal components to sustain neuronal function from early neurogenesis onward. In this work the timing of expression of nestin, peripherin, internexin, and the neuronal intermediate filament triplet [polypeptide subunits of low (NF-L), medium (NF-M), and high (NF-H) molecular weight] was investigated in the developing fetal and postnatal mouse vomeronasal organ (VNO) by means of immunohistochemistry. The results show that the sequence of expression of intermediate filament proteins is internexin, nestin, and NF-M in the developing vomeronasal sensory epithelium; internexin, peripherin, and NF-M in the developing vomeronasal nerve; and nestin, internexin and peripherin, NF-L, and NF-M in the nerve supply to accessory structures of the VNO. At sexual maturity (2 months) NF-M is only expressed in vomeronasal neurons and NF-M, NF-L and peripherin are expressed in extrinsic nerves supplying VNO structures. The differential distribution of intermediate filament proteins in the vomeronasal sensory epithelium and nerve is discussed in terms of the cell types present therein. It is concluded that several intermediate filament proteins are sequentially expressed during intrauterine development of the VNO neural structures in a different pattern according to the different components of the VNO.  相似文献   

10.
By nature,biomarker is the measurable change associated with a physiological or pathophysiological process.Unlike blood which has mechanisms to minimize changes and to keep the internal environment homeostatic,urine is more likely to reflect changes of the body and is a better biomarker source.Because of its potential in biomarker discovery,urinary proteins should be preserved comprehensively as the duration of the patients’corresponding medical records.Here,we propose a method to adsorb urinary proteins onto a membrane we named Urimem.This simple and inexpensive method requires minimal sample handling,uses no organic solvents,and is environmentally friendly.Urine samples were filtered through the membrane,and urinary proteins were adsorbed onto the membrane.The proteins on the membrane were dried and stored in a vacuum bag,which keeps the protein pattern faithfully preserved.The membrane may even permit storage at room temperature for weeks.Using this simple and inexpensive method,it is possible to begin preserving urine samples from all consenting people.Thus,medical research especially biomarker research can be conducted more economically.Even more objective large-scale prospective studies will be possible.This method has the potential to change the landscape of medical research and medical practice.  相似文献   

11.
The abundance profile of the human urinary proteome is known to change as a result of diseases or drug toxicities, particularly of those affecting the kidney and the urogenital tract. A consequence of such insults is the ability to identify proteins in urine, which may be useful as quantitative biomarkers. To succeed in discovering them, reproducible urine sample preparation methods and good protein resolution in two-dimensional electrophoresis (2-DE) gels for parallel semiquantitative protein measurements are desirable. Here, we describe a protein fractionation strategy enriching proteins of molecular masses (M(r)) lower than 30 kDa in a fraction separate from larger proteins. The fraction containing proteins with M(r)s higher than 30 kDa was subsequently subjected to immunoaffinity subtraction chromatography removing most of the highly abundant albumin and immunoglobulin G. Following 2-DE display, superior protein spot resolution was observed. Subsequent high-throughput mass spectrometry analysis of ca. 1400 distinct spots using matrix-assisted laser desorption/ionization-time of flight peptide mass fingerprinting and liquid chromatography-electrospray ionization tandem mass spectrometry lead to the successful identification of 30% of the proteins. As expected from high levels of post-translational modifications in most urinary proteins and the presence of proteolytic products, ca. 420 identified spots collapsed into 150 unique protein annotations. Only a third of the proteins identified in this study are described as classical plasma proteins in circulation, which are known to be relatively abundant in urine despite their retention to a large extent in the glomerular blood filtration process. As a proof of principle that our urinary proteome display effort holds promise for biomarker discovery, proteins isolated from the urine of a renal cell carcinoma patient were profiled prior to and after nephrectomy. Particularly, the decrease in abundance of the kininogen 2-DE gel spot train in urine after surgery was striking.  相似文献   

12.
The physiological basis for population differentiation of dispersal timing during individual development in male wild house mice is still unknown. As major urinary proteins (MUPs) are known to convey information about competitive ability in male mice, we examined individual MUP profiles defined by isoelectric-focusing (IEF) patterns in relation to developmental timing of dispersive motivation. As an experimental paradigm marking the development of the dispersal propensity, we used agonistic onset between litter mate brothers when kept in pairs under laboratory conditions. Agonistic onset is known to reflect the initiation of dispersive motivation. Hence, we compared individual MUP IEF patterns between fraternal pairs that did or did not develop agonistic relationships before the age of 2 months. Urine was collected on the day of weaning and at the beginning of adulthood. We investigated whether there was a significant co-occurrence of particular MUP IEF patterns with the agonistic onset in male mice. We assumed that, based on this co-occurrence, particular MUP IEF patterns and/or a particular dynamic of MUP IEF expression from weaning to adulthood may be considered a physiological predictor of a specific behavioral strategy in male mice (i.e. submissive-philopatric or agonistic-dispersive strategy). We found that agonistic males expressed more MUP IEF bands than amicable ones at weaning, but these differences disappeared later on. The presence of two particular IEF bands at weaning was significantly associated with early agonistic onset. Our study suggests that MUPs could have a predictive value for the onset of aggressive behavior and dispersal tendency in male wild house mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号